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Abstract

Stock trading strategy plays a crucial role in investment companies. However, it is
challenging to obtain optimal strategy in the complex and dynamic stock market.
We explore the potential of deep reinforcement learning to optimize stock trading
strategy and thus maximize investment return. 30 stocks are selected as our trading
stocks and their daily prices are used as the training and trading market environment.
We train a deep reinforcement learning agent and obtain an adaptive trading strategy.
The agent’s performance is evaluated and compared with Dow Jones Industrial
Average and the traditional min-variance portfolio allocation strategy. The proposed
deep reinforcement learning approach is shown to outperform the two baselines in
terms of both the Sharpe ratio and cumulative returns.

1 Introduction

Profitable stock trading strategy is vital to investment companies. It is applied to optimize allocation
of capital and thus maximize performance, such as expected return. Return maximization is based
on estimates of stocks’ potential return and risk. However, it is challenging for analysts to take all
relavant factors into consideration in complex stock market [1–3].

One traditional approach is performed in two steps as described in [4]. First, the expected returns of
the stocks and the covariance matrix of the stock prices are computed. The best portfolio allocation is
then found by either maximizing the return for a fixed risk of the portfolio or minimizing the risk
for a range of returns. The best trading strategy is then extracted by following the best portfolio
allocation. This approach, however, can be very complicated to implement if the manager wants to
revise the decisions made at each time step and take, for example, transaction cost into consideration.
Another approach to solve the stock trading problem is to model it as a Markov Decision Process
(MDP) and use dynamic programming to solve for the optimum strategy. However, the scalability of
this model is limited due to the large state spaces when dealing with the stock market [5–8].

Motivated by the above challenges, we explore a deep reinforcement learning algorithm, namely
Deep Deterministic Policy Gradient (DDPG) [9], to find the best trading strategy in the complex and
dynamic stock market. This algorithm consists of three key components: (i) actor-critic framework
[10] that models large state and action spaces; (ii) target network that stabilizes the training process
[11]; (iii) experience replay that removes the correlation between samples and increases the usage
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of data. The efficiency of DDPG algorithm is demonstrated by achieving higher return than the
traditional min-variance portfolio allocation method and the Dow Jones Industrial Average 1 (DJIA).

This paper is organized as follows. Section 2 contains statement of our stock trading problem. In
Section 3, we drive and specify the main DDPG algorithm. Section 4 describes our data preprocessing
and experimental setup, and presents the performance of DDPG algorithm. Section 5 gives our
conclusions.

2 Problem Statement

We model the stock trading process as a Markov Decision Process (MDP). We then formulate our
trading goal as a maximization problem.

2.1 Problem Formulation for Stock Trading

Considering the stochastic and interactive nature of the trading market, we model the stock trading
process as a Markov Decision Process (MDP) as shown in Fig. 1, which is specified as follows:

• State s = [p, h, b]: a set that includes the information of the prices of stocks p ∈ RD+ , the
amount of holdings of stocks h ∈ ZD+ , and the remaining balance b ∈ R+, where D is
the number of stocks that we consider in the market and Z+ denotes non-negative integer
numbers.

• Action a: a set of actions on allD stocks. The available actions of each stock include selling,
buying, and holding, which result in decreasing, increasing, and no change of the holdings
h, respectively.

• Reward r(s, a, s′): the change of the portfolio value when action a is taken at state s and
arriving at the new state s′. The portfolio value is the sum of the equities in all held stocks
pTh and balance b.

• Policy π(s): the trading strategy of stocks at state s. It is essentially the probability
distribution of a at state s.

• Action-value function Qπ(s, a): the expected reward achieved by action a at state s follow-
ing policy π.

The dynamics of the stock market is described as follows. We use subscript to denote time t, and the
available actions on stock d are

• Selling: k (k ∈ [1, h[d]], where d = 1, ..., D) shares can be sold from the current holdings,
where k must be an integer. In this case, ht+1 = ht − k.

• Holding: k = 0 and it leads to no change in ht.

• Buying: k shares can be bought and it leads to ht+1 = ht + k. In this case at[d] = −k is a
negative integer.

It should be noted that all bought stocks should not result in a negative balance on the portfolio
value. That is, without loss of generality we assume that selling orders are made on the first d1
stocks and the buying orders are made on the last d2 ones, and that at should satisfy pt[1 : d1]

Tat[1 :
d1]+bt+pt[D−d2 : D]Tat[D−d2 : D] ≥ 0. The remaining balance is updated as bt+1 = bt+p

T
t at.

Fig. 1 illustrates this process. As defined above, the portfolio value consists of the balance and sum
of the equities in all held stocks. At time t, an action is taken, and based on the executed action and
the updates of stock prices, the portfolio values change from "portfolio value 0" to "portfolio value
1", "portfolio value 2", or "portfolio value 3" at time (t+ 1).

