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Abstract — While there exist a plethora of classification 
algorithms for most data types, there is an increasing acceptance 
that the unique properties of time series mean that the 
combination of nearest neighbor classifiers and Dynamic Time 
Warping (DTW) is very competitive across a host of domains, 
from medicine to astronomy to environmental sensors. While 
there has been significant progress in improving the efficiency and 
effectiveness of DTW in recent years, in this work we demonstrate 
that an underappreciated issue can significantly degrade the 
accuracy of DTW in real-world deployments. This issue has 
probably escaped the attention of the very active time series 
research community because of its reliance on static highly 
contrived benchmark datasets, rather than real world dynamic 
datasets where the problem tends to manifest itself. In essence, the 
issue is that DTW’s eponymous invariance to warping is only true 
for the main “body” of the two time series being compared. 
However, for the “head” and “tail” of the time series, the DTW 
algorithm affords no warping invariance. The effect of this is that 
tiny differences at the beginning or end of the time series (which 
may be either consequential or simply the result of poor 
“cropping”) will tend to contribute disproportionally to the 
estimated similarity, producing incorrect classifications. In this 
work, we show that this effect is real, and reduces the performance 
of the algorithm. We further show that we can fix the issue with a 
subtle redesign of the DTW algorithm, and that we can learn an 
appropriate setting for the extra parameter we introduced. We 
further demonstrate that our generalization is amiable to all the 
optimizations that make DTW tractable for large datasets. 

Keywords— Time Series, Dynamic Time Warping, Similarity  

I. INTRODUCTION 
Among all the time series mining tasks, query-by-content is 

the most basic. It is the fundamental subroutine used to support 
nearest-neighbor classification, clustering, etc. The last decade 
has seen mounting empirical evidence that the properties of time 
series mean that Dynamic Time Warping (DTW) is the best 
distance measure for across virtually all domains [20]. 

However, virtually all current research efforts assume a 
perfect segmentation of the time series. This assumption is 
engendered by the availability of dozens of contrived datasets 
from the UCR time series archive [4]. Improvements on this 
(admittedly very useful) resource have been seen as sufficient to 
warrant publication of a new idea, but it would be better to see 
success on these benchmarks as being only necessary to warrant 
consideration of a new approach.  

In particular, the way in which the majority of the datasets 
were created and “cleaned” means that algorithms that do well 
on these datasets can still fail when applied to real world 
streaming data. 

The issue lends itself to a visually intuitive explanation. Fig. 
1 shows two examples from the Australian Sign Language 
dataset aligned by DTW. We can see the utility of DTW here, as 
it aligns the later peak of the blue (bold) time series to the earlier 
occurring peak in the red (fine) time series. However, this figure 
also illustrates a weakness of DTW. Because every point must 
be matched, the first few points in the red sequence are forced to 
match the first point in the blue sequence. 
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only 6% of the length of the
signals, yet it accounts 70.5%
of the distance

Our solution: expand the
representational power of DTW
to ignore a small fraction of the
prefix (and suffix) of the signals

 
Fig. 1. top) Two time series compared with DTW. While the prefix of the red 
(fine) time series consists of only 6% of the length, it is responsible for 70.5% 
of the distance. bottom) We propose to address this disproportionate appointing 
of error by selectively ignoring parts of the prefix (and/or suffix) 

While Fig. 1 does show the problem on a real data object, 
the reader may wonder how common this issue is “in the wild”. 
We claim that at least in some domains, this problem is very 
common.  

For example, heartbeat extraction algorithms often segment 
the signal to begin at the maximum of the QRS complex [16]. 
However, this location has the greatest variability in its prefixes 
and suffixes. Likewise, star light curves, for which DTW is 
known to be very effective, have cycles extracted by a 
technique called universal phasing [13]. However, universal 
phasing has the unfortunate side effect of placing the maximum 
variance at the prefix and suffix of the signals. 

In this work, we address this problem of uninformative and 
undesirable “information” contained just before and just after 
the temporal measurement of informative data. For the sake of 
clarity, we will refer to these unwanted values as prefix and 
suffix, and use endpoints to refer to both. 

