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a b s t r a c t 

Convolutional Neural Networks (CNNs) have been proven very effective for human demographics esti- 

mation by a number of recent studies. However, the proposed solutions significantly vary in different 

aspects leaving many open questions on how to choose an optimal CNN architecture and which training 

strategy to use. In this work, we shed light on some of these questions improving the existing CNN-based 

approaches for gender and age prediction and providing practical hints for future studies. In particular, 

we analyse four important factors of the CNN training for gender recognition and age estimation: (1) the 

target age encoding and loss function, (2) the CNN depth, (3) the need for pretraining, and (4) the train- 

ing strategy: mono-task or multi-task. As a result, we design the state-of-the-art gender recognition and 

age estimation models according to three popular benchmarks: LFW, MORPH-II and FG-NET . Moreover, our 

best model won the ChaLearn Apparent Age Estimation Challenge 2016 significantly outperforming the 

solutions of other participants. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

Automatic recognition of human demographic traits like gen-

er and age has a number of immediate applications in multiple

omains. Indeed, intelligent security systems can locate a person

f interest based on a specific set of soft biometric attributes. Au-

omatic age estimation algorithms can prevent minors from pur-

hasing alcohol or tobacco from vending machines. The content of

he advertising billboards can be adapted depending on the demo-

raphics of pedestrians. In general, large face datasets can be eas-

ly managed and organized based on the demographics of humans.

herefore, many research efforts have been devoted to design an

utomatic system which can estimate these essential human char-

cteristics from face images [1] . 

Recently, deep neural networks, and in particular Convolutional

eural Networks (CNNs) [2] , have boosted nearly all domains of

omputer vision (e.g. object detection and recognition [3] , image

uper-resolution [4] , image captioning [5] and many others). Since

012, the prestigious ImageNet challenge on object recognition and

ocalization [6] has been won uniquely by CNNs with constantly
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ncreasing depths [3,7–9] . The Face Recognition (FR) domain has

lso experienced a very significant breakthrough due to CNNs [10–

2] . 

Unsurprisingly, CNNs have been widely used for both Gen-

er Recognition (GR) and Age Estimation (AE) problems in recent

ears. For example, all winning solutions of the two last editions

f the AE challenge [13,14] are based on CNNs. More generally,

ables 8 and 9 (which are discussed in details in Section 5 ) demon-

trate that since 2014, the majority of studies both on GR and AE

ave been either integrally based on CNNs or at least, have used

NN-learned features as part of their models. These observations

nderpin the practical interest of the present research, the goal of

hich is to find optimal ways of design and training of CNNs for

R and AE. 

In particular, we have identified that existing CNN-based ap-

roaches for GR and AE vary in principal in the following 4 axes:

1) the target encoding and the loss function used for AE, (2) the

epth of the used CNN architecture, (3) presence and type of pre-

raining (General Task (GT) 1 or FR), and (4) the way how the net-

orks are trained: separately for GR and/or AE or simultaneously

or both tasks. In this paper, we evaluate the importance of each of

he presented axes on the resulting performances providing prac-
1 Here and further in this work, by the “GT pretraining” we understand the pre- 

raining on the ImageNet dataset [6] of 10 0 0 classes. 
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tical hints for researchers and practitioners who will choose CNNs

for addressing GR and AE problems. 

Our main contributions can be summarized as following: 

1. We identify Label Distribution Age Encoding [15] as an optimal

way to represent the target age when training a CNN. 

2. We conclude that AE requires deeper CNN architectures than

GR when CNNs are trained from scratch. 

3. We show that FR pretraining allows effective training of deep

gender and age CNNs. In addition, we show that FR pretraining

is more suited for the target problems than the GT one. 

4. We demonstrate that CNNs benefit from multi-task training for

GR and AE when trained from scratch. However, this positive

effect is encapsulated by FR pretraining. 

5. We report the state-of-the-art results on three popular bench-

marks: LFW, MORPH-II and FG-NET . 

6. Based on the designed AE model, we have won the ChaLearn

Apparent Age Estimation Challenge 2016 [14,16] . 

The rest of the article is organised as following: in Section 2 , we

present the related studies on automatic GR and AE; in Section 3 ,

which is the central one of the present work, we identify the

optimal CNN design and training parameters for GR and AE; in

Section 4 , we use the conclusions of the previous Section as

the basis to design the state-of-the-art CNNs for GR and AE; in

Section 5 , we evaluate our best models on popular benchmarks

against the state-of-the-art; and finally, Section 6 provides the final

conclusions of this work and the directions for the future research.

2. Related work 

In this Section, we briefly present the most relevant works on

automatic GR and AE from face images. More detailed bibliog-

raphy studies can be found in the following surveys: [17,18] (on

GR), [19,20] (on AE) and [1,21] (both on GR and AE). Following the

categorization from Han et al. [22] , we can roughly split non-CNN

GR and AE methods into (1) shape-based, (2) texture-based and

(3) appearance-based methods. According to the mentioned cate-

gorization, CNNs are closer to the texture-based approaches. How-

ever, in our opinion, CNNs form a 4th separate group. Below, we

provide examples of approaches in each of the four categories. 

2.1. Shape-based methods 

In shape-based (or anthropometry-based) approaches, GR and

AE are performed using distances between predefined facial land-

marks to describe the topological differences between male and

female faces or between faces of different ages. For example, Pog-

gio et al. [23] measured 15 distances (pupil to eyebrow separation,

nose width etc.) while Fellous [24] selected 24 horizontal and ver-

tical distances in a human’s face to recognize gender. In case of

AE, Kwon and Lobo [25] computed 6 metric proportions on frontal

face images and used them to separate babies from adults. Simi-

larly, Ramanathan and Chellappa [26] used 8 proportions to model

age progression among children and teenagers up to 18 years old.

In general, in AE, the anthropometric features are mainly useful

to distinguish children from adults, since the facial shape becomes

quite stable for adults [19] . A common downside of anthropomor-

phic methods is the fact that they are very sensitive to precise es-

timation of the facial landmarks [22] . 

