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Abstract—Since its introduction to the computer science com-
munity, the Dynamic Time Warping (DTW) algorithm has
demonstrated good performance with time series data. While this
elastic measure is known for its effectiveness with time series
sequence comparisons, the possibility of pathological warping
paths weakens the algorithms potential considerably. Techniques
centering on pruning off impossible mappings or lowering data
dimensions such as windowing, slope weighting, step pattern,
and approximation have been proposed over the years to reduce
the possibility of pathological warping paths with Dynamic Time
Warping. However, because the current DTW improvement tech-
niques are mostly global methods, they are either limited in effect
or limit the warping path excessively. We believe segmenting
time series at significant feature points will alleviate some of
the pathological warpings, and at the same time allowing us
to obtain more intuitive warpings. Our heuristic approaches the
problem from the human perspective of sequence comparison: by
identifying global similarity before local similarities. We use easily
identifiable peaks as the significant feature. The final distance is
the DTW distance sum of all segments of time series. In this
paper, we explore the impact of different peak identification
parameters on Dynamic Time Warping and demonstrate how
segmentation can help to avoid pathological warpings.

Index Terms—time series, Dynamic Time Warping, feature
selection

I. INTRODUCTION

With the development of data collection and storage, time
series data is now commonly applied in a variety of domains,
from voice recognition, the stock market, to solar activities,
medical research, and many other scientific and engineering
fields where measurements in the temporal sense are impor-
tant. With more data, the need to effectively process and com-
pare data is essential. Distance measures can be categorized
as lock-step and elastic. Lock-step measures generally refer
to Lp norms, meaning the i-th element in one sequence is
always mapped to the i-th element in another sequence. While
elastic measures allow for one-to-many, or even one-to-none
mappings [1]. With the commonly seen temporal discrepancies
in time series sequences, traditional lock-step measures are not
as effective as elastic when identifying similarities [2].

Dynamic Time Warping (DTW) algorithm is a widely
used elastic measure [3]. DTW finds the mapping between
two time series sequences where the shortest global route
is determined based on the computation and comparisons
of several options at each step. While this contributes to
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Figure 1: How time series segmentation can improve the
standard DTW, (a) depicts significant feature-peak selection,
(b) pairs the identified peaks, (c) shows the joint mapping
results, and (d) is the mapping from standard DTW. The
joint mapping results avoided some pathological warpings that
occurred in standard DTW and is also more intuitive.

the algorithm’s high performance, the extensive computations
make DTW a very time consuming algorithm. Furthermore,
although DTW achieves global minimal warping path, the
path is never readjusted, meaning local detail structures could
be overlooked. In practice, it can often be observed that the
warping path does not match the intuitive mapping, and once
a point is mapped to an incorrect point, the optimal match
would be permanently missed.



When humans are presented with two sequences, often
times we are able to ignore temporal misalignment, evaluate
differences, and zoom in on the highly similar segments to
determine similarity. We can notice the key similarities in
different sequences due to the significant features, such as a
peak, a valley, or a characteristic slope. When we compare
sequences within our visual scope, we do so on a global scale.
We do not compare each value on the sequences, therefore, the
process is highly efficient. This is our inspiration for improving
the standard DTW. By segmenting the time series according
to the peaks, each segment’s warping path is more curated to
the broad framework of global similarity.

The effects of segmentation are shown in Fig. 1. Shown in
Fig. 1(a), we start by identifying the significant features, in this
case the peaks of each time series sequence; then we match
the peaks, as is shown in Fig. 1(b); and carry out DTW on
each sub-sequence, the result of which is shown in Fig. 1(c).
Due to the segmentation within each time series sequence,
the mapping in Fig. 1(c) is more intuitive than the standard
DTW in Fig. 1(d). Theoretically, any feature extracted from
the data that could meaningfully segment time series can be
used. Here we use peaks because it is easy to recognize and
utilize, valleys would work the same way. We investigate the
effect of different peak identification parameters.

