
On Multiple Longest Common Subsequence
and Common Motifs with Gaps

(Extended Abstract)

Suri Dipannita Sayeed(B), M. Sohel Rahman, and Atif Rahman

Department of Computer Science and Engineering,
Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh

suri.esha6@gmail.com, {msrahman,atif}@cse.buet.ac.bd

Abstract. Motif finding is the problem of identifying recurring patterns
in sequences. It has been widely studied and several variants have been
proposed. Here, we address the problem of finding common motifs with
gaps that are present in all strings of a finite set. We prove that the prob-
lem is NP-hard by reducing the multiple longest common subsequence
(MLCS) problem to it. We also provide a branch and bound algorithm
for MLCS and show how the algorithm can be extended to give an algo-
rithm for finding common motifs with gaps after common factors that
occur in all the strings have been identified.

Keywords: Computational biology · Motif finding · Complexity
Branch and bound

1 Introduction

Motifs are recurring patterns in sequences and motif finding is a widely stud-
ied problem in computational biology. It has diverse applications for example
in identifying co-expressed genes. Expression of a gene usually requires bind-
ing of a transcription factor in the promoter region. Presence of near identical
sequences in promoter regions of genes indicates that they are regulated by the
same transcription factor and are likely to be co-expressed.

In many cases, the motifs may not be identical and motif finding algorithms
need to be robust to differences in sequences. In addition, motifs may not be
contiguous. Considering these, the problem of finding common motifs with gaps
was introduced [2,5]. Antoniou et al. gave an algorithm polynomial in length
of strings and exponential in number of strings using finite automata and con-
jectured that asymptotically more efficient algorithms may not be possible [2].
Other variants of the problem with constraints on lengths of gaps have also been
proposed and algorithms have been provided [1].

In this paper, we prove that the problem of finding common motif with gaps is
NP-hard, for alphabet size of four or more, by reducing to it the multiple longest
common subsequence (MLCS) problem, i.e., the problem of finding the longest
c© Springer International Publishing AG, part of Springer Nature 2018
M. S. Rahman et al. (Eds.): WALCOM 2018, LNCS 10755, pp. 207–215, 2018.
https://doi.org/10.1007/978-3-319-75172-6_18

208 S. D. Sayeed et al.

common subsequence among a set of sequences. MLCS is also a well studied
problem in theoretical computer science and has applications in computational
genomics. MLCS was proved NP-hard by Maier [7] and dynamic programming
algorithms are known that run in time O(nd), for d sequences with maximum
length, n [6]. Wang et al. [9] gave a dominant point based algorithm with the
divide and conquer approach to compute the dominant points and designed a
Quick-DP algorithm using those points and later Yang et al. [10] presented a pro-
gressive algorithm with efficient parallelization. Huang and Lim gave a branch
and bound algorithm using minimum of pairwise longest common subsequence
lengths as a bounding condition [4]. As MLCS problem is widely used in pro-
tein and genome sequence analysis, further improvement of the algorithm can
contribute significantly in the studies of computational genomics [3].

In this paper, first we formally settle the question of complexity of the prob-
lem of finding common motifs with gaps. We also present a branch and bound
algorithm for computing the longest common subsequences of a set of strings. We
pre-process the sequences to explore more promising paths first and to speed-up
the pruning process and we explore bounding strategies previously not consid-
ered [4]. We then extend this algorithm to find common motifs with gaps. We
first find the common factors appearing in all the strings and then use a branch
and bound algorithm to chain together the factors. Although this problem is
treated as a hard problem in the literature and is handled accordingly, to the
best of our knowledge this is the first attempt to prove the hardness thereof for-
mally. And the reduction from MLCS allows us to adapt the branch and bound
algorithm for MLCS to solve the problem of finding common motifs with gaps.

The rest of the paper is organized as follows. We give the problem definitions
in Sect. 2 and prove the hardness of the problem of finding common motifs with
gaps in Sect. 3. The algorithms are presented in Sect. 4 along with examples.
Finally, in Sect. 5 we conclude the paper.