2.2. Texture-based methods 

Many studies on GR and AE from face images are based on ex-

traction of the image-based texture features from the processed

images. The most straightforward way to extract texture informa-

tion from images is to directly use pixel intensities. This simple
pproach was employed by several GR works [27–29] with var-

ous classification algorithms. Raw pixels contain a lot of redun-

ant information which can be removed using dimensionality re-

uction methods. To this end, Khan et al. [30] used Principal Com-

onent Analysis (PCA) while Jain and Huang [31] employed Inde-

endent Component Analysis (ICA) in the context of GR. AE is a

ore sophisticated problem than GR, and Guo et al. [32] found

hat unsupervised dimensionality reduction methods like PCA, ICA

r Locally Linear Embedding (LLE) are not able to project face im-

ges to sufficiently discriminative subspaces. Instead, the authors

uccessfully employed Orthogonal Locality Preserving Projections

OLPP) which is a supervised manifold learning algorithm. This

romising idea of using manifold learning for the supervised di-

ensionality reduction method was later further developed in sub-

equent works of the same research group [33–35] using respec-

ively Marginal Fisher Analysis (MSA), Locality Sensitive Discrimi-

ant Analysis (LSDA), Kernel Partial Least Squares (KLPS) and Cor-

elation Component Analysis (CCA). 

General-purpose hand-crafted features were also successfully

sed for estimation of human demographics. Thus, Local Binary

atterns (LBP) are one of the most basic and popular hand-crafted

eatures. They were broadly utilised for GR [36–38] and AE [39,40] .

iologically Inspired Features (BIF) were used for GR in [22] , but

hey proved to be particularly effective for AE [21] which is con-

rmed in a number of works [34,35,41] . Some other hand-crafted

eatures were also tried for GR and AE, though less frequently than

BP and BIF. For example, Wang et al. [42] employed Scaled In-

ariant Feature Transforms (SIFT) for GR, Gabor filters were used

y Xia et al. [43] for GR and by Liu and Wechesler [44] for AE,

nd Haar-like features allowed Zhou et al. [45] to train a boosting

odel for AE. 

Moreover, a very promising approach is combining several fea-

ure representations strategies in one model. Thus, in the recent

ork [46] , Castrillón-Santana et al. analysed and compared dif-

erent methods of fusion of various hand-crafted features, includ-

ng LBP, Histogram of Oriented Gradients (HOG), Weber Local De-

criptors (WLD) and others, in one GR model. Similarly, Moeini

t al. [47] combined LBP features and raw pixel intensities ex-

racted from different regions of faces to learn a regression dic-

ionary for GR and AE. In the same spirit, Liu et al. [48] combined

BP, HOG and BIF features to train a hierarchical AE model obtain-

ng the state-of-the-art performances. 

.3. Appearance-based methods 

The appearance-based approaches for automatic GR utilize

oth texture and shape information from face images. A typi-

al appearance-based method is Active Appearance Models (AAM)

hich was initially proposed for image coding [49] . Using the

raining dataset, AAM separately learns a statistical shape model

nd an intensity model of face images. Lanitis et al. [50] extended

AM for age modelling by proposing an aging function to explain

ariations in ages. Later AAM was independently applied for GR by

u et al. [51] and by Shih [52] . The famous AGing pattErn Subspace

AGES) algorithm for AE [53] also uses AAM. The basic idea of AGES

s to model the aging pattern, which is defined as a sequence of

 particular individual’s face images sorted in time order, by con-

tructing a representative subspace. The proper aging pattern for

 previously unseen face image is determined by the projection in

he subspace that can reconstruct the face image with minimum

econstruction error, while the position of the face image in that

ging pattern will then indicate its age. In AGES, each face is firstly

ncoded with AAM. 

Similarly to anthropometry-based approaches, appearance-

ased algorithms suffer from imprecise estimation of facial land-

arks. 
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Table 1 

CNN design and training parameters for GR and AE CNNs which 

are evaluated in Section 3 . GR = Gender Recognition. AE = Age 

Estimation. FR = Face Recognition. 

Parameter Tested values 

Gender CNN Age CNN 

Target Age Encoding N/A 0/1-CAE 

RVAE 

LDAE 

CNN Depth 2 conv. layers 

4 conv. layers 

6 conv. layers 

8 conv. layers 

Pretraining/Multi-task Learning No pretraining, mono-task 

FR pretraining, mono-task 

No pretraining, multi-task 

FR pretraining, multi-task 

Table 2 

Age encodings and corresponding loss functions. N denotes the num- 

ber of images in a mini-batch, t denotes the targets and p denotes the 

predictions of CNNs. 

Encoding Loss function 

0/1-CAE L CAE = − 1 
N 

∑ N 
k =1 

∑ 100 
i =1 t 

k 
i 

log p k 
i 

RVAE L RVAE = 

1 
N 

∑ N 
k =1 (t k − p k ) 2 

LDAE L LDAE = − 1 
N 

∑ N 
k =1 

∑ 100 
i =1 (t k 

i 
log p k 

i 
+ (1 − t k 

i 
) log (1 − p k 

i 
) ) 
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.4. CNNs-based methods 

Recently, many studies on GR and AE have employed CNNs (cf.

ables 8 and 9 ). In this Subsection, we make an attempt to orga-

ize these works highlighting the differences between them. 

One of the most evident difference between various CNN mod-

ls is the choice of the network architecture. CNNs can be roughly

plit into shallow networks (up to 5 − 6 convolutional layers) and

eep networks with more convolutional layers. We have observed

hat all studies [54–60] which train gender/age CNNs from scratch

se shallow architectures, while the works employing deeper ar-

hitectures (like AlexNet [7] or VGG-16/19 [61] ) fine-tune already

retrained CNNs [62–66] . Moreover, two pretraining types (the GT

ne and the FR one) were used for the demographics estima-

ion. Their fitness for the target problems was studied by Ozbulak

t al. [66] . However, the results of Ozbulak et al. are difficult to in-

erpret given the fact that two types of pretraining are compared

n two different architectures: AlexNet and VGG-16 . 

Loss functions and age encoding strategies are another source of

ariation between different AE CNNs. Some papers address AE as

n ordinal regression problem [58,67] . Others define custom loss

unctions [65,68] . However the vast majority of CNN-based age

odels were trained either with pure classification [59,62,66] or

ith pure metric regression objectives [56,63,64] . 