Our approach is simple and intuitive, but highly effective. 
We modify the endpoint constraint of Dynamic Time Warping 
(DTW) to provide endpoint invariance. The main idea behind 
our proposal is allowing DTW to ignore some leading/trailing 
values in one or both of the two time series under comparison. 
While our idea is simple, it must be carefully executed. It is clear 
that ignoring too much (useful) data is just as undesirable as 
paying attention to spurious data.  
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We note that somewhat similar observations were known to 
the signal processing community when DTW was the state-of-
the-art technique for speech processing (in the 1980’s and 90’s 
before being superseded by Markov models [10]). However, the 
importance of endpoint invariance for time series seems to be 
largely unknown or underappreciated [8][11][12]. 

We can summarize the main contributions of this paper as 
follows: 

� We draw the data mining community’s attention to the 
endpoint invariance, which seems to be a little or no 
considered issue; 

� We propose a modification of the well-known algorithm 
Dynamic Time Warping to provide invariance to endpoints; 

� Although simple and intuitive, we show that our method can 
considerably improve the classification accuracy when 
warranted, and just as importantly, our ideas do not reduce 
classification accuracy if the dataset happens to not need 
endpoint invariance; 

� Unlike other potential fixes, our distance measure respects 
the property of symmetry and, consequently, can be applied 
in a multitude of data mining algorithms with no 
pathological errors caused by the order of the data;  

� In spite of the fact that we must add a parameter to DTW, we 
show that it is possible to robustly learn a good value for this 
parameter using only the training data. 

II. TIME SERIES SUFFIX AND PREFIX 
Most research efforts for time series classification assume 

that all the time series in the training and test sets are carefully 
segmented by using the precise endpoints of the desirable event 
[12][13][18][20]. Despite the ubiquity of time series datasets 
that fulfill such an assumption, in practical situations the exact 
endpoints of events are difficult to detect. In general, a perfectly 
segmented dataset can only be achieved by manual 
segmentation or some contrivance that uses external 
information.  

To see this, we revisit the Gun-Point dataset, which has been 
used in more than two hundred papers to test the accuracy of 
time series classification [4]. The data objects considered in such 
a set have perfectly flat prefixes and suffixes. However, these 
were obtained only by carefully prompting the actor’s 
movements (pointing a gun or a finger) with a metronome that 
produced an audible cue every five seconds. 

In more realistic scenarios, the event of pointing a gun/finger 
must be detected among several different movements. Before 
drawing the weapon, the actor could be running, talking on a cell 
phone, etc.  

For example, consider the scenario in which some 
movement was performed just before the weapon was aimed. In 
addition, another movement started immediately after the gun 
was returned to the holster. In this case, the time series could 
have a more complex shape as shown in Fig. 2. As visually 
explained in Fig. 1, it is clear that prefix and suffix would greatly 
prejudice the distance estimation in this case. 

“pointing a
gun/finger”

event

suffixprefix

 
Fig. 2. Example of a time series containing the event to be classified (in blue) 
and prefix and suffix information (in red) 

Another possible issue that can result from automatic 
segmentation is the algorithm used to extract the time series be 
too “aggressive” and make the mistake of truncating the last few 
observations of the event of interest. Obviously, a similar issue 
could also happen at the beginning of the signal. 

In this case, the time series is missing its true suffix. Even 
with such missing information, the shape that describes the 
beginning of the action may be enough such that it will be 
classified correctly. However, the object that would otherwise 
be considered its nearest neighbor may contain information of 
the entire movement, as shown in Fig. 2. To classify this kind of 
badly cropped item correctly, a distance measure must avoid 
matching the last few observations of the complete event to the 
values observed in our badly segmented event. In Section V we 
will show how our method can solve these issues. 

III. DEFINITIONS AND BACKGROUND 
The Dynamic Time Warping (DTW) is arguably the most 

useful distance measure for time series analysis. For example, 
mounting empirical evidence strongly suggest that the simple 
nearest neighbor algorithm using DTW outperforms more 
“sophisticated” time series classification methods in a wide 
range of application domains [20]. 

