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Abstract. Dynamic time warping (DTW) is widely used to measure
similarity between two time series by finding an optimal warping path.
However, its quadratic time and space complexity are not suitable for
large time series datasets. To overcome the issues, we propose a modified
version of dynamic time warping, which not only retains the accuracy of
DTW but also finds the optimal warping path faster. In the proposed
method, a threshold value used to narrow the warping path scope can
be preset automatically, thereby resulting in a new method without any
parameters. The optimal warping path is found by a backward strategy
with reduced scope which is opposite to the forward strategy of DTW.
The experimental results demonstrate that besides the same accuracy,
the proposed dynamic time warping is faster than DTW, which shows
that our method is an improved version of the original one.

Keywords: Dynamic time warping, Time series, Similarity measure,
Data mining, Computational complexity.

1 Introduction

In the field of time series data mining, distance function or similarity measure is
often used to describe relationships between two time series, such as Euclidean
distance [1, 2], edit distance [3], K-L distance [4] and dynamic time warping
(DTW) [5–9]. Euclidean distance is one of the most popular functions used to
fast measure time series with same length. Its time and space complexity are lin-
ear to the length of time series. It often combines with time series representations
[10–12] to improve the results. However, Euclidean distance is sensitive to ab-
normal points and helpless to measure time series with different lengths.

Dynamic time warping (DTW) [6] is another popular method to measure
similarity between two time series. It is not only robust to the abnormal points
but also suitable for time series with different length. DTW finds an optimal
alignment between two time series to measure the similarity. In this way, the
points with same shape in each time series can be mapped. However, since DTW
must search the best warping path in a cumulated matrix, it has to cost the
quadratic time and space complexity, which causes to be not suitable for the
long time series. Thereby, a new DTW with the same accuracy to the original
one and less time consumption is required.

In this paper, we propose a modified version of DTW, which we call accurate
and fast dynamic time warping (AF DTW). The framework of AF DTW consists
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of three parts. The first is a backward strategy used to find the optimal warping
path, which is opposite to the forward strategy of DTW. The second is the
process of reduced scope and the third is a choice method of threshold value
which can be preset to narrow the warping path scope. Especially, the backward
strategy and the way of reduced scope run concurrently with one another. The
contribution of the backward strategy and threshold intervening is to discard
a remaining scope when the current cost of the warping path is negative. In
this way, AF DTW finds the optimal warping path in a reduced scope and its
accuracy is the same to DTW.

The remainder of the paper is organized as follows. In section 2, we give the
background and related work. The framework of the improved version of DTW
is presented in section 3. Some experiments are performed on serval time series
datasets in section 4. In the last section the conclusions and future work are
discussed.

2 Background and Related Work

Given two time series Q = {q1, q2, · · · , qm} and C = {c1, c2, · · · , cn}, where m
and n respectively represent the length of Q and C, Euclidean distance [1,13,14]
is used to measure the similarity between the two time series when m = n. Each
pair of points with same time-stamp in the two time series is used to calculate
the distance. When the shapes of the two time series are considered, DTW is
a good choice to measure time series. Especially, when the lengths of the two
time series are different, i.e., m �= n, DTW is often used instead of Euclidean
distance.

DTW [2,5,6] minimizes the distance between two time series by constructing
an optimal warping path P which often makes the points with same shapes
map to each other. A warping path can be denoted as P = {p1, p2, · · · , pK}
and pi means the mapping information about the time of two points (qi and
cj) respectively deriving from the two time series, i.e., pk = [i, j], where K ∈
[max(m,n),m + n − 1] represents the length of the path, i ∈ [1,m] and j ∈
[1, n]. d(pk) denotes the distance between two points qi and cj , i.e., d(pk) =
d(i, j) = (qi − cj)

2. At the same time, the warping path much satisfy at least
three constraints, such as boundary conditions, continuity and monotonicity [5].

There are many such path existed in the mapping sets, but we only need an
optimal one with the minimal warping cost, i.e.