Finally, several studies [56,58] compared mono-task training for

R and AE versus simultaneous multi-task training. Results are ap-

arently contradictory: Yi el al. [56] reported no difference be-

ween mono-task and multi-task training, and Yang et al. [58] ob-

ained an improvement in AE performance from the multi-task

raining. 

. CNN design and training strategy 

As outlined in Section 2.4 , the existent CNN-based solutions for

R and AE mainly differ in the following aspects: (1) the age en-

oding and the loss function for the age CNNs, (2) the depth of

he employed CNN architectures, (3) the use of pretraining, and

4) the training strategy: mono-task vs. multi-task. The objective of

his Section is to study each of these design and training parame-

ers and to evaluate their relative impact on the resulting gender

nd age prediction accuracies. In particular, in Section 3.1 , we de-

ail the mentioned CNN parameters highlighting their importance,

nd in Section 3.2 , we experimentally compare the selected con-

gurations. The conclusions of this Section are used to optimally

rain the deep top performing gender and age CNNs in the follow-

ng Section 4 . 

.1. Studied CNN parameters 

Table 1 summarizes the CNN parameters which are evaluated in

he present Section. Below, we subsequently define each of them

ighlighting their importance for GR and AE CNNs. 

.1.1. Target age encoding and loss function 

Target encoding defines how the target labels (in our case, gen-

ers and ages) are represented in a neural network. Both the infor-

ation which is given (or not) to the neural network during train-

ng and the choice of the loss function for optimization depend on

arget encoding. 

GR is a binary classification problem which does not leave

uch liberty for the choice of the target encoding and the loss

unction to optimize. Binary classification problems are solved by

eural networks with one or two neurons at the output layer. In

he first case, the logistic regression loss function is employed for

ptimization and in the second case, the cross-entropy one. Cross-

ntropy loss is mathematically equivalent to logistic one in case of
inary classification, so there is no need for experimental compari-

on of the two losses. If not said otherwise, we train GR CNNs with

wo neurons at the output layer and the cross-entropy loss. 

Contrary to GR, the AE problem can be approached in many

ifferent ways: classification with coarse categories, per-year clas-

ification, regression or even ranking (cf. Section 2.4 ). Each case

mposes particular age encoding and loss function. In this Sec-

ion, we compare three strategies which proved to be the most

ffective during the 1st edition of ChaLearn Apparent Age Estima-

ion Challenge [13] : pure per-year classification (employed by the

st place winner [62] ), pure regression (employed by the runner-

ps [63,64] ) and soft classification (employed by the participants

ho got the 4th place [69] ). It is important to highlight that the re-

ults of the ChaLearn Challenge cannot be regarded as a fair com-

arison between the mentioned age encoding strategies because

any other factors influence the final performances of AE meth-

ds (each team used different CNN architectures, pretraining types,

raining datasets etc.) 

Table 2 presents the compared age encodings as well as the cor-

esponding loss functions, and Fig. 1 provides an example on how

hey are used to encode an age of an example face image. Below,

e detail each of the three encodings. 

In pure per-year classification , each age (with a precision up

o one year) is treated as a separate class which implies that the

ge label is encoded as a one-hot 1D-vector. The size of this vector

orresponds to the number of classes (in this work, we use 100

lasses for ages between 0 and 99 years old). We further refer to

his encoding as 0/1 Classification Age Encoding (0/1-CAE) . 

Pure regression has real numbers as targets, therefore real age

alues are used as labels in this case. This straightforward age en-

oding is referred as Real-Value Age Encoding (RVAE) in our work. 

Finally, soft classification can be seen as an intermediate case

etween the discrete classification and continuous regression. As in

ure classification, in soft classification ages are encoded by vec-

ors of the dimension which corresponds to the number of classes.

owever, instead of being binary, the values in the vector are en-

oded with Gaussian distribution centred at the target age. This

llows to encode a notion of neighbourhood between different age
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Fig. 1. Example of age encodings. t denotes the resulting encoding. σ is a hyper-parameter of LDAE. In this work, we use σ = 2 . 5 (by experimenting with various σ ∈ [1, 4], 

we have not experienced a significant impact of the σ value on the resulting performance). 
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2 “Conv: N@MxM” denotes a convolutional layer with N filters of size MxM. 

“MaxPool: MxM” means that input maps are downsampled by a factor of M using 

Max-Pooling. “FC: N” denotes a fully-connected layer with N neurons. 
classes (which is present in RVAE but does not exist in 0/1-CAE):

LDAE for example, encodes that the age of 20 years old is closer to

the age of 21 years old than to the age of 80 years old. Following

the work where the encoding was introduced [15] , we refer to it

as Label Distribution Age Encoding (LDAE) . 

Section 3.2 provides an experimental evaluation of the com-

pared age encodings. 

3.1.2. CNN depth 

The depth of a neural network (i.e. number of its hidden lay-

ers) has a fundamental importance in Deep Learning as it allows

to learn a hierarchy of image descriptors for a particular prob-

lem starting from the elementary features in the early hidden lay-

ers until the high-level problem-dependent features in the last

ones [8,70] . Informally, the more complicated is a particular prob-

lem, the deeper CNN architecture is required to address it. 

Several recent works [9,71] have shown that fully-convolutional

CNNs (i.e. CNNs composed of only convolutional layers with no

fully-connected ones) perform almost identically to classical CNNs

while having much less trainable parameters. It suggests that the

discriminative power of a CNN depends rather on its convolutional

layers than on its fully-connected ones. 

Therefore, in this work, we evaluate the impact of the number

of convolutional layers on the quality of gender/age CNNs. In par-

ticular, CNNs from 2 and up 8 convolutional layers are compared

in Section 3.2 . 

3.1.3. Pretraining and multi-task training 

Despite pretraining and multi-task training may seem as two

completely independent techniques at the first sight, both of them

are considered as particular cases of the so called “Transfer Learn-

ing” [72] . Indeed, the idea of Transfer Learning is that the knowl-

edge learned from one problem can be reused for the other one. It

is both reflected in pretraining and multi-task learning. 

