
The Computer Journal, 46(5), c© British Computer Society 2003; all rights reserved

Parallel Huffman Decoding with
Applications to JPEG Files∗

S. T. KLEIN1 AND Y. WISEMAN1,2

1Department of Computer Science, Bar Ilan University, Ramat Gan 52900, Israel
2Computer Science Department, Jerusalem College of Technology, Jerusalem 91160, Israel

Email: tomi@cs.biu.ac.il, wiseman@cs.biu.ac.il

A simple parallel algorithm for decoding a Huffman encoded file is presented, exploiting the
tendency of Huffman codes to resynchronize quickly, i.e. recovering after possible decoding errors,
in most cases. The average number of bits that have to be processed until synchronization is
analyzed and shows good agreement with empirical data. As Huffman coding is also a part of
the JPEG image compression standard, the suggested algorithm is then adapted to the parallel

decoding of JPEG files.

Received 22 May 2002; revised 11 February 2003

1. INTRODUCTION

Huffman coding is still one of the popular compression
techniques and is widely used by itself [1, 2] or in connection
with other methods such as gzip and JPEG. Huffman’s
original method [3] is not adaptive and needs two passes over
the data to be compressed. This might be a disadvantage in
certain applications, in which dynamic algorithms, such as
those based on the works of Lempel and Ziv [4, 5], are the
preferred choice. There are, however, situations in which a
static method is required, such as for large static information
retrieval systems [6] or when searching for patterns directly
in a compressed text [7]. Another area of application is
when more than one processor is available, in which case
a static compression scheme, i.e. one that does not change
the codewords dynamically during processing, may allow
the decoding of several data pieces in parallel.

It is on this last point that we concentrate in this
paper. We explore a method allowing the parallel decoding
of a file that has been compressed by a static Huffman
code exploiting, in particular, the tendency of Huffman
codes to resynchronize quickly in the case of an error.
This will then be extended to deal with the parallel decoding
of JPEG files. JPEG is a widely used standard image
compression technique [8] and the last phase of its baseline
implementation includes Huffman coding. We shall assume
a basic knowledge of Huffman’s algorithm and of the
properties of Huffman codes, in particular of canonical
Huffman codes, which can be found in many good
textbooks, for example [1].

Previous work on parallelizing compression includes
[9, 10, 11], which deal with LZ compression and [12].
A parallel method for the construction of Huffman trees can

∗This is an extended version of a paper that appeared earlier in
Klein, S. T. and Wiseman, Y. (2000) Proc. Data Compression Conf.
DCC’00, Snowbird, Utah, pp. 383–392. IEEE Computer Society Press,
Los Alamitos, CA.

be found in [13] and parallel encoding has been addressed
in [14]. In fact, parallel static Huffman encoding is quite
simple: the input text can be split among the available
processors, each of which would collect statistics in its
assigned block about the frequency of occurrence of the
various characters. The counters of the different processors
then have to be added and a global Huffman tree will be
constructed, although no parallelization can be used for this
step. The actual encoding can then again be performed in
parallel for each block independently. Using such parallel
encoding assumes alignment at block boundaries, so that
some bits may be lost at the end of each block.

Our focus, however, is on decompression, because
it may be more important than compression in some
cases. For instance, in information retrieval applications,
compression is done only once and may therefore be as time
consuming as necessary, but decompression of short pieces
is done on-line and ought to be fast to allow a reasonable
response time to a query.

The organization of this paper is as follows: in the
next section we review the main problem faced by parallel
decompression, namely synchronization. Section 3 presents
the algorithm and Section 4 presents some experimental
results relating to general Huffman encoded files. Section 5
then deals in detail with JPEG decoding and explains how
the general idea of the parallel decoding can be adapted to
fit the specific characteristics of a JPEG file.

2. SYNCHRONIZATION

When more than one processor is available at decompression
time, the compressed text can be split into blocks and
each processor can be assigned one of the blocks for
decompression. The problem is, of course, that the sizes
of the blocks are fixed in advance and since Huffman
codewords have variable lengths, a block-boundary does not

THE COMPUTER JOURNAL, Vol. 46, No. 5, 2003

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

488 S. T. KLEIN AND Y. WISEMAN

A A E E A D

0 1 0 0 0 0 1 1 1 1 0 0 1 0

0 1 0 0 0 0 1 1 1 1 0 0 1 0

B A C E A D

����
block boundary erroneous decoding x

correct decoding y

���
synchronization point

FIGURE 1. Schematic representation of parallel decoding.

necessarily coincide with a codeword boundary. However,
Huffman codes are complete, which means that any binary
sequence can be ‘decoded’ as if it were the encoding of
some text, so that synchronization errors may go undetected
(see [15] for a definition of synchronization in our context).

Consider, for example, the simple Huffman code
{00, 010, 011, 10, 11} for the characters A, B, C, D, E,
respectively. The encoding of the string BACEADwould then
be the binary string 01000011110010. Suppose that one of
the processors would be assigned a block starting at the third
bit of this string, indicated by the arrow in the upper part of
Figure 1. It would then decode the block as AAEEAD, the
first three characters of which are erroneous.

The general situation is given in the lower part of Figure 1.
The upper line symbolizes the decoding which starts at the
block boundary and might, therefore, produce an erroneous
decoding for several codewords. The line below shows the
correct decoding: the block boundary could have occurred
within a codeword, so that the following block starts with
some proper suffix of a codeword. Typically, the correct
and the erroneous decodings could then generate different
output sequences, up to a position in the binary string to
be decoded, which, for both processes, holds a bit that
completes a codeword of the given code. This position is
indicated as a synchronization point, as subsequent bits will
be correctly decoded in any case.