In contrast to other distance measures, such as those in the 
Lp-norm family, the DTW computes a non-linear alignment 
between the observations of the two time series being compared. 
DTW computes such an optimal alignment under endpoint, 
monotonicity and continuity constraints [12]. The main focus of 
this work is the endpoint constraint, defined as the following. 

Endpoint constraint. The matching between a pair of time 
series x and y, with lengths n and m respectively, starts at the 
pair of observations (1,1) and ends at (n,m). 

An additional constraint commonly applied to DTW is the 
warping constraint. The most common warping constraint for 
DTW is the Sakoe-Chiba warping window [14], which limits the 
time difference that the algorithm is allowed to match the 
observations. The benefit of using a warping constraint is two 
fold: the DTW calculation takes less time (as it is not necessary 
to calculate values for the entire cost matrix) and it avoids 
pathological alignments. As a practical confirmation of its utility 
using the constraint, we note that it has been shown to improve 
classification accuracy [12]. 

For a complete description of the algorithm for calculating 
the DTW, we refer the reader to [15]. 

IV. RELATED WORK 
The time series mining method that shares more similarities 

to our proposal is the open-end DTW (OE-DTW) [17]. 
However, OE-DTW was proposed to match incomplete time 
series to complete references. In other words, such a method is 
based on the assumption that we can construct a training set with 
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carefully cropped time series and we can know the exact point 
that represents the beginning of the time series to be classified. 

Specifically, OE-DTW is a method that allows ignoring any 
amount of points at the end of the training time series, i.e., the 
alignment may finish in any observation of the reference object. 

A weakness of the OE-DTW is that it does not consider the 
existence of prefix information. A modification of the OE-DTW 
called open-begin-end DTW (OBE-DTW) or subsequence 
DTW [9] mitigates this issue. OBE-DTW allows the match of 
observations to start at any position of the training time series.  

Although OBE-DTW recognizes that both prefix and suffix 
issues may exist, it only addresses the problem in the training 
time series. A more important observation is that OBE-DTW is 
not symmetric, which severely affects its utility. For example, 
the clustering results obtained by OBE-DTW are dependent on 
the order in which the algorithm processes the data.  

In addition to this issue, OBE-DTW has one other fatal flaw. 
In essence, it can be “too invariant,” potentially inducing 
meaningless alignments in some cases, causing loss of useful 
information in the time series.  

Similar to the OBE-DTW, the method proposed in this paper 
is based on a relaxation of the endpoint constraint. However, our 
method is symmetric and strictly limits the amount of the signals 
that can be ignored, preventing the meaningless alignments.  

V. PREFIX AND SUFFIX-INVARIANT DTW (Ψ-DTW) 
While there are many different methods proposed for time 

series classification (decision trees, etc.), it is known that the 
simple nearest neighbor is extremely competitive in a wide 
range of applications and conditions [20]. Given this, the only 
decision left to the user is the choice of the distance measure. In 
most cases, this choice is guided by the invariances required by 
the task and domain [3]. In conjunction with simple techniques, 
such as z-normalization, DTW can provide several invariances 
like amplitude, offset and the warping (or local scaling) itself. 

In this work, we address what we feel is the “missing 
invariance,” the invariance to spurious prefix and suffix 
information. Given the nature of our proposal, we call our 
method Prefix and Suffix-Invariant DTW, or simply PSI-DTW 
(or ψ-DTW). 

This paper proposes a relaxed version of the endpoint 
constraint, defined as the following. 

Relaxed endpoint constraint. Given an integer value r, the 
alignment path between the time series x and y starts at any 
pair of observations in {(1,c1+1)} {(c1+1,1)}  and ends at 
any pair in {(n-c2,m)} {(n,m-c2)}, such that c1 and c2 [0,r]. 

This relaxed constraint can avoid undesirable matches at the 
endpoints of any x or y time series by removing the obligation 
for the alignment path to start and end in the first and last pairs 
of observations.  

The value r used in this definition is the relaxation factor 
parameter that needs to be defined by the user. We recognize the 
general undesirability of adding a new parameter to an 
algorithm. However, we argue it is necessary. In addition, we 

show that we are able to learn an appropriate r solely from the 
training data. We will return to this topic in Section VI. 