The rest of this paper is organized as follows: Section II
gives the background on DTW improvement techniques; Sec-
tion III discuss how peak identification is done on time series;
Section IV shows the effect of different peak identification
parameters and how segmentation can improve the standard
DTW; finally, Section V concludes this paper.

II. BACKGROUND
A. Dynamic Time Warping

Dynamic Time Warping (DTW) is an algorithm for mea-
suring the similarity between two temporal sequences which
may vary in time or speed. This allows computers to find an
optimal match between two given sequences. Unlike lock-step
distance measures, DTW allows one-to-many mappings; this
adds flexibility to the distance measurements.

Originally, DTW was used in speech recognition [4], later
it was adapted to various real-world data mining problems.
Given two time series sequences Q = ¢1,42,..-,qi,---,qn, and
C =cy,c2,...,Cj,...,Cpy, Equations 1 and 2 show the compu-
tation for Euclidean and DTW distances respectively, with
Euclidean only valid for equal length sequences (n = m) and
DTW valid for both equal and unequal length sequences.

n

dist(Euclidean) = Z(qi—ci)z ()
i=1
D(iajf 1)
D(i, j) = dist(gi,cj) +min< D(i—1,j—1) (2)

When calculating the DTW distance, an n-by-m distance
matrix is first constructed containing the distance information
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between all the elements from the two sequences. The distance
between mapped data points ¢; and c¢; for DTW is computed
as the Euclidean distance between them. The warping path is
denoted as W = wy,wy,...,wg,...,wg. While there are expo-
nentially many warping paths, only the minimized path is of
interest [5].

The basic rules of DTW include the boundary condition,
monotonicity, and continuity [6]. The boundary condition
means that every element has to have a mapping component,
and the first and last components from two compared se-
quences are always mapped. Monotonicity refers to the single
direction of time, and a warping path cannot go back in time.
The continuity constraint is also known as the step pattern
constraint; it is where the warping path can only follow the
steps allowed and cannot make any jumps.

B. Existing DTW Improvement Methods

DTW avoids the naive injective mapping, to provide a
more natural alignment between time series. However, despite
its general success, the algorithm often attempt to explain
variability in the y-axis of the similarity matrix by warp-
ing on the x-axis. This undesirable phenomenon is called
“singularity”, and could lead to pathological warping [5]. To
avoid pathological warpings and to speed up the alignment
procedure, many approaches have been proposed.
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Figure 2: Step Patterns: (a) symmetricl, (b) symmetric2, (c)
asymmetric, and (d) rabinerJuangStepPattern

Windowing has been used by different researchers for a long
time, and was formally summarized by Berndt and Clifford
[7]. It effectively prunes the corners of the matrix so that
any potential warping path is bounded within a fixed margin.
This method can mitigate the singularity problem to some
extent, but cannot prevent it [8]. Well known global windowing
constraints include Sakoe-Chiba Band [4], which is a slanted
diagonal window, and [takura parallelogram [9].

Slope weighting encourages the warping path to remain
close to the diagonal. Depending on the specific weighting
factor, it reduces the frequency of singularities [10].

Step pattern is another approach which encourage changes
to the warping path to avoid pathological paths. Four of the
well known patterns are shown in Fig. 2 [11]. Based on
symmetry and slope bounds, Sakoe and Chiba proposed sym-
metricl, symmetric2 [4], and asymmetric [12] approaches. The
basic step pattern symmetricl is shown in Fig 2(a). Fig 2(b)
shows the symmetric2 step pattern, which favors the diagonal
warping path similar to slope weighting. The asymmetric step
pattern in Fig 2(c) limits time expansion to a factor of two.



Rabiner and Juang introduced rabinerJuangStepPattern [13]
shown in Fig 2(d), which is based on the continuity constraint,
slope weighting, and the state of being smooth or Boolean. We
will be using the popular symmetricl step pattern for all the
experiments supporting this paper.

Another avenue for improving the DTW algorithm is by
defining tight and fast lower bounding functions to prune
mappings that cannot provide a better match in the pro-
cess of finding the warping path. The idea of finding lower
bounds is to favor the execution time needed for calculating
the similarity matrices on large datasets. Three well-known
lower bounding measures are LB_Yi [14], LB_Kim [15], and
LB_Keogh [16].