Synchronization points do not always exist. A simple
example would be a fixed length code, for which every
codeword has length k bits. If the block size is not a multiple
of k, all the codewords of the second block will be out of
synchronization. However, in the case of a fixed length
code, the block size could be chosen a priori as a multiple
of the codeword length. Moreover, fixed length codes are
only optimal, from the compression point of view, for nearly
uniform distributions.

On the other hand, there are also variable length codes
for which synchronization will not be achieved. Refer again
to Figure 1 and denote by x and y, respectively, the last
codeword before the synchronization point for the erroneous
and the correct decoding. Then either y has to be a suffix of x

(as in the example in the figure), or x is a suffix of y. In either
case, the code cannot have the so-called suffix-property,
asserting that no codeword can be the suffix of any other,

similar to the well-known prefix-property of all Huffman
codes. Accordingly, codes having both the prefix and the
suffix property have been called never-self-synchronizing
in [15]; they are called affix codes in [16]. There are in-
finitely many different complete variable-length affix codes,
e.g. {01, 000, 100, 110, 111, 0010, 0011, 1010, 1011}, but
they are nonetheless extremely rare [17]. For none of the
real-life distributions we checked could an affix code be
constructed. For those rare artificial distributions for which
it was possible, the affix code had to be carefully designed;
selecting the code in some systematic way or using canonical
codes [18] did not yield affix codes.

For certain distributions, a Huffman code may be
constructed that includes synchronizing codewords or
sequences [19, 20]. These are codewords or sequences after
the occurrence of which decoding will be correct, regardless
of any possible error before them. The higher the probability
of these codewords, the lower the expected number of
falsely decoded bits at the beginning of each block, so
the techniques of [19] may be applied to improve the
performance of the parallel Huffman decoding. In practice,
however, synchronization is fast even without the help of
synchronizing codewords.

3. PARALLEL DECODING

The simplest approach to allow parallel decoding is to decide
in advance on the sizes of the blocks and force alignment
at block boundaries by inserting padding bits at the end of
the blocks. Note, however, that padding cannot always be
done simply by inserting zeroes or random bits, since such
a sequence of padding bits might turn out to be ‘decodable’,
yielding erroneous decoding. The padding should thus
consist of a proper prefix of one of the codewords.

An easy way to implement this for a fixed block size b

would be as follows: Start with a Huffman encoded string T

and repeat until T is empty: remove from T a prefix of
size b—this prefix constitutes the following block B; if the last
codeword w did not fit in its entirety in B, prepend the prefix of
w which is a suffix of B in front of T . The average number
per block of added bits will be about half of the average
codeword length, which might be negligible if the block size
is large enough.

THE COMPUTER JOURNAL, Vol. 46, No. 5, 2003

PARALLEL HUFFMAN DECODING 489

Start decoding at beginning of block i
Record indices of end of codewords in list Li
Continue until EOB

If EOB is an eoc or EOB is EOF (last block) STOP
else // overflow to next block
{ i ←− i + 1

p ←− headi

repeat
{ decode to next eoc

if this eoc is EOB STOP
if EOB was passed
{ i ←− i + 1 p ←− headi }
else
{ j ←− index of eoc in block i

c ←− corresponding decoded character
if Li [p] not yet defined, wait until defined
while Li [p].index < j

{ p old ←− p

p ←− p.next
remove Li [p old] from Li

if Li [p] not yet defined, wait until defined}
if Li [p].index = j STOP
else insert (j, c) in front of Li [p] in Li}}}

FIGURE 2. Decoding algorithm for processor i.

Alternatively, instead of repeating a prefix of the last
codeword for each block, one could record the length � of
this prefix in a separate table. Processor i would then start its
work by reading a suffix of length � from block i − 1 before
turning to its own block i. The overhead per block in this
case is log(maximum codeword length), which again may
be very small relative to a large block. It should, however,
be noted that assuming a lower bound to the size of a block
is equivalent, as the size of the input file is given, to an upper
bound on the number of processors. So if many processors
are available and the input file is not very large, either we
agree not to take advantage of all the given processing power
or one has to deal also with smaller blocks. In the latter case,
increasing each block with padding bits or adding an integer
� to each block might no longer be a negligible overhead.

In any case, even if the overhead is very small, the main
disadvantage is that the number of processors has to be
fixed in advance, at encoding time. The algorithm we
suggest below does not alter the original Huffman encoded
file and has therefore no overhead. Moreover, any number
of processors can be accommodated, the exact number is
only needed at decoding time and may even change from
one decoding to another.

3.1. Description of the suggested algorithm

The basic idea of the parallel decoding algorithm is to let
the processor i, which has been assigned to decode block

i, overflow and continue decoding in the consecutive block
i+1 until a synchronization point is reached. Assuming that
the last codewords in block i are already correctly decoded,
processor i will give the correct decoding of the first few
codewords in block i + 1. Once a synchronization point in
block i+1 is detected, processor i can stop (or be reassigned
to the decoding of another block), since the remaining bits in
block i + 1 have been correctly decoded by processor i + 1.
In particular, the synchronization point can be immediately
at the block boundary, in case the last codeword of the
previous block happens to fit there in its entirety.