An important aspect of the proposed endpoint constraint is 
the fact that, by definition, the same number of points is 
“relaxed” for both time series under comparison. This is what 
guarantees the symmetry of ψ-DTW.  

The relaxation of endpoints slightly affects the initialization 
of the traditional DTW. Equation 1 defines the initialization of 
ψ-DTW.  

� dtw(i,j)= �∞, if (i = 0 and j > r) or (j = 0 and i > r)
0, if (i = 0 and j ≤ r) or (j = 0 and i ≤ r) � ����

In order to find the optimal non-linear alignment between the 
time series x and y, ψ-DTW follows the same recurrence relation 
than the classical DTW, defined by Equation 2.  

� dtw(i,j)= c �xi,yj� +min � dtw(i-1,j)
dtw(i,j-1)

dtw(i-1,j-1)� ����

where i  [1,n] and j  [1,m], m being the length of the time 
series y. The partial c(xi,yj) represents the cost of matching two 
observations xi and yj and is calculated by the squared Euclidean 
distance between them.  Finally, the ultimate distance estimate 
can be directly obtained by the definition of the proposed relaxed 
endpoint constraint. Formally, the final distance calculation is 
given by Equation 3.  

�
Ψ-DTW(x,y,r)= min

(i,j)∈finalSet
[dtw(i,j)],

finalSet = {(n-c1,m)}∪{(n,m-c2)} ∀ c1,c2 ∈ [0,r].� ����

For concreteness, Algorithm I describes ψ-DTW in detail. 

ALGORITHM I. Ψ-DTW IMPLEMENTATION 

Procedure ψ-DTW(x,y,r) 
Input: Two user provided time series, x and y and the relaxation factor 
parameter r 
Output: The ψ-DTW distance between x and y 
1 
2 
3 
4 
5 
6 
7 
8 
9 

n←length(x), m←length(y) 
M ← infinity_matrix(n+1,m+1) 
M([0,r],0) ← 0 
M(0,[0,r]) ← 0 
for i  ← 1 to n 
    for j  ← 1 to m 
        M(i,j) ← c(xi,yj) + min(M(i-1,j-1),M(i,j-1), M(i-1,j)) 
minX ← min(M([n-r,n],m)), minY ← min(M(n,[m-r,m])) 
return min(minX,minY) 

The algorithm starts by defining the variables used to access 
the length of time series (line 1) and the DTW matrix according 
to Equation 1 (lines 2 to 4).  The for loops (lines 5 to 7) fill the 
matrix according to the recurrence relation defined in Equation 
2. Finally, the algorithm finds the minimum value in the region 
defined by the new endpoint constrained and returns it as the 
distance estimate (lines 8 and 9). To implement the constrained 
warping version of this algorithm, one only needs to modify the 
interval of the second for loop (line 6) according to the constraint 
definition. 
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Note that the proposed method is a generalization of DTW, 
thus it is possible to obtain the classic DTW by our method. 
Specifically, if r=0, the final result of our algorithm is exactly 
the same as the classic DTW. 

VI. EXPERIMENTAL EVALUATION 
This section summarizes the results obtained in our 

experimental evaluation. Because we are committed to 
reproducibility, we have made available all the source code, 
datasets, detailed results and additional experiments in a 
companion website for this work1. In addition to reproducing 
our experiments, the interested reader can use our code on their 
own datasets. We implemented all our ideas in Matlab, as it is 
ubiquitous in the data mining community. 

To test the robustness of our method, we compare its 
performance against the accuracy obtained by the classic DTW, 
in both unconstrained- and constrained-warping versions (c.f. 
Section III). We refer to the constrained versions of the 
algorithms with names containing the letter c. For clarity, cDTW 
refers to the DTW with warping constraint and ψ-cDTW stands 
for the constrained version of ψ-DTW. In addition, we present 
results obtained using OBE-DTW. 

We are not directly interested in studying the effect of 
warping window width on classification accuracy. The value of 
the warping window width parameter has been shown to greatly 
affect accuracy, but it has also been shown to be easy to learn a 
good setting for this parameter with cross-validation 
[12][18][20]. For simplicity, we fixed it as 10% of the length of 
the query time series by default.  