DTW (Q,C) = min
P

K∑
k=1

d(pk). (1)

Generally, the best warping path can be found by using dynamic programming
which defines the cumulative distance R(i, j) as the distance d(i, j) adding the
minimum of the cumulative distance of the three adjacent elements, i.e.
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R(i, j) = d(i, j) + min

⎧⎨⎩
R(i, j − 1)
R(i− 1, j − 1)
R(i− 1, j)

, (2)

where R(0, 0) = 0, R(i, 0) = R(0, j) = ∞. We often call the cumulative distance
R as a cost matrix.

For example, if we have two time series Q and C, i.e., Q = [−0.6, 4.6,−6.4,
−22.3, 0.9, 0.4, 0.3, 9, 12] and C = [0.1, 5.3,−5.8,−22.1, 1.5, 0.7, 0.4, 9.2] The best
warping path can be calculated by starting from (i = 1 and j = 1) to (i = 9 and
j = 8). There are 10 path elements constructing the best warping path, that is,
P = {p1, p2, · · · , p10}. Thereby, the minimum distance of DTW to measure the
similarity between two time series Q and C is DTW (Q,C) = R(9, 8) = 9.67.

DTW is widely applied to the field of time series data mining [15], speech
recognition [16] and other disciplines [2], such as medicine, meteorology,
gesture recognition and finance. However, the quadratic time and space complex-
ity (O(nm)) of DTW constrain its performance. So far, there are some meth-
ods [18,19] used to speed up the calculation of DTW. Two of the most commonly
used methods is the Sakoe-Chuba Band [17] and the Itakura Parallelogram [16]
that limit the number of cells in the cost matrix R and reduce the path scope
for searching the suboptimal warping path. However, The performance of DTW
using the two methods depends on a constant factor. Moreover, it often cannot
retrieve the best warping path which is often out of the path scope. FTW [20]
is often applied to similarity search in time series and can faster retrieve the
results than the original DTW. However, it uses lower bounding functions to
reduce time cost when they are applied to similarity search. So FTW is prefer-
able to similarity search and indexing rather than clustering and classification.
Similarly, FastDTW [21] is proven to be a method with linear time and space
complexity, but its accuracy depends on a factor which is hard to decide and the
returned distance value is a result approximating to the minimum one. At the
same time, the larger the factor is, the more the calculation of time and space
is cost. Thereby, a technique with less time and space consumption and without
any factors is required, which is the main topic and contribution of our paper.

3 Accurate and Fast Dynamic Time Warping

Accurate and fast dynamic time warping (AF DTW) is an improved version
of DTW, which includes three parts. The first one is a backward strategy to
construct the main idea of AF DTW. The second one is the introduction of a
way to reduce scope in the cost matrix. The last one is a choice method of a
threshold value used to reduce the scope.

3.1 Backward Strategy

DTW starting from (i, j) = (1, 1) to (i, j) = (m,n) is a forward strategy based
algorithm. The cost matrix R is constructed cumulatively from (1, 1) to (m,n).
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Each element in the cost matrix R is larger than the three bottom left adjacent
elements. In contrast to DTW, AF DTW uses a backward strategy to construct
the algorithm. It means that AF DTW starts from (m,n) to (1, 1) and each
element in cost matrix R is less than the three top right adjacent ones.

In DTW a current element R(i, j) in cost matrix is the distance d(i, j) adding
the minimum of the cumulative distance of the three bottom left adjacent ele-
ments. Contrary, in AF DTW the element R′(i, j) is the maximum of three top
right adjacent elements subtracting the distance d(i, j), i.e.,

R′(i, j) = max

⎧⎨⎩
R′(i, j + 1)
R′(i+ 1, j + 1)
R′(i+ 1, j)

− d(i, j), (3)

where i = m,m−1, · · · , 1, j = n, n−1, · · · , 1, R′(m+1, n+1) = 0, R′(i, n+1) =
R′(m+ 1, j) = −∞.