Before being exposed to the environment, p0 is set to the stock prices at time 0 and b0 is the initial
fund available for trading. The h and Qπ(s, a) are initialized as 0, and π(s) is uniformly distributed
among all actions for any state. Then, Qπ(st, at) is learned through interacting with the external
environment.

1The Dow Jones Industrial Average is a stock market index that shows how 30 large, publicly owned
companies based in the United States have traded during a standard trading session in the stock market.
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Figure 1: One starting portfolio value with three actions leading to three possible portfolio values
where actions have probabilities that sum up to one. Note that "hold" can lead to different portfolio
values if the stock prices change.

According to Bellman Equation, the expected reward of taking action at is calculated by taking the
expectation of the rewards r(st, at, st+1), plus the expected reward in the next state st+1. Based on
the assumption that the returns are discounted by a factor of γ, we have

Qπ(st, at) = Est+1
[r(st, at, st+1) + γEat+1∼π(st+1)[Qπ(st+1, at+1)]]. (1)

2.2 Trading Goal as Return Maximization

The goal is to design a trading strategy that maximizes the investment return at a target time tf in
the future, i.e., pTtfht + btf , which is also equivalent to

∑tf−1
t=1 r(st, at, st+1). Due to the Markov

property of the model, the problem can be boiled down to optimizing the policy that maximizes the
function Qπ(st, at). This problem is very hard because the action-value function is unknown to the
policy maker and has to be learned via interacting with the environment. Hence in this paper, we
employ the deep reinforcement learning approach to solve this problem.

3 A Deep Reinforcement Learning Approach

We employ a DDPG algorithm to maximize the investment return. DDPG is an improved version
of Deterministic Policy Gradient (DPG) algorithm [12]. DPG combines the frameworks of both
Q-learning [13] and policy gradient [14]. Compared with DPG, DDPG uses neural networks as
function approximator. The DDPG algorithm in this section is specified for the MDP model of the
stock trading market.

The Q-learning is essentially a method to learn the environment. Instead of using the expectation of
Q(st+1, at+1) to updateQ(st, at), Q-learning uses greedy action at+1 that maximizesQ(st+1, at+1)
for state ss+1, i.e.,

Qπ(st, at) = Est+1
[r(st, at, st+1) + γmax

at+1

Q(st+1, at+1)]. (2)

With Deep Q-network (DQN), which adopts neural networks to perform function approximation, the
states are encoded in value function. The DQN approach, however, is intractable for this problem due
to the large size of the action spaces. Since the feasible trading actions for each stock is in a discrete
set, and considering the number of total stocks, the sizes of action spaces grow exponentially, leading
to the "curse of dimensionality" [15]. Hence, the DDPG algorithm is proposed to deterministically
map states to actions to address this issue.

As shown in Fig. 2, DDPG maintains an actor network and a critic network. The actor network
µ(s|θµ) maps states to actions where θµ is the set of actor network parameters, and the critic
network Q(s, a|θQ) outputs the value of action under that state, where θQ is the set of critic network
parameters. To explore better actions, a noise is added to the output of the actor network, which is
sampled from a random process N .

Similar to DQN, DDPG uses an experience replay buffer R to store transitions and update the
model, and can effectively reduce the correlation between experience samples. Target actor network
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Figure 2: Learning network achitecture.

Algorithm 1 DDPG algorithm
1: Randomly initialize critic network Q(s, a|θQ) and actor µ(s|θµ) with random weight θQ and
θµ;

2: Initialize target network Q′ and µ′ with weights θQ
′ ← θQ, θµ

′ ← θµ;
3: Initialize replay buffer R;
4: for episode= 1, M do
5: Initialize a random process N for action exploration;
6: Receive initial observation state s1;
7: for t = 1, T do
8: Select action at = µ(st|θµ) +Nt according to the current policy and exploration noise;
9: Execute action at and observe reward rt and state st+1;

10: Store transition (st, at, rt, st+1) in R;
11: Sample a random minibatch of N transitions (si , ai , ri , si+1) from R;
12: Set yi = ri + γQ′(st+1, µ

′(si+1|θµ
′ |θQ′

));
13: Update critic by minimizing the loss: L = 1

N

∑
i(yi −Q(si, ai|θQ))2;

14: Update the actor policy by using the sampled policy gradient:

∇θµJ ≈
1

N

∑
i

∇aQ(s, a|θQ)|s=si,a=µ(si)∇θµµ(s|θ
µ)|si ;

15: Update the target networks:

θQ
′
← τθQ + (1− τ)θQ

′
,

θµ
′
← τθµ + (1− τ)θµ

′
.