2 Background

A motif is a common pattern that appears frequently among a set of genome
sequences. In this section we formally define the two problems that we are going
to address in the rest of the paper.

2.1 Common Motifs with Gaps

Consider a set of strings S = {S1, S2, .., Sd} over the alphabet Σ = {A,C,G, T}
and two integers p,q, where 1 ≤ p ≤ q ≤ min(|Sj | : j ∈ {1, . . . , d}) are given. The
problem of finding common motifs with gaps (CMG) aims at finding common
words P1, P2, ..., Pm such that: P1 ∗di,1 P2 ∗di,2 · · · ∗di,m−1 Pm occurs in Si, for all
i ∈ {1, . . . , d}, m > 1, p ≤ |Pj | ≤ q for all j ∈ {1, . . . , m} and di,j ≥ 1 for all
i ∈ {1, . . . , d}, j ∈ {1, . . . , m − 1}. Here, ∗ is the don’t care symbol that matches
any character in Σ.

On Multiple Longest Common Subsequence and Common Motifs with Gaps 209

For example, given a set of three strings S = S1, S2, S3 and minimum factor
size, p = 1 and maximum factor size, q = 2, the substrings AC, AA and CA
form the common motifs that satisfy the required criteria as highlighted below:

S1 = ACAAAACACAAA
S2 = ACACCAACCACA
S3 = CACAAACCACCA

In the optimization version of the problem, we want to maximize m i.e. we
seek a common motif with gaps with maximum number of factors and in the
decision version of the problem, for a given m, we want to check whether there
is a common motif with gaps with ≥ m factors.

2.2 Multiple Longest Common Subsequence

The Multiple Longest Common Subsequence (MLCS) problem aims at finding a
longest subsequence shared among a set of sequences. Let, S = {S1, S2, S3,...,Sd}
be a set of sequences over a finite alphabet Σ. The Longest Common Subsequence
(LCS) of set S is a sequence s with length �, such that it is of the highest length
among all subsequences that are shared among all Si, i ∈ {1, . . . , d}. For example,

S1 = informatics
S2 = bioinformatics
S3 = proteomics

One of the subsequences for this example is s1 = mics, one is s2 = tics and
another is s3 = omics. The longest one is s3 = omics. Notably, this sequence
may not necessarily be unique.

In the optimization and decision versions of the problem we intend to find
an LCS of the maximum length and decide if there is an LCS greater or equal
to a given length, respectively.

3 Complexity of Common Motifs with Gaps

Theorem 1. CMG problem is NP-complete.

Proof. To show that the decision version of CMG ∈ NP , for a given set
S = {S1, S2, . . . , Sd} of sequences, a sub-sequence s′ of common factors, and
an integer m > 1, we can easily check in polynomial time whether s′ consists
of m or more factors and satisfy the length constraints if any, and whether the
factors in s′ appear in the right order in every sequence of S.

We next prove MLCS ≤P CMG which shows that CMG is NP -hard.
Given an instance of MLCS over an alphabet Σ given by sequences T =

{T1, T2, . . . , Td}, we construct an instance of CMG, S = {S1, S2, . . . , Sd} over
the alphabet {A,C,G, T} such that there exists an LCS of length k for set T if,
and only if, S has a CMG of k factors as follows:

210 S. D. Sayeed et al.

1. First we relabel the characters of the MLCS instance using integers from
{1, . . . , |Σ|} and convert each integer into its binary form.

2. We then replace ‘0’s and ‘1’s by ‘A’s and ‘C’s respectively to get strings over
{A,C} for each integer.

3. Finally we put these strings in the same order in each Si as the corresponding
integers appeared in Ti separated by ‘G’s in S1 and ‘T’s in all other Si and
we set minimum factor length p = �log |Σ|�.
Following is an example of the construction:

a b c d
b a c d
a c b d

⇒
1 2 3 4
2 1 3 4
1 3 2 4

⇒
001 010 011 100
010 001 011 100
001 011 010 100

⇒
AAC G ACA G ACC G CAA
ACA T AAC T ACC T CAA
AAC T ACC T ACA T CAA

Now we show that this transformation of T into S is a reduction.
First suppose that T has a solution, that is a sequence t′ of k characters are

present in every sequence of T in exactly the same order. These characters, i.e.,
integers in t′ will correspond to substrings of each Si and these substrings will
form a sequence s′ of k factors. s′ is a common motif sequence with k factors
since according to the construction the factors must appear in each Si in exactly
the same order and there must be a gap of length at least one between any two
factors.

