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ABSTRACT
This paper deals with the approximate string-matching prob-
lem with Hamming distance and a single gap for sequence
alignment. We consider an extension of the approximate
string-matching problem with Hamming distance, by also
allowing the existence of a single gap, either in the text,
or in the pattern. This problem is strongly and directly
motivated by the next-generation re-sequencing procedure.
We present a general algorithm that requires O(nm) time,
where n is the length of the text and m is the length of
the pattern, but this can be reduced to O(mβ) time, if the
maximum length β of the gap is given.

1. INTRODUCTION
The problem of finding factors of a text similar to a given

pattern has been intensively studied over the last thirty
years, and it is a central problem in a wide range of appli-
cations, including file comparison, spelling correction, infor-
mation retrieval, and searching for similarities among biose-
quences.

This work is directly motivated by the next-generation re-
sequencing procedure. The constant advances in sequencing
technology are turning whole-genome sequencing into a rou-
tine procedure, resulting in massive amounts of DNA and

∗Prof. Iliopoulos is also affiliated with Curtin University,
Digital Ecosystems & Business Intelligence Institute, Centre
for Stringology & Applications, GPO Box U1987 Perth WA
6845, Australia.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM-BCB ’11, August 1-3, Chicago, IL, USA
Copyright 2011 ACM 978-1-4503-0796-3/11/08 ...$10.00.

RNA data that need to be processed [3]. Tens of gigabytes
of data in the form of short sequences (reads) need to be
mapped (aligned) back to reference sequences, a few giga-
bases long, to infer the read from which the genomic location
derived. This is a challenging task because of the high data
volume and the size of large genomes. In addition, the per-
formance, in terms of sensitivity, accuracy and speed, dete-
riorates in the presence of inherent genomic variability and
sequencing errors, particularly so for relatively short inser-
tions and deletions (gaps).

A gap can be described as the absence (presence) of a
region in one sequence, which is (is not) present in another,
as part of the natural diversity between individuals. There
are several mechanisms by which gaps can occur in DNA
sequences, e.g. inserted or deleted bases caused by slipping
of the DNA replication machinery; duplicated or deleted
regions caused by the DNA repair machinery; large deletions
and duplications caused by uneven recombination between
chromosomes; sequencing errors for some platforms.

Concerning the length of the gaps, a very broad range of
lengths is possible. In practice, however, the size of reads is
too small to confidently detect a large gap directly. In Fig. 1,
the distribution of lengths of gaps in exome sequencing is
demonstrated1. The shape of the distribution of lengths
of gaps is consistent with other studies [4]. The presented
data reflect a gap occurrence frequency of approximately
5.7× 10−6 across the exome.

The main observation is the exponential decrease of fre-
quency as length increases, and a preference for multiples of
3. For short reads of length in the order of 100bp the pres-
ence of multiple gaps is unlikely given the gap occurrence
frequency, and could greatly reduce the mapping confidence
of those reads. Hence, applying a traditional dynamic pro-
gramming approach (see [5] for local alignment or [2] for
global alignment), which allows multiple replacements, in-

1Data generated by the Exome Sequencing Programme at
the NIHR Biomedical Research Centre at Guy’s and St
Thomas’ NHS Foundation Trust in partnership with King’s
College London.
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Figure 1: The distribution of lengths of gaps in ex-
ome sequencing.

sertions and deletions in different positions of the read or
the reference, would affect the confidence of the mapping.

In this paper, motivated by the observations made in the
analysis of exome sequencing data, we consider an extension
of the approximate string-matching problem with Hamming
distance, by also allowing the existence of a single gap, ei-
ther in the text, or in the pattern. We present a general
algorithm that solves this problem in O(nm) time, where n

is the length of the text and m is the length of the pattern,
but this can be reduced to O(mβ) time, if the maximum
length β of the gap is given.

Hence, after aligning a fragment of a short read with a
factor of the reference genome as a seed, the proposed algo-
rithm can be directly applied to locally align the remaining
part of the read with a relatively short factor of the refer-
ence, to allow a number of mismatches and the existence of
a single gap, either in the read or in the reference.