The formal parallel decoding algorithm for processor i is
given in Figure 2. Processor i maintains a linked list Li of
pairs (index, char), which is also accessible to processors
j , for j < i, and records the indices within block i, of
the last bit of each codeword, as well as the corresponding
decoded characters. Denote by Li [p] the element of Li

pointed to by p and by Li[p].index and Li [p].char the index
and character fields within Li [p], respectively. In general,
the first few elements of Li will be wrong, corresponding
to the erroneous decoding at the beginning of the block,
but they will be corrected when processor i − 1 moves into
block i. The list Li also serves as an indicator for processor
i to stop: as soon as an index value is detected that is
equal to one of the index values stored in Li by an earlier
processor, synchronization has been achieved. The final
decoded sequence can then be obtained by accessing in
parallel the lists Li [p].char.

THE COMPUTER JOURNAL, Vol. 46, No. 5, 2003

490 S. T. KLEIN AND Y. WISEMAN

We use the abbreviations EOB for end of block, EOF for
end of file and eoc for end of codeword. A pointer headi

points to the head of Li and if p points to an element of
Li , p.next points to its successor in the linked list. The wait
statements have been added to allow correct processing even
in the (quite unlikely) case that processor i−1 finishes work
on block i − 1, moves to block i and gets to the end of
some codewords there, before processor i has reached these
codewords in its own block.

To show correctness, we use an inductive argument: note
that getting a correct decoding in block i + 1 is based on
the assumption that the last codewords in block i have been
correctly decoded by processor i. If this assumption is
not true, the synchronization point found in block i + 1
is worthless. However, in this case, processor i − 1 has
not been able to find a synchronization point in block i

and did, therefore, also continue working on block i + 1.
The correctness is now based on the assumption that the
last codewords in block i − 1 have been correctly decoded.
This argument can be extended to i − 2, etc., but ultimately
there must be a block j with j < i, for which this is true,
since processor 1 starts at the beginning of the file and its
output is correct. Therefore, in the worst case, any output
produced by all the processors i, with i > 1, is useless
and the parallel decoding reduces to a sequential one by
processor 1 alone. As mentioned above, such a worst case
behavior seems to be extremely rare, as in most cases the
synchronization points are found quickly, long before the
end of the block.

3.2. Analysis

To get an estimate of the number of bits that have to
be processed before a synchronization point is found, we
introduce the following notations. Let T denote the
Huffman tree corresponding to a given Huffman code.
The elements which are encoded appear with probabilities
p1, . . . , pn in the text and the lengths of the corresponding
Huffman codewords are �1, . . . , �n, respectively. We also
use the notation py for the probability of the element
corresponding to the leaf y. Denote by L the set of the leaves
of T and by I the set of its internal nodes. For each x ∈ I,
we define Tx as the subtree of T rooted at x and we denote
by Lx = L ∩ Tx the set of its leaves. The internal nodes
I correspond to the positions at which a codeword might be
cut by a block-boundary. In particular, the root r of the tree,
which belongs to I, corresponds to the special case where
the block-boundary falls between two codewords.

We assume that a block boundary occurs at random in
any possible position, that is, at any internal node of T .
This is an approximation, since in certain cases, not all
the positions are possible cut-points, nor do those that are
possible all appear with the same probability. For example,
if both the block-size and all the codeword lengths are
even, then no codeword can be cut by a block boundary
after an odd number of bits. However, for many real-life
distributions, especially for the large ones with thousands
or even millions of elements, the corresponding Huffman

0.15 0.15

0.3 0.3 0.2 0.2

0.6 0.4

1.0

0.174

A

C

D

B

E

0.261

0.435

0.130

FIGURE 3. Probabilities P(x) for an example Huffman tree.

codes have codewords of all possible lengths in a certain
range; adding to this the fact that the block size is generally
chosen so as to accommodate a very large number of
consecutive codewords, we conclude that our assumption
can be justified.

Consider the fact of having a block boundary in a
certain position as if it were generated by the following
random process: the compressed text consisting of a given
sequence of concatenated codewords, we ‘throw’ at random
boundaries into this string, that is we randomly pick bit
positions which will act as the starting positions of the
blocks. In this sense, we can speak about the probability
of having a block boundary in a certain position. For a given
internal node x ∈ I, the probability P(x) of the position
corresponding to x being picked as a boundary point will
be proportional to pi�i and not just to pi , since we deal
with a random process on the compressed text and not on
the original one. Each leaf of the Huffman tree is associated
with a probability pi and the probability associated with an
internal node y is the sum of the probabilities associated with
the two children of y. Thus, when adding the probabilities
associated with all the internal nodes, we get

W =
n∑

i=1

pi�i,

the weighted average codeword length and the probability
P(x) is given by

P(x) =
∑

y∈Lx
py

W
.

This is indeed a probability distribution, as
∑

x∈I P(x) = 1.
As an example, refer again to the simple Huffman code
{00, 010, 011, 10, 11}mentioned earlier and assume that the
characters A, B, C, D, E appear with probabilities 0.3, 0.15,
0.15, 0.2 and 0.2, respectively, yielding an average W of
2.3. Figure 3 shows the corresponding tree, with each node
having its associated probability to its left. The probabilities
P(x) appear in boxes to the right of the internal (black)
nodes.

THE COMPUTER JOURNAL, Vol. 46, No. 5, 2003

PARALLEL HUFFMAN DECODING 491

For x ∈ I and y ∈ Lx , define

Q(x, y) =




1 if the path from x to y corresponds to a

sequence of one or more codewords in

the code,

0 otherwise,

that is Q(x, y) = 1 if and only if, in the case where a
codeword has been cut by a block boundary, synchronization
is re-established at the end of this codeword. In particular,
for an affix code, Q(x, y) = 0 for all x and y unless x is the
root. For the example in Figure 3, Q(x, y) is 1 if x is the
root or if x is the internal node corresponding to the prefix 0
and y is one of the leaves corresponding to B or C.

