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Finding all longest suffix–prefix matches for a collection of strings is known as the all pairs 
suffix–prefix match problem and its main application is de novo genome assembly. This 
problem is well studied in stringology and has been solved optimally in 1992 by Gusfield 
et al. [8] using suffix trees. In 2010, Ohlebusch and Gog [13] proposed an alternative 
solution based on enhanced suffix arrays which has also optimal time complexity but is 
faster in practice. In this article, we present another optimal algorithm based on enhanced 
suffix arrays which further improves the practical running time. Our new solution solves 
the problem locally for each string, scanning the enhanced suffix array backwards to 
avoid the processing of suffixes that are no suffix–prefix matching candidates. In an 
empirical evaluation we observed that the new algorithm is over two times faster and 
more space-efficient than the method proposed by Ohlebusch and Gog. When compared to 
Readjoiner [5], a good practical solution, our algorithm is faster for small overlap lengths, 
in pace with theoretical optimality.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The all-pairs suffix–prefix matching problem (APSP) is well known in stringology [7,12]. Given a collection of m strings 
S1, S2, . . . , Sm , the APSP is the problem of finding, for all pairs Si and S j , the longest suffix of Si that is a prefix of S j .

The APSP has an important application in the context of DNA sequencing, where the collection of strings represents 
fragments coming from the sequencing process, and the reconstruction of the original biological sequence is based on 
overlaps between these fragments [2].

In 1992, Gusfield et al. [8] presented the first optimal O (N + m2) time algorithm for the APSP using (generalized) suffix 
trees [21], where N is the sum of string lengths. This solution is optimal because the input size is N and the output size 
is m2. Almost 20 years later, Ohlebusch and Gog [13] proposed algorithm OG, an – in practice better – optimal solution 
using (generalized) enhanced suffix arrays [11,1], which uses less memory than suffix trees used by Gusfield et al. [8] and 
has a better locality of memory reference. Their experimental results have shown that the solution is about three times 
faster than the one that uses suffix trees. To the best of our knowledge, that is the best practical solution so far which is 
also theoretically optimal.
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i SA LCP STR SA′ S$
SA[i]

1 4 0 1 4 $1

2 8 0 2 4 $2

3 11 0 3 3 $3

4 15 0 4 4 $4

5 7 0 2 3 a$2

6 10 1 3 2 a$3

7 14 1 4 3 a$4

8 9 1 3 1 aa$3

9 13 2 4 2 aa$4

10 1 2 1 1 aac$1

11 2 1 1 2 ac$1

12 5 2 2 1 aca$2

13 3 0 1 3 c$1

14 6 1 2 2 ca$2

15 12 2 4 1 caa$4

Fig. 1. The generalized enhanced suffix array of S = {aac,aca,aa, caa}.

Practical solutions which are non-optimal have been proposed in the past few years. A significant reduction of memory 
consumption was achieved by Rachid et al. [17,16] that presented new space-efficient algorithms using compressed data 
structures [19,18]. However, their experimental results have shown that their solutions are about 100 times slower in 
practice than the previous ones [8,13]. More recently, Rachid and Malluhi [15] solved the problem more efficiently using a 
compact prefix tree. Their algorithm was named SOF.

Finding suffix–prefix matches is a fundamental stage performed by sequence assembler algorithms based on overlaps [3]. 
Although there are many assemblers, Readjoiner [5] is very fast in practice and has a matching stage separated from the 
other assembling stages. Readjoiner outperforms SOF in time and space.

In this article we propose an optimal algorithm that is faster and more space-efficient in practice using also (generalized) 
enhanced suffix arrays. Our algorithm reduces memory consumption by about 15% and is 2.6 times faster (on the average) 
than algorithm OG. Using a different auxiliary data structure and scanning the enhanced suffix array in another fashion 
enabled these improvements. Experiments have also shown that this algorithm may be a good practical solution when 
searching for suffix–prefix overlaps of small length.

The rest of the article is organized as follows. Section 2 introduces concepts and notation, Section 3 presents algorithm 
OG, Section 4 describes the proposed algorithm and its theoretical analysis, Section 5 presents experimental results and 
Section 6 concludes the article.