However, this setting limits the choice of the relaxation 
factor to ψ-DTW. For any relaxation factor that is greater than 
or equal to the warping length, the final distance estimate does 
not change. It happens because the “open” cells outside the 
region defined by warping window are ignored by the algorithm. 
For this reason, when we wanted to test the effect of larger 
relaxation factors, the warping window used in the experiment 
was set by the same value as r. 

In this experimental evaluation, we apply ψ-DTW on real 
datasets extracted in a scenario in which we do not have perfect 
knowledge or control over the events' endpoints. In some cases, 
the original datasets were obtained by recording sessions, in 
which the invariance to endpoints is enforced by the data 
collection procedure. In this case, we model the real world 
conditions by ignoring the external cues or annotations. In 
particular, we simulated a randomly-ordered stream of events 
followed by a classic subsequence extraction step. For this 
phase, we considered the simple sliding window approach. For 
additional details on the extraction phase, please refer to the 
companion website.  

In keeping with common practice, we adopted the use of 
dictionaries as training data. A data dictionary is a subset of the 
original training set containing only its most relevant examples. 
The utility of creating dictionaries is two-fold [6]: it makes the 
classifier faster and the accuracy obtained by dictionaries is 
typically better than that obtained by using all the training data, 
                                                           
1 http://sites.google.com/site/psidtw/ 

which may contain outliers or mislabeled data. To compute the 
relevance of training examples to the classification task, we used 
the SimpleRank function [18].  

The length of subsequences and the size of the dictionary for 
each dataset were chosen in order to obtain the best accuracy in 
the training set by using cDTW. In addition, the SimpleRank 
was also implemented using the classic cDTW instead of the ψ-
DTW or the ψ-cDTW. This was done to ensure we are not 
biasing our experimental analysis in favor of our method. 

Once created the dictionary, we need to estimate a good 
value for the parameter r. For this, we experimented with a wide 
range of possible values. We set r as a relative value to the length 
of the time series. Specifically, we used a set of values 
rlr∈{0,0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5} , such that 
r = ⌈n*rlr⌉, where n is the length of the time series. We limited 
the value of r to be at most half the number of observations of 
the time series in order to avoid meaningless alignments.  

Note that the choice of the size of the dictionary is a crucial 
determinant of the time complexity of the algorithm. In order to 
keep the algorithm fast, the number of objects in the dictionary 
tends to be small, which makes learning r difficult if we use the 
dictionary exclusively. In order to learn the value of r, we used 
a validation set containing all the training time series but those 
chosen as part of the dictionary. However, we notice that cross-
validation techniques on the training set lead to similar results. 

In the next sections, we describe the datasets used as case 
studies, followed by the summarized results. We notice again 
that the reader can find the detailed results in the companion 
website for this work. 

1) Motor Current Data 
Our first case study considers electric motor current signals 

[5]. The data in question includes 21 classes representing 
different motor operating conditions. In addition to a class that 
represents a diversity of healthy operation, the other classes 
represent defects in the apparatus (in particular, one to ten 
broken bars and one to ten broken end-ring connectors). 

The original data used in this study is segmented, but with 
no attention paid to avoiding endpoints inconsistences. 
Therefore, instead simulating a data stream, we segmented the 
original time series using a static window placed in the middle 
of each time series. With this procedure, the signals have 
different endpoints in each different length we consider.  

2) Robot Surface and Activity Identification 
In this case study, we consider the classification of signals 

collected by the accelerometer embedded in a Sony ERS-210 
Aibo Robot [19]. This robot is a dog-like model equipped with 
a tri-axial accelerometer to record its movements. 

Using the streaming data sets collected by this robot, we 
evaluated the classification accuracy in two different scenarios: 
surface and activity recognition. In the former scenario, the goal 
is to identify the type of surface in which the robot is walking 
on. Specifically, the target classes for this problem are carpet, 
field, and cement.  
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In the second scenario, the aim is the identification of the 
activity performed by the robot. In this case, the target classes 
are the robot playing soccer, standing in a stationary position, 
trying to walk with one leg hooked, and walking straight into a 
fixed wall. 