For a given block starting at some internal bit of a
codeword c, let S denote the event that the synchronization
point is already at the end of c, i.e. only the codeword cut
by the boundary is lost, if at all, and the subsequent ones
will be correctly recognized by the processor assigned to this
block. We evaluate the probability P(S) by conditioning on
the position of the possible cut-points:

P(S) =
∑
x∈I

P(S | cut-point is at x)P (x).

However, P(S | cut-point is at x) is the weighted average of
the decoding successes, summed over all the leaves of Tx ,
that is

P(S | cut-point is at x) =
∑

y∈Lx
pyQ(x, y)∑

y∈Lx
py

,

from which we get that

P(S) =
∑

x∈I
∑

y∈Lx
pyQ(x, y)

W
. (1)

We therefore conclude that the probability P(S) depends
only on the given distribution and on the shape of the
Huffman tree. The more paths from internal nodes to
the leaves match other such paths starting at the root,
the more Q(x, y)s will be 1 and the higher P(S) will
be. A good choice for the shape seems then to be
a canonical tree, in which the leaves appear from left
to right in non-decreasing order of their depths [18].
Such a shape tends to favor reoccurring structure patterns.
Returning to the example of the affix code above, the
canonical Huffman code with the same codeword lengths is
{00, 010, 011, 100, 101, 1100, 1101, 1110, 1111}. For this
tree, we have Q(x, y) = 1 if x is the root or if x is the
internal node corresponding to the prefix 1 and y is one
of the leaves corresponding to 100, 1100 or 1101; or if x

corresponds to 11 and y to 1100; for all other (x, y) pairs,
Q(x, y) = 0.

Consider now the case when the complementary event
of S occurs, that is synchronization was not regained at
the end of the first codeword. However, we are then in
a similar situation: a decoding process is started at some
internal position within a codeword c and we ask what is

the probability to resynchronize at the end of c. If the
number of codewords in a block is large enough, we may
assume that this event is independent of the previous one,
so we again get the same probability P(S). Extending this
argument, we see that the number of codewords c we have to
process until success, i.e. synchronization, is geometrically
distributed and its expected value is 1/P (S), from which we
derive an estimate for the number of bits E scanned at the
beginning of a block until synchronization as

E = W

P(S)
. (2)

In the experimental section below, we bring examples of this
expected value and of actual empirical results.

4. EXPERIMENTAL RESULTS

We now report on some experiments with the parallel
algorithm on various files. The first set consisted of textual
files in different languages: the Bible (King James Version)
in English, the Dictionnaire Philosophique of Voltaire in
French and the Bible in Hebrew. These files were Huffman
encoded according to their individual characters. In the
second set, the same files were encoded as a sequence of
bigrams, yielding much larger alphabets. In the third set, we
took three files of the Calgary corpus. Canonical Huffman
codes were used throughout, which gave noticeably faster
synchronization than the other Huffman codes we tried.

Table 1 summarizes the results. The first columns
give the values calculated from the files themselves: the
size n of the alphabet used to compress the file, the
average codeword length W , the synchronization probability
P(S) of Equation (1) and the expected number of
processed bits until synchronization, E, of Equation (2).
The following columns contain values that have been
empirically measured: first the average and maximum
number of bits until synchronization. The numbers reported
for the synchronization correspond to a block size of 512
bytes (4096 bits). The final two columns give the time, in
seconds, of decoding the files sequentially and in parallel
with four processors, using as block-size a quarter of the
file-size. Standard Huffman decoding was used for both
the sequential and parallel programs. More sophisticated
decoding procedures exist [18, 21], but we did not want
to bias the relative gain in speed due to parallelization.
The time measurements were taken on a Sun 450 with four
UltraSPARC–II 248 MHz processors. The model we used is
the shared memory introduced in Solaris 2.6 [22], protected
by the standard Unix System V semaphores and allocated
according to the Slab Allocator [23].

Other block sizes were also checked, but essentially the
same behavior was obtained for 700, 900 and 1024 bytes.
This shows that the block sizes were large enough to
support the assumption that the position of a block boundary
occurs at random. For such large blocks, the overhead
of forcing alignment by padding would also be very low,
less than 0.1% for all our examples. However, if blocks
as small as 40 bytes—still much more than needed to

THE COMPUTER JOURNAL, Vol. 46, No. 5, 2003

492 S. T. KLEIN AND Y. WISEMAN

TABLE 1. Calculated and measured values for parallel decoding.

Number of bits
until synchronization Decode time

n W P(S) E Average Maximum Sequential Parallel

English 63 4.42 0.42 9.4 8.1 63 11.75 3.40
French 56 4.50 0.43 10.6 7.9 36 1.44 0.39
Hebrew 26 4.07 0.40 10.2 9.8 98 3.53 1.21

English–2 1121 8.08 0.17 47.6 72.3 675 11.48 3.28
French–2 713 7.86 0.20 39.2 37.2 257 1.73 0.54
Hebrew–2 562 7.69 0.22 35.7 33.6 240 3.99 1.40

obj1 256 6.04 0.25 24.0 14.0 112 0.05 0.02
paper1 95 5.01 0.34 15.0 10.6 39 0.10 0.05
bib 81 5.24 0.31 16.8 13.5 68 0.25 0.11

get synchronization—are permitted, the padding overhead
would increase up to 2%.

