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ABSTRACT 

The prevalence of diet-related chronic diseases strongly impacts 

global health and health services. Currently, it takes training and 

strong personal involvement to manage or treat these diseases. One 

way to assist with dietary assessment is through computer vision 

systems that can recognize foods and their portion sizes from 

images and output the corresponding nutritional information. When 

multiple food items may exist, a food segmentation stage should 

also be applied before recognition. In this study, we propose a 

method to detect and segment the food of already detected dishes 

in an image. The method combines region growing/merging 

techniques with a deep CNN-based food border detection. A semi-

automatic version of the method is also presented that improves the 

result with minimal user input. The proposed methods are trained 

and tested on non-overlapping subsets of a food image database 

including 821 images, taken under challenging conditions and 

annotated manually. The automatic and semi-automatic dish 

segmentation methods reached average accuracies of 88% and 

92%, respectively, in roughly 0.5 seconds per image. 
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1. INTRODUCTION 
The increasing prevalence of diet-related chronic diseases such as 

obesity and diabetes has raised major concerns over the last 

decades. A key factor for preventing or treating such diseases is diet 

management. However, traditional methods are often ineffective 

due to the inability of patients to accurately assess their food intake. 

Hence, there is an apparent need for innovative solutions and 

services to automatically and accurately assess meals. To this end, 

several smartphone-based systems have been recently proposed 

that use as input a number of meal images and output its nutritional 

content, based on computer vision techniques. Such a system has 

to first detect the food in the image, recognize it and estimate its 

size before calculating the corresponding nutritional profile from 

the available databases. In cases where multiple foods may exist, 

an additional segmentation module is employed. 

In this study, we propose methods for segmenting multiple food 

items in an already detected dish. An automatic segmentation 

method is presented able to detect and segment an arbitrary number 

of different food items in a dish. This method uses a convolutional 

neural network (CNN) to automatically detect food borders that 

guide a region growing/merging technique. A semi-automatic 

version of the method is also proposed that improves the results by 

using minimal input from the user. The output of the more reliable 

semi-automatic segmentation could be potentially used for 

retraining the CNN border detector and gradually improve the 

performance of the system. All methods were trained and tested on 

the same food image datasets containing real-word meal images, 

and yielded promising results. 

2. PREVIOUS WORK 
To simplify the problem of food detection/segmentation, the 

proposed solutions make different assumptions on the content of 

the image. These assumptions consider the number, color, and 

shape of dishes in the image, the possible number of food items in 

each dish and the visual properties of the background. 

Many of the well-known image segmentation algorithms have been 

applied to food. Shroff et al. [1] considered a simplified case where 

the plate is white and all foods are clearly separate. Under these 

conditions, a simple adaptive thresholding method performed 

adequately. A comparison of three segmentation methods was 

presented in [2] involving active contours [3], normalized cuts [4] 

and local variation [5], which concluded that the latter performs 

best. In the experiments multiple dishes were considered and the 

background was defined as all the pixels of the most frequent color 

in the image. Furthermore, Bettadapura et al. applied the contour 

detection method of [6] for food images in [7], combined with 

location and segmentation heuristics. In another study, 

Anthimopoulos et al. [8] employed mean-shift filtering in the 

CIELab color space to segment the food inside a given dish. In [9], 

the proposed method first detects the plates and for each one 

calculates a food saliency map that guides an active contour 

approach [3] to segment the food from the plate. However, 

segmentation between different foods is not considered. 
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Figure 1. Architecture of the proposed CNN for food border detection

Other approaches utilized classification schemes trained on food 

images to improve segmentation. In [10], normalized cuts were 

employed with a dynamic choice of segment number guided by the 

food classification results. Matsuda et al. [11], combined multiple 

segmentation methods and kept those with the highest classification 

confidence. Four inputs are considered: (i) the whole image, (ii) a 

deformable part model segmentation [12], (iii) the detected plates 

via a Hough transform circle detector [13], and (iv) the JSEG 

segmentation [14]. In [15], greedy, binary region merging was used 

with color and texture features, to build a hierarchical 

representation of the image. This representation was then used to 

classify all possible segmentations and select the one with the 

highest confidence. Puri et al. [16] proposed a sliding window 

classification scheme to produce a food recognition map which was 

also used for segmentation. In [17] a back propagation based 

saliency map was created by using a CNN which guided grab-cut 

to perform the final segmentation. However, multi-food dishes 

were not considered. Similarly in [18] a CNN with global average 

pooling was used to produce a food probability map and also 

classify the detected foods.  