2. BASIC DEFINITIONS
A string or sequence is a succession of zero or more sym-

bols from an alphabet Σ of cardinality s; the string with
zero symbols is denoted by ε. The set of all strings over the
alphabet Σ including ε, is denoted by Σ∗. The set Σ+ is
defined as Σ+ = Σ∗ \ {ε}. A string x of length m is rep-
resented by x[1 . .m], where x[i] ∈ Σ for 1 ≤ i ≤ m. The
length of a string x is denoted by |x|. A string w is a fac-
tor of x if x = uwv for u, v ∈ Σ∗. It is a prefix of x if
u is empty and a suffix of x if v is empty. The Hamming
distance δH is defined only for strings of the same length.
For two strings x and y, δH(x, y) is the number of places in
which the two strings differ, i.e. have different characters.
A don’t care symbol �, is a symbol that matches every other
symbol. The don’t care matches every symbol of Σ that is,
� = a for each a ∈ Σ. Given an integer γ, γ > 0, we de-
fine a gap g(γ) as a string of don’t care symbols of length
γ, i.e. g(γ) ∈ {�}+. A gap string y is the concatenation of
a sequence of strings over Σ and gaps, i.e. y ∈ (Σ ∪ {�})∗.
Given a gap string y = y1g1y2g2 . . . yn−1gn−1yn, such that
yi ∈ Σ∗ and gi ∈ {�}∗, then c(y) = y1y2 . . . yn. A gap string
x matches a gap string y with at most k-mismatches, iff
δH(x, y) ≤ k and |x| = |y|. A gap string y is called sin-
gle gap string, if it contains only one gap, i.e. y = y1gy2,
y1, y2 ∈ Σ∗ and g ∈ {�}+.

0 1 2 3 4 5

ε G G G T A

0 ε 0 0 0 0 0 0
1 A 0 1 1 1 1 0
2 G 0 0 1 1 1 1
3 G 0 0 0 1 1 1
4 T 0 1 1 1 1 1
5 C 0 1 1 1 1 2
6 A 0 1 1 1 1 1
7 T 0 1 1 1 1 2

(a) Matrix G

0 1 2 3 4 5

ε G G G T A

0 ε 0 1 2 3 4 5
1 A 1 0 0 0 0 0
2 G 2 0 0 0 2 3
3 G 3 0 0 0 1 2
4 T 4 0 0 0 0 1
5 C 5 0 3 2 1 0
6 A 6 0 4 3 2 0
7 T 7 0 5 4 0 0

(b) Matrix H

Table 1: Matrix G and matrix H for t=AGGTCAT
and x=GGGTA

3. PROBLEM DEFINITION
Problem 1. Given a text t = t[1 . . n], a pattern x =

x[1 . .m], t, x ∈ Σ∗, n ≥ m, and integers k, 0 ≤ k < m, α
and β, 0 ≤ α ≤ β, β ≤ n, find all the positions of factors of
t, such that for each factor, say y

• either there exists a single gap string, say y′, with a
gap g(γ), γ > 0, such that y = c(y′), δH(x, y′) ≤ k,
and α ≤ γ ≤ β

• or there exists a single gap string, say x′, with a gap
g(γ), γ > 0, such that x = c(x′), δH(x′, y) ≤ k, and
α ≤ γ ≤ β

• or δH(x, y) ≤ k and α = 0

4. THE ALGORITHM
The initial focus is on computing a matrix G[n+1, m+1],

where G[i, j] contains the minimum number of mismatches
of the factor t[1 . . i] of the text, and the factor x[1 . . j] of the
pattern, with at most one gap, either in the text, or in the
pattern.
Example. Let the text t=AGGTCAT and the pattern x=GG
GTA. Table 1a shows matrix G.

In order to compute the location of the gap either in the
text or in the pattern, we also need to compute a matrix
H [n+ 1, m+ 1] such that,

H [i, j] =

⎧⎨
⎩

if G[i, j] = G[i, i] and i ≤ j, H [i, j] = j − i

if G[i, j] = G[j, j] and i > j, H [i, j] = i− j

otherwise, H [i, j] = 0

(1)
Example. Let the text t=AGGTCAT and the pattern x=GG
GTA. Table 1b shows matrix H .

The Gap-Mismatches algorithm for computing matrix G

and matrix H is outlined in Figure 2.

Theorem 1. Given the text t = t[1 . . n] and the pattern
x = x[1 . .m], the Gap-Mismatches algorithm can compute
matrix G correctly in O(nm) units of time.

Proof. Without loss of generality, assume that we want
to compute G[i, j], which contains the minimum number of
mismatches of t[1 . . i] and x[1 . . j], with at most one gap.

