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The longest common subsequence (LCS) problem is a classic computer science problem. For the essential problem of computing
LCS between two arbitrary sequences 𝑠1 and 𝑠2, this paper proposes an algorithm taking𝑂(𝑛+𝑟) space and𝑂(𝑟+𝑛2) time, where 𝑟
is the total number of elements in the set {(𝑖, 𝑗)|𝑠1[𝑖] = 𝑠2[𝑗]}.The algorithm can bemore efficient than relevant classical algorithms
in specific ranges of 𝑟.

1. Introduction

The longest common subsequence (LCS) problem is a clas-
sic computer science problem and still attracts continuous
attention [1–4]. It is the basis of data comparison programs
and widely used by revision control systems for reconciling
multiple changes made to a revision-controlled collection
of files. It also has applications in bioinformatics and many
other problems such as [5–7]. For the general case of an
arbitrary number of input sequences, the problem is NP-hard
[8]. When the number of sequences is constant, the problem
is solvable in polynomial time [9]. For the essential problem
of computing LCS between two arbitrary sequences (𝐿𝐶𝑆2),
the complexity is at least proportional to the product of the
lengths of sequences according to the conclusion as follows.

It is shown that unless a bound on the total
number of distinct symbols [author’s note: the size
of alphabet] is assumed, every solution to the
problem can consume an amount of time that is
proportional to the product of the lengths of the
two strings [9].

The sizes of lengths of sequences make the quadratic
time algorithms impractical in many applications. Hence, it
is significant to design more efficient algorithm in practice.
This paper is confined to LCS2 and is to present an algorithm

that can be more efficient than relevant classical algorithms
in specific scenarios.

The following introduction is also confined to the case of
two input sequences. Chvátal and Sankoff (1975) proposed a
Dynamic Programming (DP) algorithm of 𝑂(𝑛2) space and
time [10]. It is the basis of the algorithms for LCS problem.
Soon in the same year, D.S. Hirschberg (1975) posted aDivide
and Conquer (DC) algorithm that is a variation of the DP
algorithm taking 𝑂(𝑛) space and 𝑂(𝑛2 log 𝑛) time [11]. In
2000, Bergroth, Hakonen, and Raita contributed a survey
[12] that shows in the past decades there is no theoretically
improved algorithm based on Hirschberg’s DC algorithm
[11] as it is so brilliant. In 1977, Hirschberg additionally
proposed an 𝑂(𝑝𝑛 + 𝑛 log 𝑛) algorithm and an 𝑂(𝑝(𝑚 +1 − 𝑝) log 𝑛) algorithm where 𝑝 is length of LCS [13]. The
first one is efficient when 𝑝 is small, while the other one is
efficient when p is close to 𝑚. Both of the two algorithms
are more suitable when the length of LCS can be estimated
beforehand. Then, Nakatsu, Kambayashi, and Yajima (1982)
in [14] presented an algorithm suitable for similar sequences
and having bound of 𝑂(𝑛(𝑚 − 𝑝 + 1)) and 𝑂(𝑚(𝑚 − 𝑝 +1) log 𝑛). Let the two sequences be 𝑠1 and 𝑠2. Same in
1977, Hunt and Szymanski proposed an algorithm taking𝑂(𝑟) space and 𝑂((𝑟 + 𝑛) log 𝑛) time, where 𝑟 is the total
number of elements in the set {(𝑖, 𝑗)|𝑠1[𝑖] = 𝑠2[𝑗]} [15]. The
algorithm reduces LCS2 to longest increasing subsequence
(LIS) problem.Apostolico andGuerra (1987) in [16] proposed
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0 1 2 3 4 5

s1 : x n f a f a

0 1 2 3 4 5

s2 : y f a n f a

n f a f a

0 1 2 3 4 5 6 7 8

l : (1, 3) (2, 4) (2, 1) (3, 5) (3, 2) (4, 4) (4, 1) (5, 5) (5, 2)

Figure 1: 𝑠1, 𝑠2 and the conceived new data 𝑙.