It has been shown that food segmentation may benefit from 

machine learning in some cases, however relying too much on 

recognition could also be dangerous. Food recognition is generally 

a more challenging problem than segmentation, while its difficulty 

may change when adding new classes in a dynamically evolving 

system. Recently, CNNs have been used to detect edges and object 

boundaries/contours with great success [19]-[21]. Here, motivated 

by this success, we propose a method to segment multiple foods in 

a dish by using a CNN that detects food borders. Although 

recognizing foods among hundreds of classes is a very complex 

problem, learning to detect their borders is often easier and less 

dependent on the considered classes. In this way, our method can 

exploit the exceptional performance of CNNs and constantly 

improve through additional training without relying on the food 

recognition result.  

3. METHODS 
In our previous work [22], we presented methods for food detection 

and segmentation on mobile devices. Round dishes were first 

detected using robust model fitting on the image edges. Then, the 

foods in the dish were detected and segmented based on a region 

growing/merging technique while a semi-automatic version of the 

method was also proposed. In this study, we improve the previously 

proposed methods by optimizing the region growing/merging 

framework and incorporating a food border map. The border map 

is created by using a deep CNN trained on the manually annotated 

borders of the training set. The map is used to guide the region 

growing/merging algorithm so the created regions do not overlap 

with the predicted borders.  

3.1 Border Map Generation 
The architecture of the proposed CNN is shown in Figure 1. Input 

of the network is the original food image after being cropped 

according to the detected dish, and rescaled to 256×256 (Figure 2a). 

The target output is a map with the same size where: (i) border 

pixels have the value one, (ii) pixels which are more than 8 pixels 

away from any border are zero, and (iii) the rest of the pixels have 

values between one and zero, inversely proportional to their 

distance from the closest border (Figure 2b). To generate the target 

maps, we used the manual annotations of the images that consist in 

a polygon on the border of each existing food item. The distance 

transform [23] was used to calculate the distance from every pixel 

to the closest border pixel and the resulting values were truncated 

over 8 and normalized to [0, 1]. The resulting map was inverted and 

served as the target. 

The proposed network has 16 convolutional layers with each layer 

having 32 kernels of size 3×3. After each convolutional layer, batch 

normalization is performed followed by a leaky ReLU [24] 

activation with its parameter set to 0.01. The output of each 

activation layer is used as input for the next convolutional layer. 

Finally, the activations from all 16 layers are summed and passed 

through three convolutional layers with 32, 8 and 1 kernels of size 

1×1, respectively. Batch normalization is still done after each layer 

but here an s-shaped rectifier - SReLU [25] follows as activation, 

   

(a) (b)  (c) 

Figure 2. Food border generation: (a) original image 

cropped on the detected dish and rescaled to 256×256; (b) the 

border’s desired target; (c) the resulting CNN based border 

map. 
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which involves learned parameters and showed faster convergence. 

These last layers resemble the dense layers used in many of the 

popular CNNs, however they only perform densely on a single 

pixel level. Hence, they densely combine the values across feature 

maps and produce for each pixel an output in the range [0, 1] that 

represents the networks confidence of being on a border. By adding 

the output from every convolutional layer and passing it to the last 

dense-like layers, we prevent the problem of vanishing gradients 

and manage to easily train very deep networks with each layer 

contributing to the resulting map. This technique is inspired by the 

shortcut connections used in residual CNNs [26], networks with 

hundreds of layers that have achieved the best results so far, in 

many image classification/detection benchmarks. Finally, the 

training of the network is done by minimizing the mean absolute 

error (MAE) with the Adam optimizer [27]. Figure 2c shows the 

output of the network for the image in Figure 2a. The resulting 

border map looks quite similar to the desired output, however the 

produced borders do not always define closed segments, which is a 

requirement in this application. Therefore, we use a region 

growing/merging algorithm to extract the final segmentation. 