Let i < j. The minimum number of mismatches can be
computed by the following,
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Gap-Mismatches
�Input: t, n, x, m
�Output: G, H
1 begin
2 � Initialisation
3 for i ← 0 until n do G[i, 0] ← 0; H [i, 0] ← i

5 for j ← 0 until m do G[0, j] ← 0; H [0, j] ← j

7 � Matrix G and Matrix H computation
8 for i ← 1 until n do
9 for j ← 1 until m do

10 if i < j then
11 u ← G[i− 1, j − 1] + δH(t[i], p[j])
12 v ← G[i, i]
13 G[i, j] ← min(u, v)
14 if v < u then H [i, j] ← j − i

15 else H [i, j] ← 0
16 if i > j then
17 u ← G[i− 1, j − 1] + δH(t[i], p[j])
18 v ← G[j, j]
19 G[i, j] ← min(u, v)
20 if v < u then H [i, j] ← i− j

21 else H [i, j] ← 0
22 if i = j then
23 G[i, j] ← G[i− 1, j − 1] + δH(t[i], p[j])
24 H [i, j] ← 0
25 end

Figure 2: The Gap-Mismatches algorithm for com-
puting matrix G and matrix H.

G[i, j] = min(δH(t[1 . . i], x[j−i+1 . . j]), δH(t[1 . . i], x[1 . . i]))
(2)

In this case, we take the minimum between the Hamming
distance of t[1 . . i] and the suffix of x, x = x[j − i + 1 . . j],
and the Hamming distance of t[1 . . i] and the prefix of x,
x[1 . . i], while the suffix of x, x[i+ 1 . . j] is considered to be
a gap in the text.

Let i > j. The minimum number of mismatches can be
computed by the following,

G[i, j] = min(δH(t[i−j+1 . . i], x[1 . . j]), δH(t[1 . . j], x[1 . . j]))
(3)

Similarly, in this case, we take the minimum between the
Hamming distance of the suffix of t, t[i− j + 1 . . i] and x =
x[1 . . j], and the Hamming distance of the prefix of t, t[1 . . j],
and x[1 . . j], while the suffix of t, t[j+1 . . i] is considered to
be a gap in the pattern.

Trivially, in the case that i = j,

G[i, j] = δH(t[1 . . i], x[1 . . j]) (4)

The Equations 2, 3, 4 are computed by theGap-Mismatches
algorithm in lines 13, 19, and 23, respectively. Hence, this al-
gorithm can compute matrix G in O(nm) units of time.

As of Theorem 1, starting the trace-back from cellH [si, sj ],
for some 0 ≤ si ≤ n, 0 ≤ sj ≤ m, gives a solution to Prob-
lem 1, iff G[si, sj ] ≤ k and the following hold,

• if si < m, then sj = m, α ≤ m − si ≤ β; there exists
a gap of length m− si in the text

• if si > m then sj = m, α ≤ si −m ≤ β; there exists a
gap of length si −m in the pattern

• if sj < m then si = n, α ≤ n − sj ≤ β; there exists a
gap of length n− sj in the pattern

• if si = m, then α = 0; there is no gap

Finally, we can easily compute the position of the gap by
using matrix H . However, since the threshold β is given, a
pruned version of matrix G and matrix H can be computed
in O(mβ) time and space, similarly as shown in [1].

Lemma 2. There exist at most 2β + 1 cells of matrix G,
that give a solution to Problem 1.

Proof. Let the cell G[si, sj ], contain the minimum num-
ber of mismatches of the text t[1 . . n], and the pattern x[1 . .m],
with at most one gap of maximum length β, either in the
text, or in the pattern. Since the length of the gap is either
m − si, if si < m and sj = m, or si − m, if si > m and
sj = m, or n− sj , if sj < m and si = n, then it holds that

• if β +m ≤ n, then m − β ≤ si ≤ β + m and sj = m

There exist exactly 2β + 1 such cells.

• if β +m > n, then

– if m− β ≤ si ≤ n, then sj = m

– if n− β ≤ sj < m, then si = n

There exist exactly 2β + 1 such cells.

Since we also have to check whether G[si, sj ] ≤ k, the
Lemma holds.

In addition, G[i, j] depends only on either G[i − 1, j − 1]
and G[i, i], if i < j, or G[i − 1, j − 1] and G[j, j], if i >

j, or G[i − 1, j − 1], if i = j (see lines 13, 19, and 23 in
Fig. 2, respectively). Hence, we only need to compute a
diagonal stripe of width 2β + 1 in matrix G and matrix H ,
as shown in Tables 1a and 1b in bold, respectively, for the
case of t=AGGTCAT, x=GGGTA and β = 2. As a result,
the Gap-Mismatches algorithm can easily be modified to
compute the pruned version of matrix G and matrix H in
O(mβ) time and space.
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