an algorithmbased on [15] taking time𝑂(𝑛 log 𝑠+𝑑 log log 𝑛),
where 𝑑 is the number of dominant matches (as defined by
Hirschberg [13]) and 𝑠 is minimum of 𝑛 and the alphabet
size. Further, based on [16], Eppstein (1992) in [17] proposed
an 𝑂(𝑛 log 𝑠 + 𝑑 log logmin(𝑑, 𝑛𝑚/𝑑)) algorithm when the
problem is sparse. If the alphabet size is constant, Masek and
Paterson (1980) in [18] proposed an 𝑂(𝑛2/ log2𝑛) algorithm
utilizing the method of four Russians (1970) [19]; Abboud,
Backurs, and Williams (2015) in [20] showed an 𝑂(𝑛2−𝜀)
algorithm where 𝜀 > 0. 𝑂(𝑛2( log log 𝑛)/ log 2𝑛) algorithms
are also proposed by Bille and Farach-Colton (2008) in
[21] and Grabowski (2014) in [22], each of which has its
own prerequisite. Restrained by the conclusion of [9, 20],
in these decades an extensive amount of research keeps
trying to achieve lower complexity than 𝑂(𝑛2) of computing
LCS between two condition-specific sequences for different
applications, which also can be found in the survey [12]. For
computing the length of LCS between two sequences over
constant alphabet size, Allison and Dix (1986) presented an
algorithm of 𝑂(𝑛2/𝑤), where 𝑤 is the word-length of com-
puter [23]. This algorithm uses bit-vector formula with 6 bit-
wise operations. Although falling into the same complexity
class as simple 𝑂(𝑛2) DP algorithms, this algorithm is faster
in practice. Crochemore, Iliopoulos, Pinzon, and Reid (2001)
in [24] proposed a similar approach whose complexity is also
𝑂(𝑛2/𝑤). Due to the fact that only 4 bit-wise operations are
used by the bit-vector formula, this approach gives a practical
speedup over Allison and Dix’s algorithm.

ComparedwithChvátal-Sankoff algorithm [10],Hirschberg
algorithm [11], and Hunt-Szymanski algorithm [15], most of
the other algorithms for LCS problem between two sequences
have more dependency, such as the following: the length of
LCS is estimable beforehand [13, 14], two input sequences
are similar [14, 16], problem is sparse enough [17], or the
alphabet size is finite [16, 18, 20]. Some algorithms give
speedup over classical algorithms in engineering [23, 24]. In
this paper, an algorithm of 𝑂(𝑛 + 𝑟) space and 𝑂(𝑟 + 𝑛2) time
is proposed for 𝐿𝐶𝑆2, where 𝑟 is the total number of elements
in the set {(𝑖, 𝑗)|𝑠1[𝑖] = 𝑠2[𝑗]} assuming the two arbitrary
sequences are 𝑠1 and 𝑠2. The algorithm also reduces LCS2
to longest increasing subsequence (LIS) problem. Compared
with relevant classical algorithms, the algorithm can be more
efficient in specific range of 𝑟.

This paper is organized as follows. In Section 1, the current
state of algorithms for LCS problem between two sequences

including LCS2 is introduced. The proposed algorithm of
this paper is presented and exemplified in Section 2, where
preliminary terminologies needed to understand most of the
paper and the theoretical basis of the proposed algorithm are
also given. In Section 3, efficiency of the proposed algorithm
is analyzed.

2. Algorithm

The longest common subsequence (LCS) is the longest
subsequence common to all sequences in a set of sequences.
This subsequence is not necessarily unique or not required to
occupy consecutive positions within the original sequences
(e.g., 𝑓𝑎𝑓𝑎 is a longest common subsequence between 𝑛𝑓𝑎𝑓𝑎
and𝑓𝑎𝑛𝑓𝑎).𝐿𝐶𝑆(𝑠𝑒𝑞1, 𝑠𝑒𝑞2) is a defined function that returns
a set containing all the LCSes between two sequences, while
the longest increasing subsequence (LIS) is a subsequence of
a given sequence in which the subsequence’s elements are in
sorted order, lowest to highest, and in which the subsequence
is as long as possible. This subsequence is not necessarily
contiguous, or unique (e.g., {1, 2, 3} is a longest increasing
subsequence of {1, 4, 2, 3}). 𝐿𝐼𝑆(𝑠𝑒𝑞) is also a defined function
that returns a set containing all the LISs of a sequence.
Assume 𝑠1 = 𝑥𝑛𝑓𝑎𝑓𝑎 and 𝑠2 = 𝑦𝑓𝑎𝑛𝑓𝑎. For all 𝑠1[𝑖] =𝑠2[𝑗], assume there is a sequence 𝑙, of which the elements
are vectors in the form of (𝑖, 𝑗) (see Figure 1). The left part
of an element of 𝑙 (𝑙[𝑢][0]) is the position of a symbol in 𝑠1,
and the right part of the element (𝑙[𝑢][1]) is the position of
the symbol in 𝑠2. 𝑙 is sorted according to 𝑙[𝑢][0] as the first
key in ascending order and according to 𝑙[𝑢][1] as the second
key in descending order. Define (𝑖𝑢, 𝑗𝑢), (𝑖V, 𝑗V) ∈ 𝑙, (𝑖𝑢 <𝑖V) ∧ (𝑗𝑢 < 𝑗V) ⇐󳨐 (𝑖𝑢, 𝑗𝑢) < (𝑖V, 𝑗V). Associating 𝐿𝐼𝑆(𝑙)
with 𝐿𝐶𝑆(𝑠1, 𝑠2), it is bijective mapping between 𝐿𝐼𝑆(𝑙) and𝐿𝐶𝑆(𝑠1, 𝑠2). Hence,𝐿𝐶𝑆(𝑠1, 𝑠2) canbe reduced to𝐿𝐼𝑆(𝑙) [25].
According to the theoretical basis, Algorithm 1 is proposed
for 𝐿𝐶𝑆2. The algorithm is designed to reduce LCS2 to LIS
problem.