3) Gesture Recognition 
Gesture recognition is one of the most studied tasks in the 

time series classification literature. The automatic identification 
of human gestures has become an increasingly popular mode of 
human-computer interaction.  

In this study, we used the Palm Graffiti Digits dataset [1], 
which consists of recordings of different subjects “drawing” 
digits in the air while facing a 3D camera. The goal of this task 
is the classification of the digits drawn by the subjects. 

4) Sign Language Recognition 
Another specific scenario with gesture data used in this work 

is the recognition of sign language. A sign language is an 
alternative way to communicate by gestures and body language 
that replace (or augment) the acoustic communication. In this 
work, we used a dataset of Australian Sign Language 
(AUSLAN) [7]. The original dataset is composed of signs 
separately recorded in different sections. We used 10 arbitrarily 
chosen signs of each recording session displaced as a data 
stream. 

5) Human Activity Recognition 
Due to the growth in the use of mobile devices containing 

movement sensors (such as accelerometers and gyroscopes), 
there is also a notable increase in the interest of human activity 
analyses using this kind of equipment.  

In this final case study, we investigate the robustness of ψ-
DTW in the recognition of human activities using smartphone 
accelerometers. For this purpose, we used the dataset that first 
appeared in [2]. Originally, the recordings are composed of 128 
observations of three coordinates of the device’s accelerometers. 
In our study, we used the x-coordinate disposed in a streaming 
fashion.  

6) Summary of the Results and Hypothesis Test 
The results show that ψ-DTW achieves better results than the 

classical DTW and the OBE-DTW in most of the experimented 
cases. To make this observation stronger, a hypothesis test on 
the accuracies obtained by both methods was used. For this, we 
performed a paired Wilcoxon signed-rank test for comparing the 
performances of each combination between DTW, cDTW, and 
OBE-DTW against ψ-DTW and ψ-cDTW. Using a confidence 
factor of 95%, the test rejected the null hypothesis (that the mean 
ranks are similar) for all the comparisons. 

It is interesting to analyze the accuracies obtained for each 
dataset, considering the best time series length. To evaluate this, 
we used the validation procedure applied to learn r as the method 
to choose the time series length to assess the performance of ψ-
DTW. For comparison, we used the best accuracy obtained by 
OBE-DTW and DTW. Note that this analysis is favoring the 
competing algorithms, given that we used an oracle instead of 
learning the best series length for these methods. TABLE I.  
shows the result of this experiment. 

TABLE I.  ACCURACIES OBTAINED BY OBE-DTW, DTW, AND Ψ-DTW 

Dataset OBE-DTW DTW ψ-DTW cDTW ψ-cDTW 
AUSLAN 0.503 0.500 0.579 0.490 0.514 
Human Activity 0.555 0.558 0.575 0.566 0.578 
Motor Current 0.114 0.119 0.400 0.119 0.405 
Palm Graffiti 0.262 0.374 0.355 0.363 0.363 
Robot Activity 0.839 0.845 0.854 0.822 0.833 
Robot Surface 0.950 0.846 0.910 0.842 0.842 

VII. LOWER BOUNDING OF Ψ-DTW 
One of the biggest concerns while designing a new distance 

measure is time efficiency. This is more prevalent in our case 
since we are proposing a modification of Dynamic Time 
Warping, an O(n2) algorithm. In fact, a straightforward 
implementation of the nearest neighbor algorithm under DTW 
makes its use impractical on large datasets. For this reason, the 
community has proposed several methods to improve the 
efficiency of the similarity search under DTW. 

Specifically, [11] shows that the combination of few simple 
techniques for speeding-up similarity search makes possible to 
handle truly massive data under DTW. We claim that all these 
methods can be applied to the ψ-DTW with subtle or no 
modifications.  