3.2 Region Growing/Merging 
The proposed segmentation algorithm relies on the Seeded Region 

Growing (SRG) method [28] and the Statistical Region Merging 

(SRM) paradigm [29]. SRG partitions images in a fast, 

nonparametric way: it iteratively expands image regions by adding 

in each iteration, the pixel with the lowest distance. At the 

beginning, each region is assigned just one pixel and all the 

neighboring pixels are candidates for expansion. Every time a pixel 

is added to a region, we calculate the distance of the region to this 

pixel’s direct neighbors and add them to the list of candidates if 

they do not already belong to a region. When all pixels have been 

added, SRG terminates and the resulting regions are iteratively 

merged together using the SRM. The SRM is also a nonparametric 

aggregation method: at each iteration, the two regions with the 

smallest merging cost between them are joined until a stopping 

criterion is met. Each of the aforementioned methods involve 

critical choices that may substantially affect the result. For the 

SRG, these choices are the way the initial seeds are generated and 

the distance used between a region and a neighboring pixel, while 

for the SRM, we must choose the merging cost and the stopping 

criteria. 

To generate the seeds for the automatic method, we create a fixed 

number of points on the plate, following a hexagonal grid pattern 

(Figure 3a). To avoid putting seeds on image edges, each of these 

vertices is moved to the point with the smallest gradient in a 3×3 

neighborhood, and added as a seed. A seed is also created for the 

dish by selecting a small band of pixels on the inside of the dish 

border. Pixels outside the dish are not considered for segmentation. 

The seeds are then given to SRG to be grown to regions (Figure 

3b). The distance used by SRG is a linear combination of three 

factors: (i) the CIELab based color distance proposed in [22], (ii) 

the border magnitudes of the point to be added and its closest point 

in the region as defined in the CNN-based map and (iii) the 

geometric distance from the region’s seed. The first factor is a 

requirement for color similarity between the region and the 

candidate pixel. The second assures that there is no border between 

the two. In this way, we delay the addition of border pixels to a 

region and thus avoid growing regions over the borders. The last 

factor enforces compactness on the shape of the created areas 

similar to [30], which has been shown to be beneficial. Hence, the 

distance between a region R and its neighboring pixel p is defined 

as: 

𝑑𝑖𝑠𝑡(𝑅, 𝑝) = 

𝛼 ∗ 𝑑𝑖𝑠𝑡𝑐𝑜𝑙𝑜𝑟(𝑅, 𝑝) + 𝛽 ∗ 𝑏𝑜𝑟𝑑𝑒𝑟(𝑅, 𝑝) + 𝛾 ∗ 𝑑𝑖𝑠𝑡𝑠𝑒𝑒𝑑(𝑅, 𝑝)    (1) 

with  𝛼, 𝛽, 𝛾 ≥ 0 𝑎𝑛𝑑 𝛼 +  𝛽 + 𝛾 = 1  

In this, 𝑏𝑜𝑟𝑑𝑒𝑟(𝑅, 𝑝)  is the average border magnitude of pixel p 

and its closest pixel in R, 𝑑𝑖𝑠𝑡𝑠𝑒𝑒𝑑(𝑟, 𝑝) is the geometric distance 

between p and the seed point of R, and 

𝑑𝑖𝑠𝑡𝑐𝑜𝑙𝑜𝑟(𝑅, 𝑝) = √|𝐿𝑅 − 𝐿𝑝| + (𝑎𝑅 − 𝑎𝑝)2 + (𝑏𝑅 − 𝑏𝑝)2       (2) 

where (𝐿𝑅, 𝑎𝑅, 𝑏𝑅) is the average color of the region and 

(𝐿𝑝 , 𝑎𝑝, 𝑏𝑝) is the color of the pixel. The proposed color distance 

puts emphasis on the color components, thus reducing the effect of 

intensity changes often caused by shadows. The 𝛼, 𝛽, and 𝛾 are 

estimated by experimenting on the training dataset using a grid of 

values. 