For two time series Q and C, LB_Yi’s bounding function is
defined based on the distance of all the points in Q which
are greater (less) than the maximum (minimum) point in
C, from the maximum (minimum) point in C, or the other
way around. Depending on the three possible arrangements
of the two time series: overlap, enclose, or disjoint. While
Yi et al. give an approximation for indexing, the lower
bounding function introduced in LB_Kim was the first to
define an exact indexing. Kim et al. extracted four features
from each time series: the first and last data points, and the
minimum and maximum values. After comparing the extracted
features of the two time series, the largest squared differences
of the corresponding features, calculated at query time, is
considered as the lower bound measure. When compared to
the earlier works, LB_Keogh had an overall greater pruning
power and could also give tighter bounding measures. Their
lower bounding function is defined based on U and L, the two
new time series generated from the reference time series Q,
such that U; = max(q;—r,qi+») and L; = min(q;_,,qi+r). Where
j—r<i< j+r, and r is used to define the allowed warping
range. Having the bounding envelope defined by U and L, the
lower bounding function is defined as “the squared sum of
the distances from every part of the candidate sequence C not
falling within the bounding envelope, to the nearest orthogonal
edge of the bounding envelope” [16].

Among other variants of the DTW method, PDTW
(piece-wise DTW) [17], DDTW (derivative DTW) [5], and
shapeDTW [18] are some of the more popular methods
which attempt to manipulate the input time series to improve
either the warping path or the processing time. The primary
achievement of PDTW is to increase the speed factor by one
to two orders of magnitude on average, while maintaining
the accuracy of DTW. The key idea is to instead of using
raw data, a piece-wise aggregated representation of the time
series is fed to the DTW method. Similarly, DDTW utilizes
an approximated derivative of the time series to work on a
higher level of similarity between two time series, as opposed
to the actual values. Utilizing derivatives compensate for the
pathological warpings which are often observed because of
the difference between the values of the two time series along
the y-axis. A similar approach is the shapeDTW. Zhao et al.
represented each temporal point ¢g; of a time series Q by a
shape descriptor d; which encodes the structural information of
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a fixed-width neighborhood of g;. The choice of the descriptor
depends on the general structure of the time series and the
users’ requirements. Some of the widely used descriptors
are namely the slope, piece-wise aggregate approximation
(PAA), discrete wavelet transform (DWT), and the histogram
of oriented gradient for 1D time series (HOG1D).

The main goal of windowing, slope weighting, and step
pattern is to avoid pathological warpings by trying to en-
courage the warping path to stay close to the diagonal rather
than to stray vertical or horizontal. These global constraints,
along with lower bounding can also speed up the computation
process by eliminating the need for some of the calculations.
Other methods utilize approximated values or dimensionality
reduction to speed up computation.

III. METHODOLOGY

In the aforementioned DTW improvement methods, the
rules imposed on DTW all have an equal global impact across
the time series sequences, this could mean certain details are
overlooked. With the goal of improving the DTW algorithm
performance, we propose segmenting time series based on
significant features to reduce the occurrence of pathological
warping and to improve DTW performance. While the feature
peaks are found globally, the effects are more local; they do not
have an overall equal impact on the entire sequence. Meaning
that the warping path has more freedom to grow compared
to methods such as warping windows. Through detecting
time series data peaks and segmenting accordingly, we add
a layer of approximation before DTW distance computation.
While this idea is straightforward, it is effective in avoiding
pathological warpings and providing scalability.