Conversely, suppose, S has a common gapped motif sequence s′ with k fac-
tors, k > 1, that follows a certain order in every sequence Si. Note that since
‘G’ was used as the separator in S1 and ‘T’ was used in all other strings, each
factor must be strings over {A,C} and corresponds to an integer in the LCS
instance by construction, and they will follow the same order in every sequence
giving us a common subsequence of length k in all strings in T . 	

4 Algorithms

Algorithms are known for both MLCS and CMG problems that run in time
polynomial in lengths of sequences and exponential in the number of sequences.
Complexity results in [7] and in this paper indicate that asymptotically faster
algorithms are unlikely. However, search space may be reduced by pruning lead-
ing to faster algorithms in practice. Here we present branch and bound algo-
rithms for both MLCS and CMG problems.

4.1 A Branch and Bound Algorithm for MLCS Problem

Given a set of sequences, S = {S1, S2, . . . , Sd}, where |Si| ≤ n for 1 ≤ i ≤ d,
we preprocess the sequences to explore promising paths first and prune the
search space using the value of the best solution found so far and the upper
bound on values of solutions the path being explored may lead to. The algorithm
uses memoization to avoid redundancy of work, i.e., the values of subproblems
already calculated are stored in a table, V indexed by vectors of indices into the
sequences.

On Multiple Longest Common Subsequence and Common Motifs with Gaps 211

Preprocessing. We preprocess the sequences to generate candidate lists that
will be used to decide in what order nodes are visited during the search process.
The candidate list for the first element of the longest common subsequence, Cinit,
consisting of triples <element,minMultiplicity,minDistance>, is generated as
follows:

1. Process each sequence, Si and list each element e, the distance of its first
occurrence to the end of the sequence, de,i and the number of times it appears
in the sequence, me,i.

2. Intersect the lists to get elements common in all sequences. When we intersect
we retain the minimum of distances to ends of the sequences for an element,
and the minimum multiplicity of the element. Therefore, minMultiplicity
and minDistance entries corresponding to element, which appears in all the
sequences, are given by:

minMultiplicity = min
1≤i≤d

melement,i

minDistance = min
1≤i≤d

delement,i

3. Sort the triples in descending order of minimum distance to ends of sequences
and record the sum of multiplicities.

The elements will be explored according to the order in the candidate list,
the intuition being an element more distant to the ends of the sequences has
more room for other elements to follow it in the LCS.

Similarly, for each element x that appears Kx times in all the sequences, we
construct lists Cx,k for 1 ≤ k ≤ Kx of triples corresponding to elements that
follow the k-th occurrence of x in all the sequences.

For a finite alphabet, each such list can be constructed in time O(nd) and
since there can be at most n such lists, preprocessing takes O(n2d) time.

Branch and Bound. At each node, we take as input a vector of indices
I = <i1, i2, . . . , id> and a common subsequence, α of the sequences
S1[1 . . . i1], S2[1 . . . i2], . . . , Sd[1 . . . id], i.e., common subsequence up to I. We also
maintain the best solution found so far globally. We start at <0, . . . , 0> with
the common subsequence ε.

Then, at each node, we do the following:

1. Look up the last character and its multiplicity in α and retrieve the corre-
sponding candidate list.

2. Iterate through the <element,minMultiplicity,minDistance> triples in the
candidate list.

3. Estimate upper bound (see Pruning conditions discussed shortly) to check
if the branch can be pruned.

212 S. D. Sayeed et al.

4. Find positions P = <p1, p2, . . . , pd> in each sequence following the input
indices where element occurs. Note that such positions may not exist in some
sequences as the k-th occurrence of x in α may correspond to a position in
Si to the right of the position of the k-th occurrence of x in Si. We skip such
entries.