As can be seen, the expected values of the number of
bits to be processed until synchronization at the beginning
of a block generally fit the average of the actual values
measured well. As expected, synchronization is obtained
faster for distributions with small average codeword length,
in our examples typically in less than 100 bits, which is only
0.25% of the size of the block. However, even for the larger
alphabets only a few tens of bytes were needed, which is
reasonable since the size of the block can be chosen larger
than in our tests. For the processing time, we obviously did
not expect a reduction to a quarter of the sequential speed,
since besides the overlap of the blocks to be processed, there
is also some overhead for the parallelization. The values we
obtained for four processors were typically around one-third
of the sequential decoding time.

5. APPLICATION TO JPEG

5.1. Baseline JPEG

We start with an overview of the essentials of JPEG needed
to understand the details of the parallel decoding. JPEG [24]
is a lossy image compression method. In a first step, the
picture is split into a sequence of blocks of size 8× 8 pixels.
Each block is then compressed by the following sequence of
transformations.

1. Applying a discrete cosine transform (DCT) [25] to the
set of 64 values of the pixels in the block.

2. Applying quantization to the DCT coefficients, thereby
producing a set of 64 smaller integers. This step
causes a loss of information but makes the data more
compressible.

3. Applying an entropy encoder to the quantized DCT
coefficients. Baseline JPEG uses Huffman coding
in this step, but the JPEG standard also specifies
arithmetic coding [26] as a possible alternative.

The decompression process just reverses the actions
and their order. It first applies Huffman decoding, then
dequantizes the coefficients and finally uses an inverse

DCT to obtain the original set of values. Because of
the quantization step, the reconstructed set includes only
approximated values.

The coefficient in position (0, 0) (left upper corner) is
called the DC coefficient and the 63 remaining values are
called the AC coefficients. In principle, the DC coefficient
should store a measure of the average of the 64 pixel values
of the given block, but since there is usually a strong
correlation between the DC coefficients of adjacent blocks,
what is actually stored is the difference between the average
in this block and the average in the previous one.

Baseline JPEG uses two different Huffman trees to encode
the data. The first encodes the lengths in bits (1 to 11) of
the binary representations of the values in the DC fields.
The second tree encodes information about the sequence of
AC coefficients. As many of them are zero, and most of
the non-zero values are often concentrated in the upper left
part of the 8 × 8 block, the AC coefficients are scanned in
a zig-zag order, processing elements on a diagonal close to
the upper left corner before those on such diagonals further
away from that corner, that is the order is given by (0, 1),
(1, 0), (2, 0), (1, 1), (0, 2), (0, 3), (1, 2), etc. The second
Huffman tree encodes pairs of the form (n, �), where n

(limited to 0 to 15) is the number of elements that are zero,
preceding a non-zero element in the given order and � is the
length in bits (1 to 10) of the binary representation of the
non-zero quantized AC value. The second tree also includes
codewords for EOB, which is used when no non-zero
elements are left in the scanning order and for a sequence of
16 consecutive zeros in the AC sequence (ZRL), necessary to
encode zero-runs that are longer than 15. The Huffman trees
used in baseline JPEG are static and can be found in [8].

Each 8 × 8 block is then encoded by an alternating
sequence of Huffman codewords and binary integers (except
that the codeword for ZRL is not followed by any integer),
the first codeword belonging to the first tree and relating to
the DC value, the other codewords encoding the (n, �) pairs
for the AC values, with the last codeword in each block
representing EOB. Figure 4a brings an example block of
quantized values, with the DC value in boldface in the upper
left corner. The upper part of Figure 4b shows the encoding

THE COMPUTER JOURNAL, Vol. 46, No. 5, 2003

PARALLEL HUFFMAN DECODING 493

20 1 0 0 0 0 0 0

0 3 0 0 0 0 0 0

0 0 0 0 0 0 0 0

-2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

(a)

(3) 5 (0,1) 1 (2,2) 3 (4,2) -2 (EOB)

100 101 00 1 11111001 11 1111111000 01 1010

(b)

FIGURE 4. Example of a JPEG block (a) and its encoding (b).

(3) 5 (0,1)1 (2,2) 3 (4,2) -2 (EOB) (3) 5 (0,1)1 (2,2) 3 (4,2) -2 (EOB) (3) 5 (0,1)1 (2,2) 3 (4,2) -2 (EOB)

100 101 00 1 11111001 11 1111111000 01 1010 100 101 00 1 11111001 11 1111111000 01 1010 100 101 00 1 11111001 11 1111111000 01 1010

100 101 00 1 11111001 11 1111111000 011 01 01 00 1010 011 11 1100 1 1111111110000110 10100101 00 1 11111001 11 1111111000 01 1010

� (2) -2(0,2) -3 (EOB) (2) 3 (1,1) 1 (1,8) 165 (0,1)1 (2,2) 3 (4,2) -2 (EOB)

FIGURE 5. Example of wrong decoding and synchronization.

of this block, with Huffman encoded elements appearing
in parentheses; the binary translation of the encoding, with
framed Huffman codewords, is shown underneath.

Turning now to the problem of parallel decoding, the
above idea, with a few adaptations, can be applied to
decompress Huffman based JPEG files in parallel, which
can yield faster reconstruction of the image when several
processors are available. One possible approach to adjust
JPEG to a parallel scheme is to change the basic JPEG
scheme to a more adequate format, as suggested in [27, 28].
Our goal, however, is a method capable of decoding in
parallel without changing the standard.