A. Time Series Segmentation

The global optimal solution of DTW often overlooks local
features in time series. For example, in Fig. 3, the peaks
marked in boxes on time series Q are intuitively a match
with the peaks below in time series C. When using the
original DTW algorithm, peak ¢ and ¢’ can be directly mapped.
However, d’ is not only mapped to a, but also various points
around a. The same is true for " and b. As shown in Fig. 4, by
identifying the peak features, we can segment each time series
into four segments. As a result of the boundary condition,
during computation ¢’ and b’ are specifically mapped to a
and b respectively, thus minimizing mismatches and avoiding
pathological warping paths. When we pair the respective peaks
from both sequences, the optimal DTW mapping for each sub-
sequence can be found. The DTW distance between two se-
quences is the DTW distance sum of each segmented sequence
pair. The advantage of this method is that depending on the
identified peaks, different segments have different tightness of
constraints, so it is more flexible and adaptive with different
time series.

Algorithm 1 is a simple yet flexible peak detection heuristic.
The naive definition of a peak, as this method utilizes, can be
formulated as follows. The temporal index i corresponds to the
peak c;, if ¢; > ¢j—1 and ¢; > c;+1. In this text, we refer to this
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Figure 4: Segmented time series with identified peaks

definition as candidate peaks. This simple definition equipped
with the following parameters form a peak detection method
that provides the criteria necessary to distinguish significant
peaks, which are used in segmenting time series:

« t: the threshold on the frequency domain. Any candidate
peaks below ¢ will be ignored.

¢ d: the minimum peak radius distance. For any peak that
has already met the criteria, any adjacent peaks within
a radius of d will be considered as either noise or
insignificant and therefore ignored.

o n: the maximum number of peaks to be taken into
account. Since the peak values will be sorted before being
analyzed, this parameter can push an additional constraint
on the number of peaks to be detected. That is, only
the top n peaks that have met the other criteria will be
selected.

Our peak detection heuristic works as follows. Initially, all
candidate peaks are found and sorted based on their values
(Algorithm 1 lines 3-7). Then, the threshold 7 on the frequency
domain is applied, and all the candidate peaks below the
threshold will be removed from the list (Algorithm 1 lines 8-
13). For each of the remaining peaks, their neighboring peaks,
within the radius of d temporal indices, will then be removed
as well (Algorithm 1 lines 15-21). Note that the algorithm
processes the peaks in a top-down fashion. This is to guarantee
that presence of a smaller peak never justifies the removal of a
larger peak. Finally, among the peaks left in the list, only the
top n peaks will survive. Peaks meeting the set of constraints: ¢,
d, and n are the selected peaks for the following segmentation.

In the worst-case, the time complexity of this algorithm,
if implemented naively, is max{O((p-(p+1))/2),s)} where
p is the number of candidate peaks and s is the time bound
of the utilized sorting algorithm. The worst case refers to the
situation where d =0, n = o, and ¢t = min(C). However, by
taking the order of the indices into account, in addition to
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Algorithm 1 Time Series Peak Selection

Input: ¢ = {c,---,cn} time series data,

d: the minimum radius from a selected peak within which all
other peaks are ignored,

t: the minimum threshold on the frequency domain below
which all peaks are ignored,

n: the maximum number of peaks to be detected.

Output:

the list of peaks with both their indices and values.

1: procedure FIND PEAKS

2 significant.peaks, candidates < list()
3 for all ¢; € C do

4 if ((¢;>cit1) & (Ci > Ci—l)) then
5: candidates.add((i, c;))

6 end if

7 end for

8 peaks < sortByValue(candidates)

9: for all (i,¢;) € peaks do

10: if ¢; <t then

11: peaks.remove((i, ¢;))

12: end if

13: end for

14: indices < peaks.getIndices()

15: for all i € indices do

16: forall je{i—d,---,i+d}\ido
17: if peaks.hasIndex(j) then

18: peaks.remove((j, c¢;))

19: end if

20: end for

21: end for
22: significant.peaks < peaks.getNFirstElements(n)
23: return significant.peaks;

24: end procedure

the order of the values, the time complexity would only be
determined by the sorting step. Hence, the worst case running
time would be decreased to O(n-log(n)) which reflects the
complexity of a sort algorithm such as Merge Sort.