In this way, a warping path P ′ = {p′1, p′2, · · · , p′K}, which is a contiguous set
of distance matrix elements that defines a mapping between Q and C, can be
constructed as DTW does. The warping path also must be subject to three
constraints including boundary conditions, continuity and monotonicity.

The dynamic programming is also used to find the best warping path with a
maximum warping cost, i.e.,

BS DTW (Q,C) = max
P ′

K∑
k=1

d(p′k). (4)

1 2 3 4 5 6 7 8 9 

1

2

3

4

5

6

7

8

−9.67 −29.43 −187.83 −1070.8 −569.69 −572.56 −573.5 −1486.1 −2046.5

−43.99 −9.18 −145.58 −1042.3 −569.05 −572.47 −573.46 −1406.9 −1904.9

−143.89 −116.85 −8.69 −280.58 −560.33 −549.69 −548.46 −1393.2 −1860

−1045.7 −967.71 −254.82 −8.33 −537.29 −515.44 −511.25 −1174.2 −1543.2

−587.86 −583.45 −599.34 −574.37 −8.29 −9.19 −9.49 −206.94 −380.34

−586.57 −584.88 −573.84 −536.93 −7.93 −7.98 −8.05 −150.69 −270.09

−588.31 −587.31 −569.67 −523.43 −8.14 −7.89 −7.89 −81.8 −142.4

−1586.2 −1490.2 −1469 −1225.7 −233.42 −164.53 −87.09 −7.88 −7.84

Q

C

Fig. 1. The cost matrix is constructed by the backward strategy and the best warping
path can be found

Using the above example, our new method starts at (m,n) = (9, 8) and ends
at (1, 1). The warping cost can be calculated by the backward strategy as shown
in Fig. 1. The red cells denote the elements of the best warping path. It is easy to
discover that the element is R′(1, 1) = −9.67, which is the minimum value of the
best warping path in red cells. It also means that BS DTW (Q,C) = R′(1, 1) =
−9.67. The arrows show the direction of our strategy.
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Comparing the result of DTW with that of BS DTW, we found that their ab-
solute values are equal, i.e., |BS DTW (Q,C)| = DTW (Q,C) = 9.67. BS DTW
has the same accuracy of DTW. Moreover, the time and space complexity of
BS DTW are the same to that of DTW and equal to O(mn). So the next sub-
section is proposing a method to reduce the time and space consumption when
running AF DTW based on BS DTW.

3.2 Reduced Scope

In this section, a method is proposed to obtained the reduced scope in which the
best warping path exists. It is inspired by the the Sakoe-Chuba Band [17] and
the Itakura Parallelogram [16] which limit the cells in the cost matrix.

In BS DTW, all the elements in the cost matrix R′ are negative as shown in
Fig. 1. The reason is that BS DTW depends on the initial value ofR′(m+1, n+1).
If R′(m + 1, n + 1) is initially set to be 0, all the elements in R′ are negative.
If we set R′(m+ 1, n+ 1) to be a positive value, then some of the elements are
positive. Moreover, these positive elements are adjacent. As shown in Fig. 2, the
red cells denote the best warping path which is obtained by BS DTW according
to different initial values of R′(m+1, n+1). The positive cells are in gray color.
Since some cells in red color are positive, they are also a part of the ones in gray
color.

If we set R′(m+1, n+1) to be equal to 9.5 (i.e., R′(m+1, n+1) = 9.5) and
run BS DTW, some elements in R′ are positive as shown in Fig. 2(a). Moreover,
it is obvious that the best warping path only appears in the scope of the gray
cells. As shown in Fig. 2(b), the best warping path is surrounded by the gray
cells when R′(m + 1, n + 1) is set to be 200. In Fig. 2(a), except for the cell
(1, 1), the remaining red cells are also surrounded by the positive cells. Thereby,
if R′(m+ 1, n+ 1) is big enough, all the elements of the best warping path can
be surrounded by the positive cells filled in gray color. We regard these positive
cells as reduced scope.