2. Definitions and notation

Let S be a string of length |S| = n over an ordered alphabet of symbols �. S[i] denotes the i-th symbol of S , where 
1 ≤ i ≤ n. S[i, j] = S[i] . . . S[ j] denotes a substring of S , for i ≤ j. In particular, S[1, j] is the prefix of S that ends at position 
j, and S[i, n] is the suffix of S that starts at position i and is denoted by Si . We use the symbol < for the lexicographic 
order relation between strings.

The suffix array SA of a string S is an array of integers in the range 1 to n that gives the lexicographic order of all 
suffixes of S , such that SSA[1] < SSA[2] < . . . < SSA[n] [11,6]. We denote the position of suffix Si in SA as pos(Si).

The LCP-array is an array of integers that stores the length of the longest common prefix (lcp) of two consecutive 
suffixes in SA, such that LCP[1] = 0 and LCP[i] = lcp(SSA[i], SSA[i−1]) for 1 < i ≤ n, where lcp(u, v) denotes the lcp of 
strings u and v . Both SA and the LCP-array can be constructed in linear time (see [14,9] for reviews).

The range minimum query (RMQ) with respect to the LCP is the smallest lcp value in an interval of SA. We define 
RMQ(i, j) = mini<k≤ j{LCP[k]}. Given a string S of length n and its LCP-array, it is easy to see that lcp(SSA[i], SSA[ j]) =
RMQ(i, j).

Let S = {S1, S2, . . . , Sm} be a collection of m strings. The generalized suffix array of S is the suffix array SA of the 
concatenated string S = S1$1 S2$2 . . . Sm$m , where each symbol $i is a distinct separator that does not occur in � and 
precedes every symbol in �, and $i < $ j if i < j. For a suffix SSA[i] of S , we denote the prefix of SSA[i] that ends at the first 
separator $ j by S$

SA[i] . The total length of the generalized suffix array is N = m + �m
l=1|Sl|.

To simplify the notation, we introduce the arrays STR and SA′ . STR indicates the string in S which a suffix came from, 
formally STR[i] = j if the suffix S$

SA[i] ends with symbol $ j . SA′ holds the position of a suffix with respect to the string it 
came from (up to the separator), defined as SA′[i] = k if S$

SA[i] = S j
k$ j . Taken together, STR and SA′ specify the order of all 

suffixes in S . We will denote the generalized suffix array enhanced with the arrays STR, SA′ and LCP-array as GESA. Fig. 1
illustrates the GESA of S = {aac, aca, aa, caa}.
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Fig. 2. Illustration of Lemma 2.

3. Related work

The algorithm OG, proposed by Ohlebusch and Gog in 2010 [13], solves the APSP in O (N + m2) based on the following 
lemma.

Lemma 1. Let i = pos(Sk) be the position of string Sk in GESA such that SA′[i] = 1 and STR[i] = k, i.e., S$
SA[i] = Sk$k. If the suffix 

S j
p is equal to a prefix of Sk, for j �= k, then either:

• pos(S j
p) < i, or

• pos(S j
p) = q, with i < q ≤ i + j − k.

In other words, all suffixes that are a prefix of Sk are either in positions prior to pos(Sk) or directly succeed pos(Sk) in 
the GESA (if they are identical to Sk). The proof of Lemma 1 is quite simple and can be found in [13,12].

OG scans GESA from position m + 1 to N (the first m suffixes are skipped because they are separator symbols $i ), 
keeping track of all suffixes seen so far that are a prefix of the current suffix SSTR[i]

SA′ [i] . Suffixes that are prefixes are stored in 
a set of m stacks, one for each string in S . If the current suffix SSTR[i]

SA′ [i] is a prefix of the next suffix SSTR[i+1]
SA′[i+1] , then the value 

of LCP[i + 1] is pushed onto stack[STR[i]].
Whenever the current suffix is a complete string, that is SA′[i] = 1, the top element of each stack k, k �= STR[i], is the 

length of the longest suffix of Sk that is a prefix of string SSTR[i] . These values are used to fill an “overlap” squared matrix 
Ov, where Ov[i, j] represents the longest suffix of S j that is a prefix of Si . When there are suffixes identical to SSTR[i] that 
directly succeed position i in GESA, the algorithm scans the next positions verifying while SSTR[i+q]

SA′[i+q] is a prefix of SSTR[i] , 
for increasing values of q.