As was done above for general Huffman encoded files,
we start by splitting the image into several slices and
assigning different processors, each working on a different
slice of the image. The synchronization problems mentioned
in Section 2 also appear here and are even more severe.
Not only does the beginning of the block to be decoded
by the current processor not necessarily coincide with the
beginning of a Huffman codeword, but even if it does
synchronization is not guaranteed. The following different
cases may occur—the block boundary could be located:

• within the codeword representing the length of the DC
coefficient;

• at the beginning or within the stored DC value;
• at the beginning or within a codeword representing an

(n, �) pair used for the AC coefficients;
• at the beginning or within a stored AC value.

Only if the block happens to start with a codeword for the
length of the stored DC value will the block be correctly
decoded.

To illustrate this problem, assume that the block used in
the example in Figure 4 appears consecutively three times
in the given file. Suppose then that a new processor starts
working six bits before the end of the first block, which
corresponds to the beginning of the binary encoding of the
AC value −2. The processor would try to recognize a Huff-
man codeword representing the length of a DC value and
would thus erroneously interpret the next three bits 011 as
representing the length 2, implying further errors. Figure 5
shows, in its upper part, the correct decoding and, in its lower
part, the decoding obtained when starting at the sixth bit
before the end of the first block, as indicated by the arrow.
As can be seen, the first few decoded elements are wrong,
but soon a synchronization point, indicated by the vertical
bar, is found after which the decoded elements are correct.

In this example, the first decoded block is completely
wrong and the second includes at its end some correctly de-
coded AC coefficients, which, however, are useless because
of their wrong positions within the block. Only after the
second EOB will the correct decoding resume. In general,
correct decoding and not just synchronization will only
be achieved after a correct EOB codeword is detected.
Note that two different errors may occur: a true occurrence
of EOB (1010 in our example) may be overlooked, as the
first and second EOB in the upper part of Figure 5, or an
EOB may be detected even though there is none in the true
decoding, as in the case of the first EOB of the lower part of
Figure 5. The correct EOB after which decoding is correct
is the first EOB found after synchronization.

The parallel decoding algorithm for baseline JPEG is
similar to the general algorithm of Section 3, with the
following additions.

THE COMPUTER JOURNAL, Vol. 46, No. 5, 2003

494 S. T. KLEIN AND Y. WISEMAN

(a) (b)

FIGURE 6. Example of the parallel decoding of a greyscale image: (a) parallel decoding with four processors; (b) original image.

5.1.1. Invalid codewords
Any Huffman code is complete, in the sense that any
binary string can be ‘decoded’ as if it were some Huffman
encoding, so that errors in the binary file will stay undetected
unless the end of the file is reached within a codeword. In the
particular case of JPEG, errors may be detected in certain
circumstances: keeping track of the number of AC elements
by summing the n fields of the (n, �) pairs and adding the
number of non-zero coefficients, if this number exceeds 63,
there must obviously have been an error. In addition, the
particular Huffman trees used (see [8]) are not complete
and, in fact, certain codewords are missing (for example
111111111 in the first Huffman tree, used for the DC
coefficients). The appearance of such an invalid codeword
is therefore a sign that some error has occurred. As it makes
no sense to display a block which is obviously incorrect,
an empty block will be substituted. The error will be fixed
when the decoder of the previous block will overflow into
the current block.

5.1.2. Positioning of the image
Another factor applying to the decoding of JPEG files is the
possibility to display partial data while decoding, even if the
correct location is yet unknown. As the compressed data has
variable length, the location of each block in the image can
not be known accurately. The algorithm will then choose an
estimated location, at about (i − 1)/k of the decoded image
for the output of processor i if k processors are available.
Only when processor i − 1 finishes its block will the correct
position of the output of processor i be known, so blocks that
have been temporarily displayed at the estimated location
will probably have to be relocated.

The wrong positioning of a decoded block may cause
the cutting of a line of blocks into two parts: the left
part may appear at the right end of a line of blocks in
the image, whereas the right part will be at the left border
of the following line. For many images this will result
in a discontinuity which is often easily detectable by a
human eye, as for example in the lower part of Figure 6a
above. A straightforward idea would then be to try to detect
if such discontinuities (which are equivalent to high DC

values, since these store differences from preceding blocks)
happen to reoccur at the same position in consecutive lines,
suggesting that this position should be moved to the edge of
the image. However, such a rule of thumb may fail, either
in the case when blocks at the left or right edges of the
image are similar, or when there is a true discontinuity in
the given position. Moreover, the algorithm would be more
time consuming, which might cancel a part of the gain in
speed due to the parallel processing.

5.1.3. Adjusting the color
As mentioned, the DC values are not encoded themselves,
but rather as the difference between the current value and
that of the previous block. When decoding does not start
at the beginning of the file, the exact DC for the current
blocks are not known. One can then assume some arbitrary
basis value for DC (for example, the middle value zero)
to enable the decoding of the chain of DC values within
a block. A wrong guess may result in a biased image,
which can be too bright or too dark for greyscale pictures,
if the change was in the luminance component; a change
in the chrominance component of color pictures may turn
the image too reddish or bluish. This is still better than not
seeing this part of the image at all. Once all the preceding
processors get to the blocks following the one they have
been assigned to, this bias will be corrected. This means,
however, that to get a correct decoding of the picture, we
actually have to process it sequentially. The advantage of
the parallel decoding reduces in this case to the ability of
getting quickly some partial information in the form of a
biased picture, that will subsequently be rectified.

Note that the new standard JPEG–2000 [29] has built-in
synchronization codewords which make the synchronization
faster. Obviously, this will improve the performance of the
parallel decoding application.