In case of pretraining, CNN is initialized by a training on a sep-

arate complex problem for which there is a lot of training data.

The rich internal CNN representations which are learned during

pretraining facilitate the further CNN training (also called “fine-

tuning”) for a problem of interest. 

Thus, in this work, we have selected Face Recognition (FR) as

a pretraining task due to the following two intuitions. Firstly, con-

trary to GR and AE problems, FR allows training very deep CNNs

from scratch as in [10–12] which proves that this problem is diffi-

cult enough to serve as a strong CNN regularizer during the train-

ing. Secondly, being a face-related task, FR is close to our target

problems. Indeed, gender is a part of a person’s identity, therefore

GR can be seen as an elementary sub-problem of FR. Though age

is clearly independent of a person’s identity, it was shown that the

face representation learned by a FR CNN implicitly encodes ele-

mentary age information [73] . 

A multi-task CNN is trained to resolve several problems (in our

case, GR and AE) at the same time. This way, the CNN learns to
xtract more information from input images than in case of mono-

ask training which also results in richer internal CNN representa-

ions. 

In Section 3.2 , FR pretraining and multi-task training are eval-

ated both separately and simultaneously in the frame of GR and

E problems. 

.2. Experiments 

.2.1. Experimental protocol 

We firstly define the experimental protocol which is used for

valuation of all tested CNN parameters in this Section. The pro-

ocol consists of the set of the CNN architectures with varying

umber of convolutional layers as well as of the training and test

atasets. 

fast_CNN architecture. These CNN architectures are presented

n Table 3 . For our experiments, we have designed a set of com-

act CNN architectures of varying depths: fast_CNN_2, fast_CNN_4,

ast_CNN_6 and fast_CNN_8 with 2, 4, 6 and 8 convolutional layers,

espectively. All of them are used for evaluation of the impact of

he CNN depth on GR and AE, while the experiments on target age

ncoding and Transfer Learning are performed with the middle-

ize architecture fast_CNN_4 , which is further referred as fast_CNN

or simplicity. 2 

We have empirically observed that when trained from scratch,

sing significantly more complex CNN architectures than fast_CNN

esults in poor convergence of the early layers of the network (es-

ecially in case of GR). As shown below, this is due to the rel-

tive simplicity of the GR problem with respect to FR problem,

or example. Thus, we have opted for quite compact CNN archi-

ectures (comparing to the state-of-the-art ones like VGG-16 [61] ,

oogLeNet [9] and ResNet [3] ), as the goal of this Section is the ob-

ective comparison of the presented above CNN parameters rather

han the design of the best performing gender/age CNNs. The latter

s done in Section 4 , where we train the very deep state-of-the-art

NNs of 16 and 50 layers for AE and GR based on the conclusions

f the present Section. 

fast_CNN follows the same basic design principles as VGG-16

NN [61] . In particular, (1) all convolutional layers are composed of

quare feature maps with kernels of size 3x3 pixels, and (2) max-

ooling layers reduce both heights and widths of feature maps in

 times. In order to facilitate convergence and to prevent overfit-

ing, we employ a batch normalization module [74] before ReLU

ctivations and a 0.5-dropout module [75] on the fully connected

ayer. fast_CNN is fed with 6 4x6 4 face RGB-images. The retina size

f 6 4x6 4 for fast_CNN has been chosen in conformance with pre-

ious work on GR and AE [55,58] . The design of the output (fully-



G. Antipov et al. / Pattern Recognition 72 (2017) 15–26 19 

Table 3 

CNN architectures which are used in experiments of Section 3 . 

fast_CNN_2 fast_CNN_4 fast_CNN_6 fast_CNN_8 

Input: 64x64 Input: 64x64 Input: 64x64 Input: 64x64 

Conv1_1: 32@3x3 Conv1_1: 32@3x3 Conv1_1: 32@3x3 Conv1_1: 32@3x3 

— Conv1_2: 32@3x3 Conv1_2: 32@3x3 Conv1_2: 32@3x3 

— — Conv1_3: 32@3x3 Conv1_3: 32@3x3 

— — — Conv1_4: 32@3x3 

MaxPool: 2x2 MaxPool: 2x2 MaxPool: 2x2 MaxPool: 2x2 

Conv2_1: 32@3x3 Conv2_1: 32@3x3 Conv2_1: 32@3x3 Conv2_1: 32@3x3 

— Conv2_2: 32@3x3 Conv2_2: 32@3x3 Conv2_2: 32@3x3 

— — Conv2_3: 32@3x3 Conv2_3: 32@3x3 

— — — Conv2_4: 32@3x3 

FC: 512 FC: 512 FC: 512 FC: 512 

Experiment-specific output layer 
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Table 4 

Comparison of target age encodings. Age Estimation 

(AE) MAEs are reported on the PBGA dataset. Experi- 

ments are performed using the fast_CNN architecture. 

Age encoding Age prediction type Age MAE 

0/1-CAE ArgMax 7.00 

Expected value 6.42 

RVAE N/A 7.19 

LDAE ArgMax 6.58 

Expected value 6.05 

Table 5 

Impact of the CNN’s depth on Gender Recogni- 

tion (GR) and Age Estimation (AE). Results are 

reported on the PBGA dataset. 

CNN Gender Age MAE 

CA AUC 

fast_CNN_2 92.2% 0.9833 6.65 

fast_CNN_4 92.8% 0.9867 6.05 

fast_CNN_6 92.9% 0.9862 5.95 

fast_CNN_8 92.3% 0.9859 5.89 
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onnected) layer as well as the corresponding loss function depend

n the particular experiment. 

Training dataset: IMDB-Wiki_cleaned. In this work, all GR and

E CNNs have been trained on the internal IMDB-Wiki_cleaned

ataset which is a subset of the public IMDB-Wiki dataset [76] col-

ected in 2015. IMDB-Wiki_cleaned contains about 250K images (2

imes less than IMDB-Wiki ). 

The original IMDB-Wiki dataset suffers from a large number of

rong gender and age annotations, so in IMDB-Wiki_cleaned we

ave left only those images for which we are sure that the corre-

ponding annotations are correct (the details are explained in [16] ).