During the scan, whenever the lcp value of the current suffix decreases, i.e. LCP[i + 1] < LCP[i], the algorithm removes 
all suffixes S j

p of length �, such that LCP[i] ≥ � ≥ LCP[i + 1] + 1, from stack j because they are not prefixes of suffix 
SSTR[i+1]

SA′[i+1] . The algorithm uses one list for each possible value of � to find all stacks that have a suffix of length � on top to 
be removed.

4. Algorithm

At a glance, our algorithm partitions GESA into m blocks, one for each string S j ∈ S . Then, it finds all suffixes that are 
a prefix of S j scanning its block, and reuses solutions obtained so far (in the previous blocks) to compose the complete 
solution of S j .

Let P be an array of length m, such that P[i] stores the position of the i-th (lexicographically) smallest complete string 
Sk of S in GESA, i.e. if P[i] = pos(Sk) and P[i + 1] = pos(S j) then pos(Sk) < pos(S j), for 1 ≤ i < m.

Let the interval Bi = (P[i − 1], P[i]] be a block of GESA corresponding to the i-th smallest complete string Sk of S , 
such that Bi starts at the position just after the position of the (i − 1)-th smallest complete string of S , and ends in 
P[i] = pos(Sk). We define P[i] = m if i < 1, since the first m suffixes in GESA are separators.

We know that all suffixes that are a prefix of Sk are either in positions prior to P[i] = pos(Sk) in GESA or are identical 
to Sk (Lemma 1). Let us concentrate on the former. As a consequence, these suffixes may be in blocks B1, B2, . . . , Bi . 
Furthermore, if two different suffixes of S j are a prefix of Sk , the longest suffix is the suffix positioned closest to pos(Sk) in 
GESA.

Lemma 2. Let P[i] = pos(Sk) and P[q] = pos(S j), with 0 < i < q ≤ m. All suffixes of length l ≤ lcp(Sk, S j) that are a prefix of Sk are 
also a prefix of S j .
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Proof. Let St
p be a suffix of length l = |St | − p, that is a prefix of Sk , such that pos(St

p) = a (see Fig. 2). We know that 
lcp(St

p, S j) = RMQ(a, P[q]) and it is easy to see that RMQ(a, P[q]) = min(RMQ(a, P[i]), RMQ(P[i], P[q])) = min(l, lcp(Sk, S j)). 
Then if min(l, lcp(Sk, S j)) = l, St

p must also be a prefix of S j . �
As a consequence of Lemma 2 if a suffix of length l is a prefix of Sk and l > lcp(Sk, S j), then such suffix is not a prefix 

of S j . In Fig. 2 b illustrates this case. Note that identical suffixes are also covered by Lemma 2.
We introduce Algorithm 1, which is based on Lemmas 1 and 2 and works as follows. For each block B j ∈ {B1, B2, . . . , Bm}, 

it scans B j backwards from position P[ j] to position P[ j − 1] (lines 4 to 9). Consider that pos(Sk) = P[ j] and pos(St) =
P[ j − 1]. To track all suffixes seen so far that are a prefix of another complete string, it uses m local lists Llocal , and m global 
lists Lglobal , one for each string Si ∈ S . P, Lglobal and Llocal are used implicitly in the algorithm.