2.1. Example. Reuse 𝑠1 = 𝑥𝑛𝑓𝑎𝑓𝑎, 𝑠2 = 𝑦𝑓𝑎𝑛𝑓𝑎 that are given
previously. The process of computing LCSes between 𝑠1 and𝑠2 using Algorithm 1 is illustrated in Figure 2 and presented
as follows.

Scan 𝑙 from left to right. The right part of 𝑙[0] = (1, 3) is 3,3 + 1 = 4; then 𝑠2󸀠[4] is going to be computed. 𝑠2󸀠[4][0] =𝑠2󸀠[3][0] + 1 = 1; 𝑠2󸀠[4][1] is the position of (1, 3) in 𝑙;
therefore 𝑠2󸀠[4] = (1, 0).
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1. ALG(𝑠1, 𝑠2) ⊳ 𝑛 = |𝑠2|
2. ⊳ 𝑆𝑡𝑒𝑝 1 : 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 𝑛𝑒𝑤 𝑑𝑎𝑡𝑎
3. 𝑠1, 𝑠2 󳨀→ 𝑙 ⊳ 𝑟 = |𝑙|
4. ⊳ 𝑆𝑡𝑒𝑝 2 : 𝑇ℎ𝑒 𝑚𝑎𝑖𝑛 𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒
5. 𝑠2󸀠[0 . . . 𝑛] ←󳨀 (0, -)
6. 𝑝𝑟𝑒[0 . . . 𝑟 − 1] ←󳨀 -
7. 𝑒𝑛𝑑 ←󳨀 [ ]
8. for 𝑖 = 0 to 𝑟 − 1 do
9. 𝑠2󸀠[𝜉 + 1][1] ←󳨀 𝑖 ⊳ 𝜉 = 𝑙[𝑖][1]
10. 𝑠2󸀠[𝜉 + 1][0] ←󳨀 𝑠2󸀠[𝜉][0] + 1
11. 𝑝𝑟𝑒[𝑖] ←󳨀 𝑠2󸀠[𝜉][1]
12. 𝑒𝑛𝑑 𝑟𝑒𝑐𝑜𝑟𝑑𝑠←󳨀󳨀󳨀󳨀󳨀 𝑠2󸀠[𝜉 + 1]
13. for 𝑗 = 𝜉 + 2 to 𝑟 − 1 do
14. if 𝑠2󸀠[𝑗][0] < 𝑠2󸀠[𝜉 + 1][0]
15. 𝑠2󸀠[𝑗] ←󳨀 𝑠2󸀠[𝜉 + 1]
16. else
17. break
18. ⊳ 𝑆𝑡𝑒𝑝 3 : 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝐿𝐼𝑆 𝑜𝑓 𝑙
19. 𝑙, 𝑝𝑟𝑒, 𝑒𝑛𝑑 󳨀→ 𝑙𝑖𝑠 ⊳ 𝑙𝑖𝑠 ∈ 𝐿𝐼𝑆(𝑙)
20. ⊳ 𝑆𝑡𝑒𝑝 4 : 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝐿𝐶𝑆 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑠1 𝑎𝑛𝑑 𝑠2
21. 𝑠1 𝑜𝑟 𝑠2, 𝑙𝑖𝑠 󳨀→ 𝑙𝑐𝑠 ⊳ 𝑙𝑐𝑠 ∈ 𝐿𝐶𝑆(𝑠1, 𝑠2)
22. return 𝑙𝑐𝑠
Algorithm 1: Algorithm proposed in this paper.