In the merging step of [22], the same color distance (eq.2) was 

applied between the average colors of two regions. Here, instead of 

using just the difference between the average channel values in eq. 

2, use the Earth Mover’s Distance (EMD) [31] between the single-

channel histograms. The EMD quantifies the cost of moving 

samples among the bins of a histogram to obtain another: it is the 

product of the distance between bins by the number of samples to 

move between those bins. This makes the unit of the EMD equal to 

number of samples by color distance, which we normalize by the 

number of samples to obtain a color distance. In addition, this color 

distance is divided by the edge length between two regions, and 

multiplied by the edge’s border magnitude, to form the final 

merging cost (eq. 3). In this way, we obtain a more accurate color 

difference while we also avoid the merging of regions separated by 

short but strong edges. 

𝐶𝑜𝑠𝑡𝑚𝑒𝑟𝑔𝑒(𝑟𝑖, 𝑟𝑗) = 𝐸𝑀𝐷𝑐𝑜𝑙𝑜𝑟(𝑟𝑖 , 𝑟𝑗) ∗
𝑏𝑜𝑟𝑑𝑒𝑟(𝑟𝑖,𝑟𝑗)

𝑒𝑑𝑔𝑒_𝑙𝑒𝑛𝑔𝑡ℎ(𝑟𝑖,𝑟𝑗)
            (3) 

where 𝑏𝑜𝑟𝑑𝑒𝑟(𝑟𝑖, 𝑟𝑗) is the border magnitude between the regions ri 

and rj , 𝑒𝑑𝑔𝑒_𝑙𝑒𝑛𝑔𝑡ℎ(𝑟𝑖 , 𝑟𝑗) is the length of the edge they share and 

𝐸𝑀𝐷𝑐𝑜𝑙𝑜𝑟(𝑟𝑖 , 𝑟𝑗) = √𝐸𝑀𝐷𝐿(𝑟𝑖 , 𝑟𝑗)+𝐸𝑀𝐷𝑎(𝑟𝑖 , 𝑟𝑗)
2
+𝐸𝑀𝐷𝑏(𝑟𝑖 , 𝑟𝑗)

2
  

   

(a) (b) (c) 

Figure 3. Region growing/merging processes: (a) initial seeds; 

(b) grown regions; (c) regions after merging 
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where 𝐸𝑀𝐷𝑐(𝑟𝑖 , 𝑟𝑗) is the EMD between the color distributions of 

regions ri and rj in channel c. As shown, the combination of the three 

channels in a single color distance puts again emphasis on the color 

components to avoid the effect of random intensity changes. The 

merging iterations of SRM stop when all the remaining regions are 

large enough and sufficiently different to each other. To this end, 

the size of each region is multiplied by the cost to merge it with 

each of its neighbors. When all the resulting products are greater 

than a fixed threshold, the SRM stops.  

 Finally, a semi-automatic version of the segmentation algorithm is 

proposed where the seeds are not generated randomly but they are 

given by the user (Figure 4a). In this case, region merging is not 

performed since only one seed is given per food item. The results 

(Figure 4b) are equal or better to the previous method, so the 

method can be used for correction when the automatic results are 

not satisfactory. 