5. If <p1, p2, . . . , pd> has already been computed, then look up the value. Oth-
erwise, explore <p1, p2, . . . , pd> and update the best solution if needed.

Pruning Conditions. Suppose we are considering for exploration a triple,
<element,minMultiplicty,minDistance> and suppose this would be the �-th
occurrence of element in the common subsequence. The following properties can
be used to calculate an upper bound on the maximum possible value, ṽ in the
subtree rooted at the node:

1. ṽ can not exceed 1+minDistance since there are only minDistance elements
after element in at least one of the sequences.

2. Similarly, sum of multiplicities of Celement,� is an upper bound on the number
of elements that can follow element in the common subsequence.

3. Let y = element and pi(y, �) be the position of the �-th occurrence of y in the
i-th sequence. Now V [p1(y, �), . . . , pd(y, �)] is an upper bound on ṽ because
the position in Si that corresponds to the �-th occurrence of y in the common
subsequence must be greater than or equal to pi(y, �) for 1 ≤ i ≤ d.

The algorithm is summarized in Algorithm1.

Algorithm 1. MLCS
1: Initialize: bestSolution ← 0
2: MLCS-B&B (<0, . . . , 0>, ε)
3: procedure MLCS-B&B(I, α)
4: x ← lastElement(α)
5: k ← multiplicity(α, x)
6: v ← 0
7: for each <y, m, d> ∈ Ck,x do
8: � ← multiplicity(α, y)+1
9: ṽ ← min(d + 1, multiplictySum(Cy,�) + 1, V [p1(y, �), . . . pd(y, �)])

10: if ṽ + |α| > bestSolution then
11: P ← getNextPos(I, y)
12: if P is valid then
13: if V [P] is not null then
14: v ← max(v, 1 + V [P])
15: else
16: v ←max(v, 1+MLCS-B&B (P, α.y))

17: if v + |α| > bestSolution then
18: bestSolution ← v + |α|
19: V [I] ← v
20: Return v

On Multiple Longest Common Subsequence and Common Motifs with Gaps 213

An Illustrative Example. A simulation of the algorithm on an example is
shown in Fig. 1.

Fig. 1. Simulation of Algorithm 1 on an example set

4.2 A Branch and Bound Algorithm for CMG

We now extend the method discussed above and present a branch and bound
algorithm for finding common motifs with gaps (CMG). We are given a set of
strings, S = {S1, S2, . . . , Sd}, and integers p, q giving upper and lower bounds
on factor lengths respectively.

The first step is to find common factors. Then we use an approach similar to
the one for finding MLCS taking into account that there may be multiple factors
overlapping a position in a string, at most one of which can be present in the
final solution.

Identifying Common Factors. We first identify common factors, i.e., sub-
strings with lengths between p and q that appear in all the strings and record
start indices (and end indices implicitly) of their occurrences in every string.
This can be done efficiently using approaches such as suffix trees [8], finite
automata [2]. For each string Si, where 1 ≤ i ≤ d, we create a list of factors,
Fi consisting of all occurrences of all the common factors in the string sorted in
ascending order of their end indices.

Candidate List Generation. The factor lists are then processed to generate
candidate lists in a similar approach to the one used for preprocessing MLCS
instances. In this context, a factor, f1 will be in the list of candidates to follow

214 S. D. Sayeed et al.

the k-th occurrence of factor f2 if in each factor list there is an entry for f1 with
start index exceeding the end index of k-th occurrence of factor f2 by at least
2. The candidate lists are sorted in descending order of minimum distances of
factors from the ends of factor lists.

Branch and Bound and Pruning Conditions. The branch and bound algo-
rithm now proceeds as the one for finding MLCS producing a common motif with
highest number of factors.