Test dataset: private balanced gender age (PBGA). The com-

on problem of public benchmark datasets (like LFW, MORPH-II

nd FG-NET used in Section 5 for comparison with state-of-the-art)

s the fact that they are not well-balanced. For example, the ratio

f men and women both in LFW and MORPH-II is almost 80% to

0%. Similarly, about 50% of images in FG-NET belong to children

hile MORPH-II dataset contains almost 0 images of people over

0 and below 18 years old. 

The performances measured on these benchmarks are prone to

e biased. This is not critical for comparing the final best gender

nd age estimators with other state-of-the-art models (anyway, al-

ost all GR and AE studies evaluate their algorithms on one of the

hree listed benchmarks). 

However, in this Section, where our goal is to make important

esign and training choices for gender and age CNNs, we want to

inimize the possible bias due to the evaluation dataset. To this

nd, we use a private internal dataset of non-celebrities. For each

ge in the interval between 12 years old and 70 years old, the

ataset contains 30 images of men and 30 images of women. Thus,

540 images in total. Below, we refer to this dataset as Private Bal-

nced Gender Age dataset or simply the PBGA dataset. All results

eported on the PBGA dataset in this Section are calculated accord-

ng to the cross-dataset protocol (i.e. without fine-tuning on PBGA ).

.2.2. Experimental results 

Target age encoding. Table 4 compares AE accuracies of

ast_CNN s trained with different target age encodings presented in

ection 3.1 . In Table 4 and further in this work, AE CNNs are com-

ared according to Mean Absolute Errors (MAEs). MAE is simply

efined as a mean value of absolute differences between predicted

ges p and real (biological) ages t (the averaging is done on N test-

ng examples): MAE = 

1 
N 

∑ N 
i =1 | p i − t i | . 

For 0/1-CAE- and LDAE-based CNNs, we explore two possibil-

ties to predict an age given 100 activations of the output layer.

n the one hand, one can select the class (i.e. the age) which cor-

esponds to the neuron with the highest activation — we denote
his approach as “ArgMax” in Table 4 . On the other hand, the age

an be estimated as the expected value of all output activations:

ge = 

∑ 100 
i =1 i ∗ p i , where p i is the activation of the i th output neu-

on (here, we assume that 
∑ 100 

i =1 p i = 1 ). 

The results in Table 4 have at least two conclusions. Firstly, we

bserve that AE by expected values significantly outperforms AE

y “ArgMax” both for 0/1-CAE and for LDAE. This result conforms

ith the similar findings by Rothe et al. [62] . Secondly, the results

emonstrate the general superiority of the CNN trained with LDAE

ver CNNs trained with 0/1-CAE and RVAE. Indeed, LDAE combines

he strong points of two other encodings: the similarity of the

eighbouring ages (as in RVAE) and the robustness of AE (as in

/1-CAE). Based on the obtained results, in the rest of the paper,

e use LDAE encoding and the expected value approach for AE. 

CNN depth. As explained in Section 3.1 , four CNN architectures

f different depths: fast_CNN_n , where n ∈ {2, 4, 6, 8} is the num-

er of convolutional layers, are compared for GR and AE tasks.

R CNNs are evaluated according to their Classification Accuracies

CAs) and also according to their Areas Under ROC Curves (AUCs)

or the sake of more balanced evaluation between two classes

men and women). 

The results presented in Table 5 highlight the difference be-

ween GR and AE. Indeed, in case of GR (columns 2 − 3 of Table 5 ),

e observe that the best performances are already obtained with
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Table 6 

Effect of Transf er Learning (FR pretraining and multi-task learn- 

ing) for Gender Recognition (GR) and Age Estimation (AE) CNNs. 

Results are reported on the PBGA dataset using fast_CNN . FR = 

Face Recognition. 

Training type Pretraining Gender Age MAE 

CA AUC 

Mono-task None 92.8% 0.9867 6.05 

Multi-task None 93.9% 0.9891 5.96 

Mono-task FR 95.0% 0.9917 5.96 

Multi-task FR 94.5% 0.9874 5.96 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7 

Our best performing Gender Recognition (GR) and Age Esti- 

mation (AE) CNNs. Results are reported on the PBGA dataset. 

FR = Face Recognition. GT = General Task. 

CNN Pretraining Gender Age MAE 

CA AUC 

VGG-16 GT 96.8% 0.9958 4.50 

VGG-16 FR 97.1% 0.9967 4.26 

ResNet-50 FR 98.7% 0.9991 4.33 
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only four convolutional layers. Increasing the depth up to six lay-

ers has almost no impact on GR results, while fast_CNN_8 of eight

convolutional layers performs even worse than shallower networks

overfitting on the training dataset. At the same time, the column

4 of Table 5 clearly indicates a positive correlation between the

depth of AE CNNs and their performances. fast_CNN_4 outperforms

fast_CNN_2 by almost 10% while fast_CNN_6 and fast_CNN_8 subse-

quently improve the AE by more than 1% each. 

These findings illustrate that AE is a more complex and de-

manding problem than GR. Indeed, the performed experiments

show that contrary to AE, GR training does not provide CNNs with

the information which is discriminative enough to take the full ad-

vantage of the CNN’s depth. 

FR pretraining and multi-task training . Experiments presented

in Table 6 evaluate the impacts of the FR pretraining and multi-

task training on the performances of gender and age fast_CNN s.

Thus, both FR pretraining and simultaneous learning for the two

tasks increase the GR and AE accuracies with respect to the mono-

task fast_CNN which is trained from scratch (lines (1, 3) and (1, 2)

of Table 6 , respectively). 

The relative improvement of Transfer Learning on gender

fast_CNN is more important than that on age fast_CNN . This per-

fectly makes sense as GR training itself is not challenging enough

to take the full advantage of deep CNNs (cf. the results of the CNN

depth experiments). Hence, FR pretraining and multi-task training

work as regularizers during the GR training making fast_CNN to

learn richer and more expressive internal CNN representations. At

the same time, AE is a more complicated problem than GR which

rather requires more sophisticated deep CNN architectures than an

explicit help of Transfer Learning (though the latter also remains

useful for age fast_CNN as shown in Table 6 ). 