Algorithm 1:

Data: GESA of the collection S = {S1, S2 . . . , Sm}
Result: result matrix Ov

1 for j ← 1 to m do
2 k ← STR[P[ j]];
3 � ← ∞;
4 for i ← P[ j] to P[ j − 1] do
5 � ← min(�, LCP[i + 1])
6 if |SSTR[i]

SA′ [i] | = � then
7 insert_at_end(Llocal[STR[i]], �)
8 end
9 end

10 for i ← 1 to m do
11 while f irst(Lglobal[i]) > � do
12 remove_ f irst(Lglobal[t])
13 end
14 Lglobal[i] ← insert_at_ f ront(Llocal[i]);
15 Ov[k, i] ← f irst(Lglobal[i])
16 end
17 q ← P[ j] + 1;

18 while |SSTR[q]
SA′ [q] | = LCP[q] and q < N do

19 Ov[k, STR[q]] ← LCP[q]
20 q ← q + 1
21 end
22 end

Whenever the current suffix SSTR[i]
SA′[i] is a prefix of Sk (line 6), i.e. its length is equal to the lcp(SSTR[i]

SA′[i] , Sk) = RMQ(i, P[ j]), 
the value of RMQ(i, P[ j]) is inserted at the end of Llocal[STR[i]] (line 7), which is computed in � as the minimum lcp value 
between LCP[i + 1] and LCP[P[ j]] during the scanning of B j (line 5). At the end of the first for-loop (line 9), the value in �

i SA LCP STR SA′ Llocal[1] Llocal[2] Llocal[3] Llocal[4]

8 9 1 3 1 [ ] [ ] [ ] [ ]
7 14 1 4 3 [ ] [ ] [ ] [1]
6 10 1 3 2 [ ] [ ] [1] [1]
5 7 0 2 3 [ ] [1] [1] [1]

10 1 2 1 1 [ ] [ ] [ ] [ ]
9 13 2 4 2 [ ] [ ] [ ] [2]
8 9 1 3 1 [ ] [ ] [2] [2]

12 5 2 2 1 [ ] [ ] [ ] [ ]
11 2 1 1 2 [2] [ ] [ ] [ ]
10 1 2 1 1 [2] [ ] [ ] [ ]

15 12 2 4 1 [ ] [ ] [ ] [ ]
14 6 1 2 2 [ ] [2] [ ] [ ]
13 3 0 1 3 [1] [2] [ ] [ ]
12 5 2 2 1 [1] [2] [ ] [ ]

Fig. 3. GESA and local lists as our algorithm is executed for S = {aac,aca,aa, caa}. Blocks are shown separately.
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P [ j − 1] Lglobal[1] Lglobal[2] Lglobal[3] Lglobal[4]
5 [ ] [1] [1] [1]
8 [ ] [1] [2,1] [2,1]

10 [2] [1] [1] [1]
12 [1] [2] [ ] [ ]

Fig. 4. Global lists at the end of each block in Fig. 3.

1 2 3 4
1 1 2 2
2 2 1 1
3 1 2
4 1 2

Fig. 5. The output matrix Ov for S = {aac,aca,aa, caa}.

is equal to RMQ(P[ j − 1], P[ j]), which corresponds to lcp(St , Sk). Moreover, the values in each local list Llocal[r] are ordered 
decreasingly by the length of the suffixes of Sr ∈ S that are a prefix of Sk .

However, the longest suffix of a string Sr ∈ S that is prefix of Sk may not be positioned in block B j . In this case, we know 
that this suffix is in one of the previous blocks B j−1, B j−2, . . . , B1 seen so far. These suffixes are stored in the global list 
Lglobal[r], which is composed by the elements inserted in Llocal[r] and has to be updated in each iteration of the algorithm 
(lines 10 to 16).

In order to update the global lists, the algorithm removes the suffixes that have length larger than lcp(St , Sk) from all 
local lists (lines 11 to 13). Then the local list Llocal[r] is added to the beginning of the global list Lglobal[r] (line 14). The 
first element of each global list Lglobal[r] corresponds to the length of the longest suffix of Sr that is a prefix of Sk and such 
value is inserted in the “overlap” matrix Ov (line 15). If Lglobal[r] is empty, no suffix of Sr is a prefix of Sk .

Finally, the algorithm deals with the identical suffixes to Sk that directly succeed pos(Sk) in the GESA (lines 17 to 21). 
It is easy to see that the algorithm scans all suffix–prefix pairs in GESA according to Lemmas 1 and 2, then the “overlap” 
matrix Ov is completely filled.