IV. EXPERIMENTS

In this section, we explore how different peak identification
parameters in time series segmentation can effect Dynamic
Time Warping. The experiments will be done using datasets
from the UCR repository [19]. The threshold for peak identi-
fication ¢ is given values of the first quartile (Q1), median (M)
and the third quartile (Q3). The minimum peak identification
radius d is given values: %, %, %, %, é, 6‘—4, and ﬁ of the
time series length /. For the sake of simplicity, d values in
figures will only be referred to with the denominator.

When the peak selection radius d is large or when the
peak threshold ¢ is large, fewer peaks are identified, which
means fewer segments. When no peaks are detected, and
no segment is found, it simply becomes standard DTW. In
contrast, when the peak detection radius is small or when the
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Figure 5: (a) and (b) are the same train and test sample with the same label from dataset “BeetleFly”. (c) and (d) are the same
train and test sample with the same label from dataset “ECGFiveDays”. (a) and (c) has peak identification parameters d=%l

with t = 03, (b) and (d) has peak identification parameters d=

peak threshold is low, there are more peaks, which leads to
more segments and potentially better avoidance of pathological
warpings. However, more segments in time series sequences
introduce risks of identifying false peaks, which could lead to
bad segmentation and worsen DTW performance.

Fig. 5 shows two sets of train and test time series from
datasets “BeetleFly” and “ECGFiveDays”. The identified
peaks are labeled with dashed lines. Here we demonstrate the
effect of peaks selection parameters on different datasets. Ap-
parently, “BeetleFly” sequences are densely-peaked, whereas
“ECGFiveDays” is very sparsely-peaked. In our experiments,
the best peak selection parameter for dataset “BeetleFly” is
d:ﬁl, and t = M, and the best peak selection parameter for
dataset “ECGFiveDays” is d=%l, and t = Q3. For densely-
peaked datasets, if the parameters are set to find too few peaks,
the performance is greatly influenced by the actual value of
each peak. Which could potentially introduce uncertainty and
errors. On the other hand, when the parameters are set to allow
too many peaks, sparsely-peaked sequences would identify
too many false peaks. Also leading to the deterioration in
performance.

The main goal of segmenting time series as a means to
improve the standard DTW is to avoid pathological warpings.
Fig. 6 uses the same example as Fig. 5(c), with step pattern
“symmetricl”. Fig. 6(a) shows the standard DTW mapping,
with the DTW distance of 23.68683. Fig. 6(b) shows the
joint result of three segments of time series DTW. The joint
warping path avoided all the pathological warpings, and the
DTW distance of each segment are 0.384774, 0.159536, and
0 respectively.

Fig. 7 shows the processing time with different peak iden-
tification parameters on datasets: “ArrowHead”, “BeetleFly”,
“Car”, “Coffee”, “ECGFiveDays”, “Ham”, “Herring”, “Light-
ing7”, “Meat”, “OliveQil”, “Plane”, “ShapeletSim”, “ToeSeg-
mentationl”, “Trace”, “Wine”. Initially, the more potential
peaks there are the shorter the processing time. However, once
the peak identification radius value d gets past the value 31—21,
the overhead of peak identification becomes more significant.
Given the same d, the peak threshold value Q3 has overall
more efficient performance, especially for larger d values.
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Figure 6: Standard DTW compared against joint DTW from
time series segmentation

V. CONCLUSION

In this paper, we proposed the idea of improving the
current Dynamic Time Warping algorithm with time series
segmentation and also explored the effect of different peak
selection parameters. Given the wide variety of time series
datasets, it is near impossible to obtain a set of peak identi-
fication parameters applicable to all datasets. However, with
appropriate segmentation, most pathological warping can be
avoided without imposing an overpowering global constraint.
An important aspect is to gain prior knowledge of the data on
hand. Identifying too few peaks on a densely-peaked dataset,
or too many peaks on a sparsely-peaked dataset would lead to
the deterioration of performance.

Our next step is to predetermine suitable parameters for
peak identification for different datasets, and also a better way
to pair the identified peaks from two time series sequences.
This can help us avoid pathological warping paths, and also
process each time series segment simultaneously, which would
lead to an improved version of Dynamic Time Warping.
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