For simplicity, we denote R′(m + 1, n + 1) to be a threshold value θ, i.e.,
θ = R′(m+1, n+1). In addition, we know that the minimum distance between
the two time series Q and C is equal to 9.67 in subsection 3.1. This same result
can also be obtained by our method, i.e.,

AF DTW (Q,C, θ) = θ −R′(1, 1), (5)

AF DTW is the new method based on BS DTW. Fig. 2 shows that if θ = 9.5,
then AF DTW (Q,C, θ) = 9.5−(−0.17) = 9.67. If θ = 200, thenAF DTW (Q,C,
θ) = 200− 190.33 = 9.67. So AF DTW retains the same accuracy of DTW.

The above analysis tells us that the best warping path always exists in the
reduced scope with regards to a special value of θ. So we only force AF DTW
to find the best warping path in the scope of the positive cells when θ is enough
large. In this way, the number of the positive cells is less than that of all cells in
the original cost matrix so that the time and space consumption depending on
the number of the positive cells can be reduced. Therefore, AF DTW costs less
time and space than DTW and retrieves the same accurate result.
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1 2 3 4 5 6 7 8 9 

1

2

3

4

5

6

7

8

−0.17 −19.93 −178.33 −1061.3 −560.19 −563.06 −564 −1476.6 −2037

−34.49 0.32 −136.08 −1032.8 −559.55 −562.97 −563.96 −1397.4 −1895.4

−134.39 −107.35 0.81 −271.08 −550.83 −540.19 −538.96 −1383.7 −1850.5

−1036.2 −958.21 −245.32 1.17 −527.79 −505.94 −501.75 −1164.7 −1533.7

−578.36 −573.95 −589.84 −564.87 1.21 0.31 0.01 −197.44 −370.84

−577.07 −575.38 −564.34 −527.43 1.57 1.52 1.45 −141.19 −260.59

−578.81 −577.81 −560.17 −513.93 1.36 1.61 1.61 −72.3 −132.9

−1576.7 −1480.7 −1459.5 −1216.2 −223.92 −155.03 −77.59 1.62 1.66

−0.17 −19.93 −178.33 −1061.3 −560.19 −563.06 −564 −1476.6 −2037

−34.49 0.32 −136.08 −1032.8 −559.55 −562.97 −563.96 −1397.4 −1895.4

−134.39 −107.35 0.81 −271.08 −550.83 −540.19 −538.96 −1383.7 −1850.5

−1036.2 −958.21 −245.32 1.17 −527.79 −505.94 −501.75 −1164.7 −1533.7

−578.36 −573.95 −589.84 −564.87 1.21 0.31 0.01 −197.44 −370.84

−577.07 −575.38 −564.34 −527.43 1.57 1.52 1.45 −141.19 −260.59

−578.81 −577.81 −560.17 −513.93 1.36 1.61 1.61 −72.3 −132.9

−1576.7 −1480.7 −1459.5 −1216.2 −223.92 −155.03 −77.59 1.62 1.66

(a)R’(m+1,n+1)=9.5

1 2 3 4 5 6 7 8 9 

1

2

3

4

5

6

7

8

190.33 170.57 12.17 −870.81 −369.69 −372.56 −373.5 −1286.1 −1846.5

156.01 190.82 54.42 −842.34 −369.05 −372.47 −373.46 −1206.9 −1704.9

56.11 83.15 191.31 −80.58 −360.33 −349.69 −348.46 −1193.2 −1660

−845.7 −767.71 −54.82 191.67 −337.29 −315.44 −311.25 −974.15 −1343.2

−387.86 −383.45 −399.34 −374.37 191.71 190.81 190.51 −6.94 −180.34

−386.57 −384.88 −373.84 −336.93 192.07 192.02 191.95 49.31 −70.09

−388.31 −387.31 −369.67 −323.43 191.86 192.11 192.11 118.2 57.6

−1386.2 −1290.2 −1269 −1025.7 −33.42 35.47 112.91 192.12 192.16

(b)R’(m+1,n+1)=200

Fig. 2. Some positive elements exist in the cost matrix and the best warping path is
surrounded by gray cells