As an example, consider the structure in Fig. 3, that represents the GESA and the local lists for S = {aac, aca, aa, caa}. 
The GESA for the same string collection appears in Fig. 1. Extra columns show the contents of each local list at every 
iteration. Blocks are shown separately in the figure, and lines are disposed in the order that the positions are scanned by 
the algorithm.

Blocks B1, B2, B3 and B4 are scanned one by one. For each block B j = (P [ j −1], P [ j]), positions from P [ j] to P [ j −1] +1
are scanned. Whenever a position i is scanned, lcp(SSTR[i]

SA′[i] , SSTR[P [ j]]
SA′[P [ j]] ) is computed and inserted in list Llocal[STR[i]]. Note 

that the evaluation of lcp values may be performed easily as the GESA is scanned.
At the end of each block B j , the global lists are updated and the contents of local lists are added to the beginning of 

the global lists. Fig. 4 shows the contents of global lists at the end of each block. Each snapshot is labeled P [ j − 1], which 
corresponds to the end of B j . The first lcp value in each list gives the length of the suffix that matches the complete string 
that is being processed. The first elements of each global lists are inserted in Ov.

The output matrix Ov is shown in Fig. 5. The case of suffix S4
2 = aa, which is contained in S3 = aa$3, is treated af-

ter processing the block B1, when GESA is scanned forward while the succeeding suffixes overlap the current complete 
string S3.

Theoretical analysis

An aggregate analysis of the loop at line 4 gives O (N) since each of the N suffixes can be inserted at most once into 
the local lists. For the loop at line 10, line 12 is executed at most N times overall, since the number of removal operations 
from the global lists is bounded by the insertions into local lists, while lines 14 and 15 will be executed m2 times. The loop 
at line 18 will scan the identical suffixes that follow the current prefix, and because there can be only m such suffixes in S , 
this loop will be executed in O (m2) time overall. Thus the algorithm runs in O (N + m2) time, which is optimal.

The space-complexity is bounded by the memory used by the GESA structure, the m auxiliary global and local lists, and 
by the output matrix Ov. The GESA uses O (N) space and there are at most N elements added to the m lists. The output 
matrix Ov uses O (m2) space. Thus the space-complexity of the algorithm is O (N + m2).

5. Experimental results

We have compared our algorithm with OG [13] and with Readjoiner [5]. We used real DNA sequences of the EST 
database from C. elegans1. The number of strings used in the experiments varies from 10.000 to 300.000 ESTs. We used 

1 Downloaded from http://www.uni-ulm.de/in/theo/research/seqana.html.

http://www.uni-ulm.de/in/theo/research/seqana.html
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Fig. 6. Number of insert operations, running time and memory usage of our algorithm and OG for τ = 10.

different threshold values τ = {5, 10, 15, 20} to limit the output of the algorithms to suffix–prefix matches of length larger 
than or equal to τ .

Our algorithm was implemented in C++ using the SDSL library [4] version 2.02 to construct the GESA. We also 
used the malloc_count library3 to measure the memory usage. To make a fair comparison we updated the SDSL com-
ponents of the OG implementation from version 1 to version 2. The source code of both algorithms is available at
https://github.com/felipelouza/apsp.

Both our algorithm and OG were compiled by g++ v 4.7.2, with the flag std c++11 and the optimization flags O3, 
ffast-math, funroll-loops, m64, fomit-frame-pointer and D_FILE_OFFSET_BITS=64. Readjoiner was compiled in the same en-
vironment with the flags defined in its own Makefile. The experiments were conducted in the Linux Debian 7.0 kernel 
3.2.60+1deb7u3/64 bits operating system, running on an Intel Core i7-3770 3.4 GHz processor 8 MB cache, 32 GB of inter-
nal memory and a 1 TB SATA hard disk with 7200 RPM and 64 MB cache.

We present the results in two sections, the first containing the comparison of our algorithm and OG, which are both 
theoretically optimal. The second contains the comparison between our algorithm and Readjoiner.