An Illustrative Example. Figure 2 shows simulation of the algorithm for
finding common motifs with gaps on a sample instance. The factor lists consist
of pairs denoting the factor string and its start position sorted in increasing order
of their end positions i.e. sum of the start positions and the lengths of factors.
Note that although TCG follows TG in each of the factor lists, it is not included
in the list of candidates to follow the first occurrence of TG since it overlaps
with TG in two of the strings. We also see that although TGC is a common
factor of the strings, it does not appear in the final common motif with gap as
that would lead a motif with only one factor. However, substrings of TGC are
considered as factors - TG in S1 and S3 and GC in S2 - to obtain a common
motif with three factors.

Fig. 2. Simulation of the algorithm for finding common motifs with gaps on an example

5 Conclusions

In this paper, we have addressed two problems with applications in genomics -
finding a longest common subsequence of multiple sequences (MLCS) and find-
ing common motifs with gaps (CMG). MLCS is known to be NP-hard and its
reduction to CMG in this paper formally proves that CMG is NP-hard as well.

On Multiple Longest Common Subsequence and Common Motifs with Gaps 215

While this makes polynomial time algorithms for the problems unlikely, we have
proposed a branch and bound algorithm with preprocessing to prune the search
space that may reduce running time for many instances of the problems. Future
work will include implementation of the algorithms to test the speed-up achieved
compared to existing algorithms of the problems and subsequent application to
real datasets.

References

1. Antoniou, P., Crochemore, M., Iliopoulos, C., Peterlongo, P.: Application of suf-
fix trees for the acquisition of common motifs with gaps in a set of strings. In:
International Conference on Language and Automata Theory and Applications
(2007)

2. Antoniou, P., Holub, J., Iliopoulos, C.S., Melichar, B., Peterlongo, P.: Finding
common motifs with gaps using finite automata. In: Ibarra, O.H., Yen, H.-C. (eds.)
CIAA 2006. LNCS, vol. 4094, pp. 69–77. Springer, Heidelberg (2006). https://doi.
org/10.1007/11812128 8

3. Chen, Y., Wan, A., Liu, W.: A fast parallel algorithm for finding the longest com-
mon sequence of multiple biosequences. BMC Bioinformatics 7(4), S4 (2006)

4. Huang, G., Lim, A.: An effective branch-and-bound algorithm to solve the k-longest
common subsequence problem. In: Proceedings of the 16th European Conference
on Artificial Intelligence, pp. 191–195. IOS Press (2004)

5. Iliopoulos, C.S., McHugh, J., Peterlongo, P., Pisanti, N., Rytter, W., Sagot, M.F.:
A first approach to finding common motifs with gaps. Int. J. Found. Comput. Sci.
16(06), 1145–1154 (2005)

6. Korkin, D., Wang, Q., Shang, Y.: An efficient parallel algorithm for the multi-
ple longest common subsequence (MLCS) problem. In: 2008 37th International
Conference on Parallel Processing, ICPP 2008, pp. 354–363. IEEE (2008)

7. Maier, D.: The complexity of some problems on subsequences and supersequences.
J. ACM (JACM) 25(2), 322–336 (1978)

8. Marsan, L., Sagot, M.F.: Extracting structured motifs using a suffix tree algorithms
and application to promoter consensus identification. In: Proceedings of the Fourth
Annual International Conference on Computational Molecular Biology, pp. 210–
219. ACM (2000)

9. Wang, Q., Korkin, D., Shang, Y.: A fast multiple longest common subsequence
(MLCS) algorithm. IEEE Trans. Knowl. Data Eng. 23(3), 321–334 (2011)

10. Yang, J., Xu, Y., Sun, G., Shang, Y.: A new progressive algorithm for a multiple
longest common subsequences problem and its efficient parallelization. IEEE Trans.
Parallel Distrib. Syst. 24(5), 862–870 (2013)

https://doi.org/10.1007/11812128_8
https://doi.org/10.1007/11812128_8

	On Multiple Longest Common Subsequence and Common Motifs with Gaps (Extended Abstract)
	1 Introduction
	2 Background
	2.1 Common Motifs with Gaps
	2.2 Multiple Longest Common Subsequence

	3 Complexity of Common Motifs with Gaps
	4 Algorithms
	4.1 A Branch and Bound Algorithm for MLCS Problem
	4.2 A Branch and Bound Algorithm for CMG

	5 Conclusions
	References