Why should we choose an enough large θ? In order to let the best warping path
be surrounded by the positive cells, θ must be larger than the minimum distance
value, i.e., θ ≥ DTW (Q,C). Otherwise, the positive cells cannot surround the
best warping path as shown in Fig. 2(a). The cell (1,1) is an element of the best
warping path, but it is out of the scope of the positive cells. Actually, the value
of cell (1,1) is smallest in the red cells. If cell (1,1) is negative, then at least
one element of the best warping path is out of the scope of the positive cells.
Thereby, to make cell (1,1) be positive, we must let θ ≥ DTW (Q,C), which is
also inferred by Eq. (5).

After we choose a suitable θ, we take the backward strategy to construct the
reduced scope in the cost matrix. If the value of current cell in the cost matrix
is negative, then let it be zero. If the three top right adjacent cells are zero,
then the current cell is set to be zero and the current iteration is broken. In
this way, AF DTW goes on calculating other cells whose values are positive. Fi-
nally, AF DTW can obtain the reduced scope and retrieve the minimum distance
between time series Q and C.

Different θ produces different number of non-white cells. At the same time,
large difference between two values of θ does not crazily influence the changed
number of not-white cells. In other words, θ and θ + η (where η may be very
large) may retrieve the same number of non-white cells in the cost matrix, which
means that AF DTW using a large θ may be speeded up because of the reduced
scope. Thereby, a suitable θ is important for AF DTW. In next subsection, we
will address this problem.

3.3 Choice of Threshold Value

We know that the bigger θ is, the larger the scope will be, and the more time
and space are consumed. It means that the smallest scope is obtained when
θ = DTW (Q,C). However, these minimum distance value is unknown and need
us to compute. Thereby, we should find some value of θ close to DTW (Q,C).
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According to the Sakoe-Chuba Band and the Itakura Parallelogram, they all
search the suboptimal warping path by limiting the scope along the opposite
diagonal of the cost matrix, which inspires us to initialize θ. In other words, we
regard one of the opposite diagonal warping paths as the initial warping path to
assign θ a relative small value. The initial value of θ is the sum of elements in
the initial warping path, i.e., θ =

∑K
k=1 d(pk).

However, if the length of two time series used to measure the similarity is
equal (i.e., m = n), then Euclidean distance between the two time series is the
initial value of θ. We call this special path the Euclidean path. Actually, when
m = n, the best warping path in opposite diagonal scope will be generalized into
Euclidean path. Thereby, if m = n, then

θ =

L∑
k=1

(qk − ck)
2, L = m = n. (6)

1 2 3 4 5 6 7 8 9 

1

2

3

4

5

6

7

8

0 0 0

0 0.49 0 0

0 0.98 0 0 0 0

0 1.34 0 0 0

0 1.38 0.48 0.18

0 1.74 1.69 1.62 0

0 1.53 1.78 1.78 0 0

0 1.79 1.83

(a) θ=9.7

1 2 3 4 5 6 7 8 9 

1

2

3

4

5

6

7

8

73.9754.21 0

39.6574.46 0 0

0 74.95 0 0 0 0

0 75.31 0 0 0

0 75.3574.4574.15 0

0 75.7175.6675.59 0

0 75.5 75.7575.751.84 0

0 75.7675.8

(b) θ=83.64

Fig. 3. The reduced scope produced by θ deriving from the initial warping path is the
same to that produced by the minimum distance value θ = DTW (Q,C)

In the above case, if θ = 83.64 which is obtained by our method, then
the reduced scope is identical to the optimal one which is produced by θ =
DTW (Q,C) = 9.67 as shown in Fig. 3. Thereby, our method to choose a suit-
able value of θ is feasible. At the same time, we must point out that any ways
to produce a small θ which is bigger than DTW (Q,C) can be used to reduce
the search scope so as to speed up AF DTW. Of course, the time and space
complexity of the ways used to obtain a suitable θ must be linear to the length
of time series. In our method, since the opposite diagonal scope is linear to the
length of the two time series, the time and space complexity of the proposed
method to decide the threshold value θ are linear to the length of time series,
which also can be inferred by Euclidean path.