Figure 6 is an example of the decoding of a greyscale
picture, decoded by four processors. Figure 6a shows the
reconstructed image after having processed all the blocks,
but before letting the processors overflow into the adjacent
blocks to correct the wrong positioning and luminance.
Figure 6b brings then the corrected picture.

THE COMPUTER JOURNAL, Vol. 46, No. 5, 2003

PARALLEL HUFFMAN DECODING 495

(a) (b)

FIGURE 7. Example of the parallel decoding of a color image: (a) parallel decoding with four processors; (b) original image.

TABLE 2. Statistics on JPEG decoding.

Number of bits
until synchronization

Average size of Size of picture
8× 8 block Average Maximum (number of 8× 8 blocks)

Greyscale image 144.1 74.9 1815 63 × 43
Color image 339.3 150.1 1853 20 × 29

5.2. Other JPEG formats

The JPEG standard [24] has some other formats for encoding
images. In several progressive modes, the scanning order
is altered. In one of the variants, for instance, using 8 bits
for each encoded coefficient, the 64 × 8 × k bits of the k

blocks constituting an image are rearranged, clustering the
64k most significant bits together, followed by the 64k bits
in position 2 of each coefficient, etc. The resulting sequence
is then Huffman encoded. This mode of transmission has the
advantage of permitting a sequence of approximations of the
image to be obtained before all of the data has been read.
The first approximation will be blurred, but the consecutive
ones will become progressively clearer. Unfortunately, this
and similar rearrangements are not suitable for our parallel
decoding: even if synchronization is regained, we still do not
know to which of the k blocks the decoded values have to be
assigned, nor do we have any information about the index of
the bit currently processed.

JPEG also deals with pictures encoded by several
components, such as color images. There are several
methods for splitting a color pixel into components [30, 31].
The common standards are RGB [32] and YUV [33].
A color picture is not decomposed into three independent

images in each of the color shades, but rather for each
block, the three components (RGB or YUV) are encoded
consecutively. In the parallel decoding process, the current
color shade (e.g. R, G or B) after synchronization can only
be guessed and will be corrected if necessary when all the
preceding processors overflow into the next image slices.
Until this correction is performed, the color shades may be
incorrect. Figure 7 is an example of the decoding of a color
image by four processors, similar to Figure 6.

Table 2 displays some statistics about the parallel JPEG
decoding. Note that because the encoded file is not just a
sequence of Huffman codewords, but also includes various
integer encodings, the relevant number is not the average
size of a Huffman codeword but the average size of an
encoded block of 8 × 8 pixels, which is given, in bits, in
the first column. The number of bits till synchronization
is thus also measured up to the beginning of the following
correctly decoded 8 × 8 block. For the color image, each
block consists, in fact, of three independent ones (for Y, U
and V). We see that synchronization is achieved on average
after about half a block, which, given the size of the pictures
(last column), is hardly noticeable. Timing figures have not
been included: as mentioned above, full decoding including
relocation and color adjustment might force a sequential

THE COMPUTER JOURNAL, Vol. 46, No. 5, 2003

496 S. T. KLEIN AND Y. WISEMAN

scan. On the other hand, if we measure the decoding
time only until each processor finishes its own block, the
processors can work independently of each other, so the time
is reduced by a factor of n if n processors are available.

6. CONCLUDING REMARKS

Parallelization of the decoding process of a Huffman
compressed file seems to be an easy task if one is willing
to change the original compressed file slightly, forcing
codeword alignment at block boundaries. The incurred
overhead will often be negligible. The new algorithm
does not alter the encoded file at all, using the well-
known property of Huffman codes to resynchronize quickly
after errors. We have analyzed the average length of the
segment until synchronization is achieved and compared the
theoretically expected values with experimental results on
real-life data, showing generally good agreement.

The basic idea has then been extended to deal with the
parallel decoding of JPEG encoded images, since Huffman
coding is a part of the JPEG scheme. Decoding is more
involved in this case and to get the correct reconstructed
picture, it may at times take as long as for the sequential
procedure. The benefit of using parallel decoding reduces
then to the ability of getting faster partial visual information.

In fact, the technique of letting the processors overflow
to neighboring blocks might have applications beyond those
of parallel decompression. Any divide and conquer scheme
splits its input into several independent parts, which are
then processed (in parallel or sequentially) individually
and whose results are then somehow combined. Usually,
the division points between the parts are well defined.
For certain applications, however, it might not be clear where
to choose the boundaries of the partition. In such cases,
permitting a certain overlap between the parts similar to
that of our parallel Huffman decoding, might possibly yield
easier ways for the recombination of the results.

ACKNOWLEDGEMENT

The authors wish to thank the three anonymous referees for
their helpful comments.

REFERENCES

[1] Witten, I. H., Moffat, A. and Bell, T. C. (1994) Managing
Gigabytes, Compressing and Indexing Documents and
Images. International Thomson Publishing, London.

[2] Bookstein, A. and Klein, S. T. (1993) Is Huffman coding
dead? Computing, 50, 279–296.

[3] Huffman, D. (1952) A method for the construction of
minimum redundancy codes. In Proc. IRE, Kansas City,
9 September 1952, vol. 40, pp. 1098–1101. The Institute of
Electronics and Radio Engineers, London.

[4] Ziv, J. and Lempel, A. (1977) A universal algorithm for
sequential data compression. IEEE Trans. Inform. Theory, 23,
337–343.

[5] Ziv, J. and Lempel, A. (1978) Compression of individual
sequences via variable-rate coding. IEEE Trans. Inform.
Theory, 24, 530–536.