5.1. Comparison with OG

Fig. 6a shows the number of insert operations performed by our algorithm and OG on their respective auxiliary data 
structures. We show the results for τ = 10, for other values the behavior is similar. The percentage of insert operations 
performed by our algorithm is about 1% of the push operations performed by OG. In OG it is possible for a suffix S j

p to 

2 sdsl-lite library is available at https://github.com/simongog/sdsl-lite.
3 malloc_count library is available at http://panthema.net/2013/malloc_count.

https://github.com/simongog/sdsl-lite
http://panthema.net/2013/malloc_count
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Fig. 7. Running time of our algorithm and Readjoiner for varying values of τ .

be inserted in stack[ j] because it is a prefix of another suffix that is not a complete string. Then, the lcp value decreases 
before the algorithm is able to find a complete string, and we may say that this situation causes an unnecessary insertion 
(and removal) of S j

p .
Fig. 6b shows the total running time (in seconds) of each algorithm, not accounting for the time to build the GESA. Our 

algorithm has outperformed OG by a factor of 2.6 on the average. We can see that the improvement on the running time 
was not proportional to the reduction of number of insert operations shown in Fig. 3. We believe that it happened because 
the operations on the stacks used by OG are more efficient than the operations on the lists used by our algorithm. It may 
also be the case that OG has a better cache locality, because operations are always performed on the top of stacks.

Figs. 6c and 6d show the amount of memory used by each algorithm. We evaluated the total and peak memory usage. 
The peak memory used by each algorithm is quite the same, since both algorithms use the same GESA structure, that 
dominates the memory usage. However, the total memory used by our algorithm was 15% less on average, which is related 
to the insert operations (which trigger memory allocations) performed by each algorithm, as shown in Fig. 6a.

5.2. Comparison with Readjoiner

Readjoiner includes a series of filtering steps that reduces significantly the number of strings to be compared. All con-
tained strings and non-relevant suffixes are removed, such as those smaller than τ or without a prefix equal to the first τ
symbols of another complete string. It also encodes the strings using GtEncseq software library [20], which improves practical 
performance for DNA, but prevents theoretical optimality for larger alphabets. Readjoiner process the strings in blocks, as 
ours and many other algorithms do.

We can see that when τ is small, for instance τ = 5, Readjoiner is significantly slower than our algorithm, as shown in 
Fig. 7, and uses much more memory with a higher peak, as shown in Figs. 8 and 9. Such performance loss as a function of τ
is pointed out in the Readjoiner manual4. In this particular experiment, it was necessary to limit the memory allowance for 

4 http://www.zbh.uni-hamburg.de/?id=349.

http://www.zbh.uni-hamburg.de/?id=349
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Fig. 8. Total memory usage of our algorithm and Readjoiner for varying values of τ .

Readjoiner to 12 GB as shown in the plot, otherwise it would be killed by the system. The number of suffix–prefix matches 
found by Readjoiner for 100 000 strings using τ = 5 was 87 times larger than using τ = 10, which by its turn was 3 times 
larger than using τ = 15. Therefore, as τ increases, Readjoiner is more efficient both in time and in memory, as the filtering 
strategy pays off.

6. Conclusion

In this article we presented a faster and more space-efficient optimal algorithm to solve the all-pairs suffix–prefix match-
ing problem. The new algorithm differs from the best known solution, proposed by Ohlebusch and Gog in 2010 [13] that 
also uses enhanced suffix arrays, in the way that the enhanced suffix array is scanned, avoiding processing suffixes that 
are not a suffix–prefix matching. Performance tests with real data showed that the new algorithm is 2.6 times faster (on 
average) using about 15% less memory. While compared to Readjoiner, a very optimized practical algorithm, we saw that 
when we require an exact solution for small overlap lengths, our algorithm is also very good. Although Readjoiner has 
outperformed our algorithm for larger overlap lengths, we may conclude that our algorithm is the best among theoretically 
optimal algorithms.

Our algorithm can be easily parallelized to improve its performance, since each string can be processed independently, 
and then all local solutions can be merged at once. Another important improvement could be modifying the algorithm to 
work in semi-external memory fashion, reducing the peak memory, since the GESA can be constructed externally (e.g. [10]) 
and can be buffered from the disk as necessary.
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Fig. 9. Peak memory usage of our algorithm and Readjoiner for varying values of τ .
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