4 Experiments

Three experimental subsections about the performance of the proposed method
AF DTW are given. In the first subsection, we testify that the method about
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the choice of threshold θ is feasible and is used to improve the efficiency of
DTW. In the second subsection, an experiment shows that the difference of time
consumed by DTW and AF DTW is more obvious with regards to the increased
length of time series. The last experiments demonstrate that in contrast to DTW,
the proposed AF DTW not only has the same accuracy but also has faster
calculation.

4.1 Different Thresholds Based Comparison

It is well know that the efficiency of AF DTW depends on a reduced scope
which further depends on a choice of threshold θ. In other words, the efficiency
of AF DTW indirectly depends on the choice of threshold θ. To testify that
the method about the choice of threshold θ is feasible and useful, we take the
following experiments on different time series datasets.

We choose the well-known UCR time series datasets [22] whose ID can be
obtained in table 1. Each kind of time series dataset is consist of a training set
and a testing set. Their length and size are also different from each other. For
each kind of time series, we combine the training set with the testing set and
regard them as a whole dataset. For a special value of threshold θ, every adjacent
time series are used to compute the similarity (distance) between them and we
regard the averaged time consumed as the result of the experiment with regards
to the θ. Take Adiac dataset for example, for each value of θ, the number of
time series in the whole dataset is 781 and the number of the pairs to compute
similarity measure is 780. Let AF DTW and DTW do this experiment. The final
result is the averaged time they consumed.

In addition, the method about the choice of threshold θ runs in advanced and
returns the initial value of θ for each pair of time series. We denote the initial
value as a standard value θ′. At the same time, we also calculate the minimum
distance value v between the pair of time series using the original DTW, i.e.,
v = DTW (Q,C). Let l (step length) be l = (θ′− v)/3. The values of θ chosen to
compute the similarity by AF DTW are [v, v+ l, v+2l, θ′, θ′+ l, θ′+2l, θ′+3l] or
[θ′−3l, θ′−2l, θ′−l, θ′, θ′+l, θ′+2l, θ′+3l] which is also identified as [1,2,3,4,5,6,7]
shown in the label of axis X in the Fig. 4 for simplicity.

The results of experiments in Fig. 4 shows that for each θ, the proposed
AF DTW consumes much less time than DTW. Moreover, the result marked by
a cycle in each subplot is the averaged time consumed by AF DTW according to
the choice method of threshold as shown in algorithm 3. The result marked by the
cycle tells us that the proposed choice method of threshold makes AF DTW be
faster than DTW and the time consumption of AF DTWwith the standard value
θ′ is close to the optimal one which is consumed by AF DTW with the minimum
distance value v. At the same time, the ascending trend of time consumed by
AF DTW tells us that the bigger θ is, the more time AF DTW consumes.
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Fig. 4. The time consumption comparisons between AF DTW and DTW according
different θ

4.2 Different Length Based on Comparison

In this subsection, time series with different length are used to compare the
efficiencies of AF DTW and DTW. A long stock time series of length 2119415
is used [23] and we segment it seven groups of subsequences according to the
length L = [32, 64, 128, 256, 512, 1024, 2048]. Each group has 50 subsequences. In
each group we use AF DTW and DTW to measure the similarity between each
adjacent subsequences. In other words, each group has 49 pairs of subsequences
used to measure the similarity. For each group, the result of the experiment is
the averaged time.