4. DATA AND EXPERIMENTAL SETUP 
The dataset used for the experiments consists of 821 meal images, 

each containing just one round dish with either one or multiple food 

items. Out of these, 246 images were acquired by the authors, in the 

restaurants of the Bern University hospital, “Inselspital”. The rest 

were taken by 20 individuals with Type 1 Diabetes that participated 

in a pilot clinical study on the usage of the carbohydrate intake 

assessment system GoCARB [32]. The dataset contains a large 

variety of foods photographed under a wide range of shooting 

conditions. All images were manually annotated by drawing 

polygons around each food item while the ellipse of the dish is also 

indicated. In addition, the polygons and ellipses are converted to 

segmentation maps where each segment is a single connected 

component.  

The dataset was randomly split into two main subsets the training 

set that consists of 70% of the images and the test set with the rest 

30%. All methods were trained or tuned on the training set and 

tested on the test set. The result was evaluated after comparing to 

the ground truth by using region-based metrics similar to the Huang 

and Dom Index (HDI) [33]. Let 𝑆 = {𝑆𝑖}𝑖=1
𝑚  and  𝑇 = {𝑇𝑖}𝑖=1

𝑛  be 

two segmentations, where 𝑆𝑖 (resp.𝑇𝑖) is region i from segmentation 

S (resp. T) and m, n are the number of segments in S and T. We 

define two normalized directional indices based on worst and 

average segmentation performance: 

NImin(T=>S)=Mini(
Maxj(|Si∩Tj|)

|Si|
)  (4) 

NIsum(T=>S)=
∑ Maxj(|Si∩Tj|)i

∑ |i Si |
   (5) 

For each index, the two reverse directions are combined in a 

harmonic mean to give the final two indices for the evaluation: 

Fx=
2*NIx(T=>S)*NIx(S=>T)

NIx(T=>S)+NIx(S=>T)
, x = min or sum  (6) 

Finally, both measures of equation 6 are averaged on the entire test 

dataset and denoted as 𝐹𝑚𝑖𝑛
̅̅ ̅̅ ̅̅  and 𝐹𝑠𝑢𝑚

̅̅ ̅̅ ̅̅ . The background segment is 

excluded from the computation of the measures to make the results 

independent from the size of the dish. To test the semi-automatic 

segmentation, we sampled two points inside each food segment and 

joined them with a straight line to imitate a user stroke.  

The experiments were conducted on a machine with an Intel i7-

3770 CPU and a GPU NVIDIA GeForce Titan X under a Linux OS. 

The CNN was implemented using the Keras [34] framework with a 

Theano [35] back-end and the experiments were performed on the 

GPU. 

5. RESULTS 

5.1 Border Map Generation 
In order to train the proposed CNN and tune its hyper-parameters, 

we created an additional validation set by splitting the original 

training set. Thus, the dataset used for the CNN training contains 

60% (=492) of the images while the rest 10% (=84) was randomly 

chosen to be used for validation. Moreover, to increase the size of 

the training set and avoid overfitting we employed a data 

augmentation approach. For each image, seven more images were 

created by applying flip and rotation operations, as well as their 

combinations leading to 492*8=3936 images. During 

augmentation, the corresponding target map for each image was 

also transformed accordingly. The Adam optimizer [27] was used 

to minimize the mean absolute error in a single-sample gradient 

descent training. Using batch training accelerated the training 

epoch but not the overall convergence of the network. 

Figure 5 shows the curves of the training and validation error during 

training. As shown, the validation error begins converging to about 

.058 from nearly the first 50 epochs. The best validation error was 

.0577 and it was achieved in the 94th epoch. The duration of each 

epoch on the GPU was 721 seconds. The corresponding test error 

was .0545. The various algorithmic choices and the tuning of the 

involved hyper-parameters were based on a series of experiments. 

Table 1 presents the result of some of these experiments. As shown 

increasing the layers to 32 or the kernels per layer to 64 did not 

  

(a) (b) 

Figure 4. Semi-automatic segmentation processes: (a) user-

given seeds; (b) grown regions 

 

 

 

Figure 5. Curves of the training (blue) and validation (orange) 

mean absolute error over the training epochs of the proposed 

CNN 
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yield a significant improvement in performance. On the contrary, 

reducing them to 8 and 16, respectively, deteriorated the result 

substantially. Furthermore, 3×3 was found to be the best choice for 

the kernel size. A higher kernel size resulted in a larger network 

with wider receptive field, without increasing the performance of 

the network. Kernel sizes of 3×3 have been a common choice for 

many successful CNNs over the last few years. Finally, the batch 

normalization resulted in a much faster convergence although it 

almost doubled the duration of each training epoch. 