Some of the most important speed-up methods rely on the 
use of a lower bound (LB) function. An LB function returns a 
value certainly lower or equal to the true DTW between two 
objects. Consider that we have a variable best-so-far that stores 
the distance to the nearest neighbor know up to the current 
iteration of the search algorithm. For each time series in the 
training set, we first calculate the LB between it and the query. 
Clearly, if the LB function returns a value greater than the best-
so-far, the training object is not the nearest neighbor of the 
query. Therefore, the current object can be discarded before 
having its distance to the query estimated. We can extend this to 
a k-nearest neighbor scenario by simply replacing the best-so-
far by the distance to the k-th nearest object known at that 
moment.  

Now we are in position to answer the question “How can we 
use previously proposed LB functions with ψ-DTW?”. Adapting 
an LB function to ψ-DTW requires the analysis of the possible 
first and last observation pairs. For sake of exemplification, we 
will adopt the most widely used LB function, the LB_Keogh [8].  

The calculation of LB_Keogh consists of two main steps. 
The first step is the estimation of an envelope to a given query 
time series q of length n. Specifically, the envelope is composed 
of an upper sequence U=(U1,U2,…,Un) and a lower sequence 
L=(L1,L2,…,Ln). Fig. 3 exemplifies the upper and lower 
sequences of a given query time series. 

0 5 10 15 20 25 30 35 40 45 50

U

L

q

 
Fig. 3. Upper and lower sequences of a given query time series q estimated by 
LB_Keogh 

Once the envelope is calculated, we estimate the value of the 
LB function. For a time series t to be compared to the query q, 
the LB_Keogh is calculated as the Euclidean distance between 

1213



the observations of t that falls outside the envelope and the 
nearest upper or lower sequence.  

In order to adapt LB_Keogh to our method, we need to relax 
its endpoints. Since ψ-DTW can skip the matching of the first 
and last r observations in either q or t, the LB function should 
ignore these values. We call the adapted LB function ψ-
LB_Keogh, and define it formally in Equation 4.  

� ψ-LB_Keogh(q,t)= ∑ �(ti-Ui)
2, if ti>Ui

(Li-ti)
2, if ti<Li

0 otherwise

n-r
i=r+1 � �	��

Fig. 4 illustrates the ψ-LB_Keogh between q and t. 

0 5 10 15 20 25 30 35 40 45 50
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t

 
Fig. 4. ψ-LB_Keogh ignores the values in the dashed regions 

The pruning power of a lower bound function is directly 
related to its tightness, i.e., its value needs to be close to the true 
DTW. To demonstrate the tightness of ψ-LB_Keogh, we 
compared it with the tightness of LB_Keogh. We quantified the 
tightness of the LBs by dividing them by the corresponding 
DTW distances, setting the warping window as 10% of the time 
series length. The relaxation factor takes the same value. 
TABLE II. shows the results obtained in the training set with the 
shortest time series used in each study case. 

TABLE II.  TIGHTNESS OF LB_KEOGH AND Ψ-LB_KEOGH 

Dataset LB_Keogh ψ-LB_Keogh 
AUSLAN 0.522 0.484 
Human Activity 0.173 0.152 
Motor Current 0.259 0.292 
Palm Graffiti Digits 0.549 0.490 
Sony Robot Activity 0.120 0.110 
Sony Robot Surface 0.174 0.151 

From these results, we can note that the tightness of both 
methods is similar. This indicates that the endpoint constraint 
relaxation does not impair the tightness of ψ-LB_Keogh.  

VIII. CONCLUSION 
In this paper, we proposed a modification of the endpoint 

constraint of DTW to make it suffix- and prefix-invariant. In 
addition to be simple and intuitive, our method is quite effective. 
Experimental results show that our method outperforms the 
classic DTW by a large margin in datasets that contain spurious 
endpoints. In addition, we demonstrated that the distance 
obtained by our method can be tightly lower bounded by a slight 
modification of the current lower bounds of DTW, which 
indicates that our modified DTW is tractable for large datasets. 

For the sake of clarity and brevity, in this work we only 
discussed the application of our algorithm to classification. 
However, it can also be applied to a large variety of tasks, such 
as clustering, motif discovery, outlier detection, etc. We leave 
those explorations, including discussions on how to set the 
parameter r for each task, as future work. 
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