The right part of 𝑠2󸀠[4] is 0; then 𝑝𝑟𝑒[0] = 𝑠2󸀠[3][1].𝑒𝑛𝑑 records the information of 𝑠2󸀠[4] = (1, 0).
end : 1 → 0

Then, 𝑠2󸀠[5][0] < 𝑠2󸀠[4][0]; therefore 𝑠2󸀠[5] = 𝑠2󸀠[4];𝑠2󸀠[6][0] < 𝑠2󸀠[4][0]; therefore 𝑠2󸀠[6] = 𝑠2󸀠[4].
For 𝑙[1] = (2, 4), the right part of (2, 4) is 4; then 𝑠2󸀠[5] is

going to be computed. 𝑠2󸀠[5][0] = 𝑠2󸀠[4][0] + 1 = 2; 𝑠2󸀠[5][1]
is the position of (2, 4) in 𝑙; therefore 𝑠2󸀠[5] = (2, 1).

The right part of 𝑠2󸀠[5] is 1; then 𝑝𝑟𝑒[1] = 𝑠2󸀠[4][1].𝑒𝑛𝑑 records the information of 𝑠2󸀠[5] = (2, 1).
end : 1 → 0

2 → 1

Then, 𝑠2󸀠[6][0] < 𝑠2󸀠[5][0]; therefore 𝑠2󸀠[6] = 𝑠2󸀠[5].
For 𝑙[2] = (2, 1), 𝑠2󸀠[2][0] = 𝑠2󸀠[1][0] + 1 = 1; 𝑠2󸀠[2][1] is

the position of (2, 1) in 𝑙; therefore 𝑠2󸀠[2] = (1, 2).
The right part of 𝑠2󸀠[2] is 2; then 𝑝𝑟𝑒[2] = 𝑠2󸀠[0][1].𝑒𝑛𝑑 records the information of 𝑠2󸀠[2] = (1, 2).

end : 1 → 0 2
2 → 1

Then, 𝑠2󸀠[3][0] < 𝑠2󸀠[2][0]; therefore 𝑠2󸀠[3] = 𝑠2󸀠[2].𝑠2󸀠[4][0] ̸< 𝑠2󸀠[2][0], 𝑠2󸀠[4] is kept unchanged, and the rest
of the elements 𝑠2󸀠[5] and 𝑠2󸀠[6] are not going to be checked.

The rest of the elements of 𝑙 can be computed in the same
way. Figure 2(d) is the final result of 𝑝𝑟𝑒 and 𝑒𝑛𝑑.

From the auxiliary data 𝑒𝑛𝑑, it can be seen that there is
only one LIS in 𝑙. The length of the LIS is 4.𝑒𝑛𝑑[3] points to 7; therefore the last element of the LIS is𝑙[7] = (5, 5).

Table 1: Complexity of each procedure of Algorithm 1.

Procedure of algorithm Space Time
Step 1 𝑂(𝑛 + 𝑟) 𝑂(max(𝑟, 𝑛 log 𝑛))
Step 2 𝑂 (𝑛 + 𝑟) 𝑂(𝑟 + 𝑛2 − 𝑛

2 )
Step 3 𝑂 (𝑟) 𝑂 (𝑛)
Step 4 𝑂 (𝑛) 𝑂 (𝑛)

𝑝𝑟𝑒[7] = 5 and 𝑙[5] = (4, 4); then the last two elements of
the LIS are (4, 4) (5, 5).𝑝𝑟𝑒[5] = 4 and 𝑙[4] = (3, 2); then (3, 2) (4, 4) (5, 5).𝑝𝑟𝑒[4] = 2 and 𝑙[2] = (2, 1); then (2, 1) (3, 2) (4, 4) (5, 5).𝑝𝑟𝑒[2] is null. Then the LIS is (2, 1) (3, 2) (4, 4) (5, 5).

Since it is bijective mapping between 𝐿𝐼𝑆(𝑙) and 𝐿𝐶𝑆(𝑠1,𝑠2), (2,1) (3, 2) (4, 4) (5,5) ∈ 𝐿𝐼𝑆(𝑙) 󳨐⇒ 𝑠1[2]𝑠1[3]𝑠1[4]𝑠1[5] =𝑠2[1]𝑠2[2]𝑠2[4]𝑠2[5] = 𝑓𝑎𝑓𝑎 ∈ 𝐿𝐶𝑆(𝑠1, 𝑠2). 𝑓𝑎𝑓𝑎 is the only
LCS between 𝑠1 and 𝑠2.
2.2. Complexity. According to the conclusion of [15] (para-
graph 3 page 4), we have the following.