Moreover, while the two Transfer Learning approaches have ex-

actly the same impact on age fast_CNN (MAE improvement from

6.05 to 5.96), FR pretraining is more effective than multi-task train-

ing for gender fast_CNN . Indeed, as already mentioned above, GR

can be considered as a sub-problem of FR because gender is a part

of a person’s identity. Thus, the internal CNN representations of

input faces which are learned during FR pretraining contain infor-

mation which can be directly used to predict gender. 

Finally, the lines (3, 4) of Table 6 demonstrate that FR pre-

training and multi-task training for GR and AE are not complimen-

tary. Combining the two approaches together does not improve age

MAEs and even leads to a slight decrease of gender CAs. This result

indicates that the CNN regularization arising from the multi-task

training for GR and AE has already been obtained during the FR

pretraining. So we can conclude that FR pretraining encompasses

the positive effects of the multi-task training for GR and AE being

a more general regularization approach. 

4. State-of-the-art CNNs for gender and age prediction 

In this Section, we design the top performing gender and age

prediction CNNs. The idea is to employ some of contemporary
eep CNN architectures which have proven to be the most ef-

ective for other problems (such as ImageNet classification [6] )

nd to train them for GR and AE according to the conclusions of

ection 3 . These conclusions can be summarized as following: (1)

DAE should be employed as the age encoding strategy; (2) AE is

 more complex problem than GR, and both GR and AE trainings

an be improved with help of Transfer Learning; (3) FR pretrain-

ng is particularly effective for GR; and (4) FR pretraining encom-

asses multi-task training meaning that the two Transfer Learning

trategies should not be used together. In particular, we adopt two

ecent CNN architectures: VGG-16 [61] and ResNet-50 [3] of 16 and

0 layers, respectively. VGG-16 is a natural choice because the de-

ign of fast_CNN , which is used in Section 3 , is inspired from VGG-

6 , so this architecture can be considered as a very deep exten-

ion of fast_CNN . At the same time, ResNet s of different depths are

urrently the state-of-the-art CNN architectures. As shown in [77] ,

esNet-50 is a very good trade-off between the running time and

he resulting performances. 

More precisely, the following strategy is used to train both

NNs ( VGG-16 and ResNet-50 ) for GR and AE: 

1. GR and AE CNNs are firstly pretrained for FR. 

2. CNNs for GR and AE are trained separately (mono-task train-

ing). 

3. LDAE is used to encode ages for AE CNNs. 

In this work, we employ VGG-16 from [11] which is pretrained

or FR and obtains 97.2% of face verification accuracy on the stan-

ard LFW benchmark [78] . We have pretrained ResNet-50 for FR

ollowing the same training strategy as in [11] , and the resulting

NN reaches 99.3% on LFW . Hence, ResNet-50 has proven to be

uch more effective than VGG-16 for FR. 

As already observed in Section 3 , FR pretraining has a direct in-

uence on GR because the latter can be considered as a particular

ub-problem of the former. This is further confirmed by the results

n Table 7 . Indeed, being more accurate for FR, ResNet-50 also out-

erforms VGG-16 for GR by 1.6 CA points. 

On the contrary, AE and FR are two independent problems, and

hile FR pretraining has a very important regularization role to

acilitate AE training, the particular FR accuracy is not a decisive

spect for AE as in the case of GR. Thus, as presented in Table 7 ,

he AE accuracies of ResNet-50 and VGG-16 are almost the same.

ctually, the fact that a much deeper ResNet-50 does not improve

GG-16 for AE reveals the limits of the IMDB-Wiki_cleaned dataset

hich is used for AE training. Indeed, ResNet-50 CNN model is so

omplex that it overfits on 250K of training images just after about

 training epochs (while VGG-16 does not overfit even after 50 full

pochs). That said, we believe that ResNet-50 would outperform

GG-16 on AE if more training images with age annotations were

vailable. For example, in order to effectively pretrain ResNet-50 for

R, we have used a dataset of several millions of face images. 

Summarizing the results in Table 7 , we select ResNet-50 CNN as

ur best model for GR, and VGG-16 CNN as our best model for AE. 

Finally, as a side remark of this Section, it is interesting to mea-

ure the particular impact of FR pretraining with respect to General

ask (GT) pretraining. Indeed in Section 3 , we only intuitively mo-
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Table 8 

Comparison of our best Gender Recognition (GR) CNN with the state-of-the-art 

works on LFW and MORPH-II datasets. 

Reference Year Used approach CA 

LFW MORPH-II 

[41] 2010 BIF + OLPP N/A 97.8% 

[34] 2011 BIF + kPLS N/A 98.2% 

[36] 2012 LBP + SVM 94.8% N/A 

[37] 2013 Multiscale LBP + SVM 95.6% N/A 

[35] 2014 BIF + kCCA N/A 98.4% 

[56] 2014 Multi-scale CNN N/A 97.9% 

[58] 2015 Ranking CNN N/A 97.9% 

[22] 2015 BIF + hierarchical SVM N/A 97.6% 

Human Estimators N/A 96.9% 

[81] 2015 FIS + SVM/RBF 93.35% N/A 

[38] 2015 LBP + C-Pegagos 96.86% N/A 

[82] 2016 Local CNN 94.5% N/A 

[55] 2016 Compact CNN 97.3% N/A 

[54] 2016 LBP/HOG/CNN + SVM 98.0% N/A 

[47] 2017 (in press) SLCDL + CRC 96.4% N/A 

This Work 2017 ResNet-50 CNN 99.3% 99.4% 
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ivate the choice of FR as a pretraining task. In order to quantita-

ively confirm this intuition, we also train VGG-16 from [61] (pre-

rained on ImageNet ) for GR and AE, and the resulting scores are

resented in line 1 of Table 7 . As one may observe, the FR pretrain-

ng is more effective than the GT one both for GR and AE (lines

1,2) of Table 7 ). 