[6] Bookstein, A., Klein, S. T. and Ziff, D. A. (1992) A
systematic approach to compressing a full text retrieval
system. Inform. Process. Management, 28, 795–806.

[7] Navarro, G. and Raffinot, M. (1999) A general practical
approach to pattern matching over Ziv-Lempel compressed
text. In Proc. 10th Symp. on Combinatorial Pattern Matching,
Warwick, UK, 22–24 July 1999, Lecture Notes in Computer
Science, 1645, pp. 14–36. Springer, Berlin.

[8] Wallace, G. K. (1991) The JPEG still picture compression
standard. Commun. ACM, 34, 30–44.

[9] De Agostino, S. and Storer, J. A. (1995) Near optimal
compression with respect to a static dictionary on a practical
massively parallel architecture. In Proc. Data Compression
Conf. DCC–95, Snowbird, Utah, 28–30 March 1995, pp. 172–
181. IEEE Computer Society.

[10] De Agostino, S. and Storer, J. A. (1992) Parallel algorithms
for optimal compression using dictionaries with the prefix
property. In Proc. Data Compression Conf. DCC–92,
Snowbird, Utah, 24–27 March 1992, pp. 52–61. IEEE
Computer Society.

[11] Gonzalez Smith, M. E. and Storer, J. A. (1985) Parallel
algorithms for data compression. J. ACM, 32(2), 344–373.

[12] Hirschberg, D. S. and Stauffer, L. M. (1994) Parsing
algorithms for dictionary compression on the PRAM. In Proc.
Data Compression Conf. DCC–94, Snowbird, Utah, 29–31
March 1994, pp. 136–145. IEEE Computer Society.

[13] Lawrence, L. L. and Przytycka, T. M. (1995) Constructing
Huffman Trees in parallel. SIAM J. Comput., 24(6), 1163–
1169.

[14] Howard, P. G. and Vitter, J. S. (1992) Parallel lossless image
compression using Huffman and aithmetic coding. In Proc.
Data Compression Conf. DCC–92, Snowbird, Utah, 24–27
March 1992, pp. 299–308. IEEE Computer Society.

[15] Gilbert, E. N. and Moore, E. F. (1959) Variable-length binary
encodings. Bell Syst. Tech. J., 38, 933–968.

[16] Fraenkel, A. S., Mor, M. and Perl, Y. (1983) Is text
compression by prefixes and suffixes practical? Acta Inform.,
20, 371–389.

[17] Fraenkel, A. S. and Klein, S. T. (1990) Bidirectional Huffman
coding. Comput. J., 33, 296–307.

[18] Klein, S. T. (2000) Skeleton trees for the efficient decoding of
Huffman encoded texts. Kluwer J. Inform. Retrieval, 3, 7–23.

[19] Ferguson, T. J. and Rabinowitz, J. H. (1984) Self-syn-
chronizing Huffman codes. IEEE Trans. Inform. Theory, 30,
687–693.

[20] Lam, W. M. and Kulkarni, S. R. (1996) Extended
synchronizing codewords for binary prefix codes. IEEE
Trans. Inform. Theory, 42, 984–987.

[21] Brodnik, A. and Carlsson, S. (1998) Sublinear Decoding of
Huffman Codes Almost in Place. Technical Report 36/600,
IMFM, Ljubljana, Slovenia.

[22] Vahalia, U. (1996) UNIX Internals—The New Frontiers.
Prentice-Hall, Englewood Cliffs, NJ.

[23] Bonwick, J. (1994) The slab allocator: an object-caching
kernel memory allocator. In Proc. Summer 1994 USENIX
Tech. Conf., Boston, Massachusetts, 6–10 June 1994, pp. 87–
98. USENIX, Berkeley, CA, 94710, USA.

[24] ISO/IEC 10918-1 (1993) Information technology—digital
compression and coding of continuous–tone still images re-
quirements and guidelines. International Standard ISO/IEC,
Geneva, Switzerland.

THE COMPUTER JOURNAL, Vol. 46, No. 5, 2003

PARALLEL HUFFMAN DECODING 497

[25] Rao, K. R. and Yip, P. (1990) Discrete Cosine Transform
Algorithms, Advantages, Applications. Academic Press,
London.

[26] Witten, I. H., Neal, R. M. and Cleary, J. G. (1987) Arith-
metic coding for data compression. Comm. ACM, 30,
520–540.

[27] Yun, D. Y. Y. and Chen, C. (1996) ESS Project, Annual
Report FY96—Applications, NASA, USA Government,
Greenbelt, MD.

[28] Yun, D. Y. Y. and Chen, C. (1997) ESS Project, Annual
Report FY97—Applications, NASA, USA Government,
Greenbelt, MD.

[29] Marcellin, M. W., Gormish, M. J., Bilgin, A. and Boliek, M. P.
(2000) An overview of JPEG-2000. In Proc. Data Compres-
sion Conf. DCC-2000, Snowbird, Utah, 28–30 March 2000,
pp. 523–541. IEEE Computer Society, New Jersey.

[30] Hearn, D. and Baker, M. P. (1986) Computer Graphics.
Prentice-Hall, Englewood Cliffs, NJ.

[31] Jain, A. K. (1986) Fundamentals of Digital Image Processing.
Prentice-Hall, Englewood Cliffs, NJ.

[32] Hunt, R. W. G. (1952) The Reproduction of Colour. Morgan,
Keene Valley, NY.

[33] Laplante, P. A. and Stoyenko, A. D. (1996) Real Time Imaging,
Theory, Techniques and Applications. IEEE Press, New York.

THE COMPUTER JOURNAL, Vol. 46, No. 5, 2003