Table 1 - Comparison of different CNN architectures 

 

5.2 Region Growing/Merging 
Table 2 shows the results of the proposed food segmentation 

method and compares it with methods from the related literature. 

For all methods, the true location of the dish was used to remove 

the background and dish segments. Flood fill corresponds to a 

version of region growing with a threshold on the maximal distance 

between a pixel and a region, similar to [34], but using the proposed 

color distance (eq.2). The proposed automatic segmentation 

outperformed our previous works [22] and [8] by an absolute 2% 

and 5% in 𝐹𝑠𝑢𝑚
̅̅ ̅̅ ̅̅ . The improvement in 𝐹𝑚𝑖𝑛

̅̅ ̅̅ ̅̅  was much higher 

showing the stability of the proposed method. On the other hand, 

local variation proved to be very unstable. In the semi-automatic 

case, the proposed method was still better than our previous work 

and significantly better than flood fill. This is probably because the 

latter relies on sensitive thresholds to stop. 

Table 2 - Comparison of segmentation methods 

Automatic 𝑭𝒎𝒊𝒏
̅̅ ̅̅ ̅̅  (%) 𝑭𝒔𝒖𝒎

̅̅ ̅̅ ̅̅ ̅ (%) 
Time 

(s/image) 

Proposed 76.2 87.6 0.5 

Region 

growing/merging [22] 
66.8 85.6 0.42 

Mean-shift [8] 65.2 82.6 1.46 

Local Variation [5] 36.3 72.0 1.91 

Semi-Automatic 𝑭𝒎𝒊𝒏
̅̅ ̅̅ ̅̅  (%) 𝑭𝒔𝒖𝒎

̅̅ ̅̅ ̅̅ ̅ (%) 
Time 

(s/image) 

Proposed 85.9 92.2 0.43 

Region 

growing/merging [22] 
84.5 91.3 0.41 

Flood fill 77.1 85.7 0.6 

Finally, we tested the proposed method on global photometric 

changes which were found to have only minor effects on the result. 

We applied changes of contrast of -20%/+25%, and gamma 

correction powers of .8/1.25. The 𝐹𝑚𝑖𝑛
̅̅ ̅̅ ̅̅ and 𝐹𝑠𝑢𝑚

̅̅ ̅̅ ̅̅ scores remain 

within 1% of the normal value for the semi automatic methods. For 

the automatic method, the lowest 𝐹𝑚𝑖𝑛
̅̅ ̅̅ ̅̅  score was 2% below normal, 

for a gamma factor of 1.25. 𝐹𝑠𝑢𝑚
̅̅ ̅̅ ̅̅  scores remained within .6% of the 

normal value. The stability of the results to these changes illustrates 

the robustness of the software to global color variation. 

6. CONCLUSION 

In this paper, we presented methods for the segmentation of food 

in a meal image with an already detected dish. The proposed 

method is an improved version of our previous work and uses a 

CNN-based food border map to guide a region growing/merging 

technique. The results show an absolute improvement in the 

segmentation performance by at least 2%. Moreover, a semi-

automatic version of the method is also proposed that improves the 

results with minimal user input and was designed to help the user 

improve the result when the automatic segmentation fails. An 

additional benefit of using the trained border map is the fact that 

the system can utilize the semi-automatic results to retrain the CNN 

and improve its performance. This procedure could help the 

automatic algorithm reach accuracies very close to the semi-

automatic after gathering enough data. Future work includes the 

extension of the methods to images with multiple dishes and the 

combination with 3D shape of the scene to improve the 

segmentation. 
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