16: end for
17: end for

Q′ and µ′ are created by copying the actor and critic networks respectively, so that they provide
consistent temporal difference backups. Both networks are updated iteratively. At each time, the
DDPG agent takes an action at on st, and then receives a reward based on st+1. The transition
(st, at, st+1, rt) is then stored in replay buffer R. The N sample transitions are drawn from R and
yi = ri + γQ′(si+1, µ

′(si+1|θµ
′
, θQ

′
)), i = 1, · · · , N, is calculated. The critic network is then

updated by minimizing the expected difference L(θQ) between outputs of the target critic network
Q′ and the critic network Q, i.e,

L(θQ) = Est,at,rt,st+1∼buffer[(rt + γQ′(st+1, µ(st+1|θµ)|θQ
′
)−Q(st, at|θQ))2]. (3)

The parameters θµ of the actor network are then as follows:

∇θµJ ≈ Est,at,rt,st+1∼buffer[∇θµQ(st, µ(st|θµ)|θQ)] (4)

= Est,at,rt,st+1∼buffer[∇aQ(st, µ(st)|θQ)∇θµµ(st|θµ)]. (5)
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After the critic network and the actor network are updated by the transitions from the experience
buffer, the target actor network and the target critic network are updated as follows:

θQ
′
← τθQ + (1− τ)θQ

′
, (6)

θµ
′
← τθµ + (1− τ)θµ

′
, (7)

where τ denotes learning rate. The detailed algorithm is summerized in Algorithm 1.

4 Performance Evaluations

We evaluate the performance of the DDPG algorithm in Alg. 1. The result demonstrates that the
proposed method with the DDPG agent achieves higher return than the Dow Jones Industrial Average
and the traditional min-variance portfolio allocation strategy [16, 17].

Figure 3: Data spliting.

4.1 Data Preprocessing

We track and select Dow Jones 30 stocks of 1/1/2016 as our trading stocks, and use historical daily
prices from 01/01/2009 to 09/30/2018 to train the agent and test the performance. The dataset is
downloaded from Compustat database accessed through Wharton Research Data Services (WRDS)
[18].

Our experiment consists of three stages, namely training, validation and trading. In the training
stage, Alg. 1 generates a well-trained trading agent. The validation stage is then carried out for key
parameters adjustment such as learning rate, number of episodes, etc. Finally in the trading stage,
we evaluate the profitability of the proposed scheme. The whole dataset is split into three parts for
these purposes, as shown in Fig. 3. Data from 01/01/2009 to 12/31/2014 are used for training, and
the data from 01/01/2015 to 01/01/2016 are used for validation. We train our agent on both training
and validation data to make full use of available data. Finally, we test our agent’s performance on
trading data, which is from 01/01/2016 to 09/30/2018. To better exploit the trading data, we continue
training our agent while in the trading stage as this will improve the agent to better adapt the market
dynamics.

4.2 Experimental Setting and Results of Stock Trading

We build the environment by setting 30 stocks data as a vector of daily stock prices over which the
DDPG agent is trained. To update the learning rate and number of episodes, the agent is validated on
validation data. Finally, we run our agent on trading data and compare performance with Dow Jones
Industrial Average (DJIA) and the min-variance portfolio allocation strategy.

Four metrics are used to evaluate our results: final portfolio value, annualized return, annualized
standard error and the Sharpe ratio. Final portfolio value reflects portfolio value at the end of trading
stage. Annualized return indicates the direct return of the portfolio per year. Annualized standard
error shows the robustness of our model. The Sharpe ratio combines the return and risk together to
give such evaluation [19].

In Fig. 4, we can see that the DDPG strategy significantly outperforms Dow Jones Industrial Average
and the min-variance portfolio allocation. As can be seen from Table 1, the DDPG strategy achieves
annualized return 22.24%, which is much higher than Dow Jones Industrial Average’s 16.40% and
min-variance portfolio allocation’s 15.93%. The sharpe ratio of the DDPG strategy is also much
higher, indicating that the DDPG strategy beats both Dow Jones Industrial Average and min-variance
portfolio allocation in balancing risk and return. Therefore, the result demonstrates that the proposed
DDPG strategy can effectively develop a trading strategy that outperforms the benchmark Dow Jones
Industrial Average and the traditional min-variance portfolio allocation method.
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Figure 4: Portfolio value curves of our DDPG scheme, the min-variance portfolio allocation strategy,
and the Dow Jones Industrial Average. (Initial portfolio value $10, 000).

Table 1: Trading Performance.

DDPG (ours) Min-Variance DJIA
Initial Portfolio Value 10,000 10, 000 10, 000
Final Portfolio Value 19,791 14, 369 15, 428
Annualized Return 25.87% 15.93% 16.40%

Annualized Std. Error 13.62% 9.97% 11.70%
Sharpe Ratio 1.79 1.45 1.27

5 Conclusion

In this paper, we have explored the potential of training Deep Deterministic Policy Gradient (DDPG) agent to
learn stock trading strategy. Results show that our trained agent outperforms the Dow Jones Industrial Average
and min-variance portfolio allocation method in accumulated return. The comparison on Sharpe ratios indicates
that our method is more robust than the others in balancing risk and return.

Future work will be interesting to explore more sophisticated model [20], deal with larger scale data [21], observe
intelligent behaviors [22], and incorporate prediction schemes [23].
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