Moreover, the difference between FR and GT CNNs can be also

erceived qualitatively. To this end, we visualize the mean activa-

ions of the intermediate convolutional layers of GT and FR VGG-

6 CNNs when human faces are given at the inputs of the two

etworks in Fig. 2 . More precisely, VGG-16 is composed of five

locks of 2 − 3 convolutional layers in each of them, and in Fig. 2 ,

e present the mean activations at the last convolutional layers

f each of these block. In general, early convolutional layers of a

eep CNN are activated by elementary parts of input images: like

dges, corners etc. Thus, activations in the early layers conv1_2 and

onv2_2 of the FR and GT VGG-16 CNNs are similar, and they fo-

us on the most salient face parts (i.e. eyes, mouth, and nose). FR

GG-16 further consolidates these activations in the deeper layers

onv3_3, conv4_3 and conv5_3 targeting its attention on the face
Table 9 

Comparison of our best Age Estimation (AE) CNN

and MORPH-II datasets. ( ∗) different protocol (80%

Reference Year Used approach 

[45] 2005 Boosting + Regression 

[53] 2007 AGES 

[32] 2008 OLPP + regression 

[83] 2009 AAM + SVR 

[84] 2010 MTWGP 

[41] 2010 BIF + OLPP 

[85] 2011 CAM + SVR 

[86] 2011 OHRANK 

[34] 2011 BIF + kPLS 

[35] 2014 BIF + kCCA 

[56] 2014 Multi-scale CNN 

[22] 2015 BIF + hierarchical SVM

Human Estimators 

[57] 2015 Unsupervised CNN 

[58] 2015 Ranking CNN 

[67] 2015 Ordinal CNN 

[48] 2015 Hierarchical grouping a

[65] 2016 Group-aware CNN 

[62] 2016 ImageNet VGG-16 CNN 

This Work 2017 VGG-16 CNN + LDAE 
egion. Therefore, the last convolutional layer of the FR CNN is a

igh-level face descriptor which can be potentially used for GR and

E. On the contrary, the mean activations of the last conv5_3 layer

f GT VGG-16 are uniformly dispersed all over the map demonstrat-

ng that GT VGG-16 is not trained to focus on human faces (there

re few human faces among ImageNet images). Thus, FR pretrain-

ng allows a CNN to better extract high-level information from face

mages than GT pretraining making the former more suitable for

ace-related problems such as GR and AE. 

. Benchmark evaluation 

In previous Section 4 , we have designed the top performing

eep CNNs: ResNet-50 for GR and VGG-16 for AE. In this Section

e evaluate these two CNNs on three popular benchmark datasets:

FW (for GR), FG-NET (for AE) and MORPH-II (for both tasks). 

.1. Benchmark datasets 

Below, we present the benchmark datasets and the correspond-

ng evaluation protocols. 

.1.1. LFW (gender recognition) 

The Labelled Faces in the Wild ( LFW ) dataset [78] containing

3,233 photos was collected in 2007. Today, it is the standard

enchmark for face and gender recognition systems. In this Sec-

ion, we employ it for the comparison of our best GR CNN with the

tate-of-the-art GR models. Most of the recent studies reporting GR

esults on LFW do not fine-tune their models on the target dataset.

herefore, we also follow this cross-dataset protocol for LFW . 

.1.2. MORPH-II (gender recognition and age estimation) 

The MORPH-II dataset [79] is the biggest public dataset of non-

elebrities with both gender and age annotations. The dataset

hich was collected by American law enforcement services con-

ains more than 50K face images. 

Guo et al. [41] proposed an evaluation protocol on MORPH-II

hich was later adopted by a large part of the research commu-

ity. The protocol is the following: the MORPH-II dataset is split

nto three non-overlapping parts S 1 , S 2 and S 3 with predefined pro-

ortions on gender and ethnicity distributions in each of the parts.
 with the state-of-the-art works on FG-NET 

 of dataset for training, 20% for test). 

MAE 

FG-NET MORPH-II 

7.48 N/A 

6.77 8.83 

5.07 N/A 

4.37 N/A 

4.83 6.28 

N/A 4.33 

4.12 N/A 

4.85 5.69 

N/A 4.18 

N/A 3.92 

N/A 3.63 

 4.8 3.8 

4.7 6.3 

4.11 3.81 

N/A 3.48 

N/A 3.27 

nd fusion 2.81-3.55 2.97-3.63 

3.93 3.25 

+ regression 3.09 2.68 ∗

2.84 2.99 / 2.35 ∗
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Fig. 2. Heat maps of mean activations of convolutional layers in two VGG-16 CNNs: the one trained for General Task (GT) classification on ImageNet (top), and the one 

trained for Face Recognition (FR) (bottom). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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GR and AE systems are firstly trained on S 1 and tested on S 2 ∪ S 3 ,

and secondly trained on S 2 and tested on S 1 ∪ S 3 . Mean CA and

MAE over these two experiments are reported as the final ones.

We follow this protocol to evaluate both our best GR and AE CNNs.

5.1.3. FG-NET (age estimation) 

FG-NET [80] is a tiny dataset containing 975 face images of 82

persons with age annotations. Despite its small size, FG-NET is still

broadly used in AE community. The Leave One Person Out (LOPO)

(i.e. 82-fold Cross-Validation) protocol has been widely adopted for

evaluating AE models on FG-NET . We follow this protocol to com-

pare our AE CNN with the state-of-the-art. 

5.2. Quantitative evaluation 

For convenience, Tables 8 and 9 regroup the scores of our best

GR ResNet-50 and AE VGG-16 , respectively comparing them with

the state-of-the-art. 

Many of the works from Tables 8 and 9 are discussed in

Section 2 , but for all reported results we provide short descrip-

tions of the employed methods in the dedicated column. To the

best of our knowledge, the current best results for GR were ob-

tained by [54] and [35] on LFW and MORPH-II , respectively. Castril-

lon et al. [54] combined hand-crafted features (LBP and HOG) with

the features from a compact CNN (comparable by size to fast_CNN )

and used an SVM classifier above. Guo et al. [35] used BIF features

(which are somewhat similar to the features from early layers of

deep CNNs) and a kernel-based Canonical Correlation Analysis for

simultaneous estimation of gender and age. We improve the re-

sults of these two works from 98.0% to 99.3% and from 98.4% to

99.4%, respectively. For both datasets, the improvements are statis-

tically significant with p < 0.01 according to the proportions test.