Step 1 [author’s note: similar to step 1 of Algo-
rithm 1 of this paper] can be implemented
by sorting each sequence while keeping track
of each element’s original position. We may
then merge the sorted sequences creating the
MACHLISTs [author’s note: similar to array 𝑙 of
this paper] as we go. This step takes a total of𝑂(𝑛 log 𝑛) time and 𝑂(𝑛) space.

Assume 𝑟 is the number of match vectors between 𝑠1 and𝑠2. Step 1 of Algorithm 1 is a process of 𝑂(𝑛 + 𝑟) space and𝑂(max(𝑟, 𝑛 log 𝑛)) time. As the length of LCS is𝑂(𝑛), step 3 is
a process of𝑂(𝑟) space and𝑂(𝑛) time. Step 4 takes𝑂(𝑛) space
and 𝑂(𝑛) time. Write operations in 𝑠2󸀠 for all element of 𝑙 are
listed together in Figure 2(c). In𝑝𝑟𝑒 and 𝑒𝑛𝑑 (see Figure 2(d)),
the time of write operation is 𝑟. In 𝑠2󸀠, the time of write
operation of dark gray block is 𝑟; the time of write operation
of light gray block is at most∑𝑛−1𝑖=1 𝑖 = 𝑛(𝑛 − 1)/2 = (𝑛2 −𝑛)/2,
which is illustrated in Figure 3.Therefore, step 2 takes𝑂(𝑛+𝑟)
space and 𝑂(𝑟 + (𝑛2 − 𝑛)/2) time. Complexities of every step
of Algorithm 1 are listed in Table 1.Thewhole algorithm takes𝑂(𝑛 + 𝑟) space and 𝑂(𝑟 + (𝑛2 − 𝑛)/2) = 𝑂(𝑟 + 𝑛2) time, which
is dominated by step 2.

3. Efficiency

The algorithm proposed in this paper is designed to compute
LCS between two arbitrary sequences, which is the same as
the original intention of the classical algorithms: Chvátal-
Sankoff algorithm [10], Hirschberg algorithm [11], and Hunt-
Szymanski algorithm [15]. The proposed algorithm can be
more efficient in specific range of 𝑟 compared with the
classical algorithms, where 𝑟 is the total number of elements
in the set {(𝑖, 𝑗)|𝑠1[𝑖] = 𝑠2[𝑗]} assuming two arbitrary
sequences are 𝑠1 and 𝑠2.
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0 1 2 3 4 5

s1 : x n f a f a

0 1 2 3 4 5

s2: y f a n f a

(a) Two sequences: 𝑠1 and 𝑠2

n f a f a

0 1 2 3 4 5 6 7 8

l : (1, 3) (2, 4) (2, 1) (3, 5) (3, 2) (4, 4) (4, 1) (5, 5) (5, 2)

(b) New data 𝑙 constructed from 𝑠1 and 𝑠2

y f a n f a

0 1 2 3 4 5 6
s2 :

For l[0] = (1, 3), s2 :
For l[1] = (2, 4), s2 :
For l[2] = (2, 1), s2 :
For l[3] = (3, 5), s2 :
For l[4] = (3, 2), s2 :
For l[5] = (4, 4), s2 :
For l[6] = (4, 1), s2 :
For l[7] = (5, 5), s2 :
For l[8] = (5, 2), s2 :

(0, −)
(0, −)
(0, −)
(0, −)
(0, −)
(0, −)
(0, −)
(0, −)
(0, −)
(0, −)

(0, −)
(0, −)
(0, −)
(0, −)
(0, −)
(0, −)
(0, −)
(0, −)
(0, −)
(0, −)

(0, −)
(0, −)
(0, −)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(1, 6)
(1, 6)
(1, 6)

(0, −)
(0, −)
(0, −)
(1, 2)
(1, 2)
(2, 4)
(2, 4)
(2, 4)
(2, 4)
(2, 8)

(0, −)
(1, 0)
(1, 0)
(1, 0)
(1, 0)
(2, 4)
(2, 4)
(2, 4)
(2, 4)
(2, 4)

(0, −)
(1, 0)
(2, 1)
(2, 1)
(2, 1)
(2, 1)
(3, 5)
(3, 5)
(3, 5)
(3, 5)

(0, −)
(1, 0)
(2, 1)
(2, 1)
(3, 3)
(3, 3)
(3, 3)
(3, 3)
(4, 7)
(4, 7)

(c) Write operation in 𝑠2󸀠

0 1 2 3 4 5 6 7 8
pre : − 0 − 1 2 4 − 5 6

end : 1 0 2 6
2 1 4 8
3 3 5
4 7

→

→

→

→

(d) Final result of 𝑝𝑟𝑒 and 𝑒𝑛𝑑

Figure 2: Example.

n

n

....

r − n
...