Fig. 5 shows the result of comparison between AF DTW and DTW according
to different length of time series. It is easy to find that the longer the time
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Fig. 5. The time consumption comparison between AF DTW and DTW according
different length of time series. (a) shows the result in the range [0, 160] of axis Y ; (b)
shows the result in the range [0,1] of axis Y .
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series is, the more obvious the difference of time consumption between the two
methods will be. It means that when the time series is much long, in contrast to
DTW, AF DTW used to measure the similarity is more efficient.

4.3 Classification

Although the previous work [16, 17, 20, 21] can fast run the variants of dynamic
time warping, they retrieve the approximated results instead of the accurate one.
It means that in most cases they can find the best warping path as the original
DTW does. In order to experimentally shows the accuracy and efficiency of
AF DTW, we do the classification experiments on the UCR time series [22].

We use the nearest neighbor classification to classify the time series. In every
time series dataset, each time series in the testing set using the classification
is respectively measured by AF DTW and DTW to find the most similar one
in training set. If the label of the most similar object in the training set is not
same to that of the one used to classify in the testing set, then we regard it as
an error classification. Finally, we record the number of the error classifications
and consider the error ratio as the accuracy of the algorithm. At the same time,
for each time series dataset, we record the CPU time consumption and denote
it as T . The averaged time consumption T̄ (sec.) is used to show the efficiency
of the algorithm.

Table 1. Experiment results on the UCR datasets

No. Name DTW & AF DTW DTW(T̄ ) AF DTW(T̄ )

1 Adiac 0.396 168.57 25.16
2 Beef 0.5 101.39 54.11
3 CBF 0.003 6.92 4.89
4 Coffee 0.179 32.64 13.01
5 ECG200 0.23 12.99 8.08
6 FISH 0.167 563.86 121.44
7 FaceAll 0.192 124.64 94.66
8 FaceFour 0.170 39.20 29.00
9 Gun 0.093 14.65 6.10
10 Lighting2 0.131 365.60 232.28
11 Lighting7 0.274 94.34 69.30
12 OSULeaf 0.409 503.58 352.86
13 OliveOil 0.133 142.70 6.37
14 Swedish Leaf 0.210 105.85 52.83
15 Trace 0 100.56 64.48
16 2Patterns 0 212.27 162.47
17 Control 0.007 13.91 10.36
18 Wafer 0.02 201.71 194.33
19 50Words 0.310 429.12 316.75
20 Yoga 0.164 752.99 459.80
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The final results of the experiments are shown in table 1. It is easy to discovery
that the accuracy of classification using AF DTW and DTW is identical, which
means that the proposed method AF DTW can retain the same accuracy as
the original DTW does. At the same time, the averaged time consumption by
AF DTW is less than that of DTW, which means that AF DTW is faster than
DTW for time series classification. It also easily know that AF DTW can be
more efficient than DTW. Especially in some datasets, such as No.1, No.6 and
No.13, AF DTW is obviously more efficient than DTW.

5 Conclusions

The proposed method, accurate and fast dynamic time warping (AF DTW), is
an improved version of the original DTW. Comparing to DTW, it uses backward
strategy to find the best warping path. At the same time, a new method using the
backward strategy reduces the search scope in the cost matrix so that not only
the accuracy of AF DTW is the same to that of DTW but also the computation
performance is more efficient. In addition, the choice method of threshold we
proposed makes AF DTW be a new version of DTW without any parameters.
Actually, any values of the threshold greater than the minimum distance are
able to reduce the search scope, which makes AF DTW be faster than DTW.

Although the computation performance of AF DTW is more efficient than
DTW, the speeding-up degree indirectly depends on a choice of threshold. The
proposed choice method of threshold can retrieve a good result to speed up
the computation. However, other better choice methods of threshold to narrow
the search scope may be existed, which will let AF DTW be more faster. So
finding a more efficient choice method of threshold is one of the most important
tasks in the future.
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