We believe that the key reason for the success of our model is the

usage of FR as pretraining which has allowed us to train a much

deeper CNN than those which were employed by previous CNN-

based approaches for GR. 

The state-of-the-art AE models were reported by the recent

works Liu et al. [48,65] and Rothe et al. [62] . The study from Liu

et al. [48] is extremely interesting because despite the authors em-

ployed a fusion of very basic hand-crafted features with a standard

SVR, they managed to obtain excellent AE results by a meticulous

selection of a hierarchical structure of their model (i.e. by first pre-

dicting an age group and then estimating the precise age inside the

group) and by proposing several feature fusion algorithms. How-

ever, the choice of an optimal combination of features to fuse de-

pends on the dataset, therefore it is difficult to evaluate the real AE

scores from their work (thus, in Table 9 , we provide intervals from

their paper rather than a single score). Liu et al. [65] used a hier-

archical age grouping to train an AE CNN reporting the currently
est score on MORPH-II following the well-established protocol

rom Guo and Mu [41] . Rothe at al. [62] did not follow this pro-

ocol on MORPH-II so their score on MORPH-II cannot be compared

o others in Table 9 (for the sake of fair comparison, we evaluate

ur age CNN both according to the protocols from [41] and [62] ).

othe et al. [62] also obtained the best MAE of 3.09 on the FG-NET

ataset. The approach of Rothe et al. [62] is very similar to ours:

he same VGG-16 CNN architecture and IMDB-Wiki training dataset.

owever, the principal difference between our solutions is the fact

hat we use LDAE instead of regression encoding and FR pretrain-

ng instead of GT pretraining. The results in Table 9 confirm the

alidity of the training choices made in Section 3 . 

.3. Qualitative evaluation 

GR and AE by our best CNNs can be qualitatively assessed in

ig. 3 . We provide both examples of successful predictions and ex-

mples on which our models fail (in the case of AE, the failed pre-

iction means that the corresponding MAE is significantly bigger

han the average one). 

For the sake of better understanding of the designed models,

e perform a simple ablation analysis to estimate the relative im-

ortance of various regions of human faces for the designed GR

nd AE CNNs. The idea is to blur these regions in input images

using Gaussian filter with σ = 7 ) and to evaluate the resulting im-

acts on gender CAs and age MAEs. The amount of impact indi-

ates the importance of each tested region for the respective tasks.

e use three types of occlusions: 49 small square regions, 7 ver-

ical stripes and 7 horizontal stripes. The results are presented in

ig. 4 . 

Globally, we observe that both networks are sensitive to the

alient regions of the face: eyes, eyebrows, nose and mouth. The

ender CNN is more sensitive to the centre of the mouth and

o the periocular region conforming with previous studies [87,88] ,

hile the age CNN more equally depends on all salient face parts.

ig. 4 also demonstrates that the two CNNs quite precisely follow

he horizontal symmetry of faces. 

.4. ChaLearn competition on apparent age estimation 

In order to further validate the selected approach, in 2016, we

articipated in the 2nd edition of the ChaLearn Apparent Age Esti-

ation challenge [14] . Our submission [16] was based on the VGG-

6 CNN pretrained for FR and fine-tuned for AE using LDAE encod-

ng (as described in this work). Starting from the basic CNN, we

dditionally fine-tuned a separate network for AE of children from

 to 12 years old (because there were many children in the compe-

ition dataset). We won the challenge significantly outperforming
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Fig. 3. Examples of Gender Recognition (GR) (on LFW ) and of Age Estimation (AE) (on MORPH-II ) by our best models. Both successful and failed cases are presented. For GR, 

the maximum softmax activation is provided. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 4. Sensitivity to occlusions of our best CNNs. Percentages and heat maps indicate the relative losses in performances after blurring the corresponding image parts. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 10 

Final results of the ChaLearn Apparent Age Estima- 

tion challenge 2016 [14] . 

Position Team ε-score a 

1 OrangeLabs (our team) 0.2411 

2 palm_seu 0.3214 

3 cmp + ETH 0.3361 

4 WYU_CVL 0.3405 

5 ITU_SiMiT 0.3668 

6 Bogazici 0.3740 

7 MIPAL_SNU 0.4569 

8 DeepAge 0.4573 

a The AE used in the Challenge. It evaluates how 

far are the model predictions from the estimations 

made by humans. The lower the better. 
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e  
ther competitors (see Table 10 ) which confirms the effectiveness

f the selected training strategy. 

. Conclusion and future work 

In this work, we have been looking for an optimal way of train-

ng CNNs for Gender Recognition (GR) and Age Estimation (AE)

roblems. To this end, we have analysed and experimentally com-
ared (1) different target age encodings (and loss functions), (2)

NN architectures of various depths, and (3) two Transfer Learning

trategies, namely: pretraining and multi-task training. As a result,

e have obtained the state-of-the-art CNN models for GR and AE. 

Below, we highlight the key conclusions of our work: 

1. Label Distribution Age Encoding (LDAE) is more effective for AE

CNN training than pure classification and regression encodings. 

2. AE is a more complex problem than GR. Therefore, when no

pretraining is used, AE requires deeper CNN architectures than

GR. 

3. Face Recognition (FR) pretraining is essential for training deep

gender and age CNNs and more suited for the target tasks than

the General Task (GT) pretraining. 

4. Multi-task training for GR and AE helps only when a CNN is

trained from scratch. 

5. We have obtained the state-of-the-art results on popular

benchmarks: 99.3% of CA on LFW , 2.99 of MAE and 99.4% of

CA on MORPH-II , and 2.84 of MAE on FG-NET . 

6. The trained AE VGG-16 CNN is used as a starting point in our

winning submission [16] in the ChaLearn Apparent Age Estima-

tion Challenge 2016 [14] . 

In our future work, we plan to explore the effectiveness of hi-

rarchical approach for GR and AE. The idea is to firstly classify
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images into coarse age categories and then to separately train GR

and AE CNNs for each category. The recent work [48] as well as

our own study [16] (where we train a separate model for children

images) demonstrate the high potential of this approach. It might

also be interesting to extend our mono-task vs. multi-task study

from 2 (gender and age) to k demographic characteristics. 
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