Figure 3: Maximum write operation of light gray block in 𝑠2󸀠 of
Alggorithm 1.

3.1. Comparison with Hunt-Szymanski Algorithm. As the
original position in 𝑠2 of each element of 𝑙 is not used
in the process of computing, in Figure 4 Hunt-Szymanski
algorithm needs to utilize binary search to locate the position
in 𝑠2󸀠 for write operation for each element of 𝑙. The time of
binary search in 𝑠2󸀠 of Hunt-Szymanski algorithm is at most∑𝑛𝑖=1 log 𝑖 + (𝑟− 𝑛)log 𝑛, which is illustrated in Figure 5. Using
Stirling’s approximation [26–28], ∑𝑛𝑖=1 log 𝑖 + (𝑟 − 𝑛)log 𝑛 =
log∏𝑛𝑖=1𝑖 + (𝑟 − 𝑛)log 𝑛 = log(𝑛!) + (𝑟 − 𝑛)log 𝑛 ≈ 𝑛 log 𝑛 +(𝑟 − 𝑛)log 𝑛 = 𝑟 log 𝑛. If the demand is only returning one
LCS or the length of LCS, array 𝑙 of the algorithm proposed
in this paper can be replaced with the MATCHLIST that is
used in Hunt-Szymanski algorithm. Therefore, the algorithm
proposed in this paper can take 𝑂(𝑛) space that is the
same as the one Hunt-Szymanski algorithm takes. The main
difference between them is the time consumed in 𝑠2󸀠. In
Figure 3, the total time of write operation of both dark gray
and light gray blocks is at most 𝑟 + (𝑛2 − 𝑛)/2. As 0 ⩽ 𝑟 ⩽ 𝑛2,
if 𝑟 + (𝑛2 − 𝑛)/2 < 𝑟 log 𝑛 󳨐⇒ (𝑛2 − 𝑛)/2(log 𝑛 − 1) < 𝑟 ⩽ 𝑛2,

3

3 4

1 4

1 4 5

1 2 5

1 2 4

1 2 4

1 2 4 5

2 4 5

n f a f a

0 1 2 3 4 5 6 7 8

l : 3 4 1 5 2 4 1 5 2

For l[7] = 5, s2 :
For l[6] = 1, s2 :
For l[5] = 4, s2 :
For l[4] = 2, s2 :
For l[3] = 5, s2 :
For l[2] = 1, s2 :
For l[1] = 4, s2 :
For l[0] = 3, s2 :

For l[8] = 2, s2 :

Figure 4: Write operation in 𝑠2󸀠 of Hunt-Szymanski algorithm.

the algorithm proposed in this paper is more efficient in time
than Hunt-Szymanski algorithm (see Figure 7).

3.2. Comparison with Chvátal-Sankoff Algorithm. Chvátal-
Sankoff algorithm needs 𝑛2 times of comparison in 𝑛2 space,
which is illustrated in Figure 6. To simplify the analysis, only
the 𝑟 + (𝑛2 − 𝑛)/2 time consumed in 𝑠2󸀠 of the algorithm
proposed in this paper is going to be compared with the𝑛2 time of Chvátal-Sankoff algorithm. As 0 ⩽ 𝑟 ⩽ 𝑛2, if𝑟 + (𝑛2 − 𝑛)/2 < 𝑛2 󳨐⇒ 0 ⩽ 𝑟 < (𝑛2 + 𝑛)/2, the algo-
rithm proposed in this paper is more efficient in time than
Chvátal-Sankoff algorithm (see Figure 7). In this case of 𝑟,
the proposed algorithm is also more efficient in space than
Chvátal-Sankoff algorithm.

3.3. Comparison with Hirschberg Algorithm. Hirschberg al-
gorithm takes 𝑂(𝑛) space and𝑂(𝑛2log 𝑛) time. As 0 ⩽ 𝑟 ⩽ 𝑛2,
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n

n

....

... r − n

Figure 5: Maximum time of binary search of Hunt-Szymanski algorithm.
n

n

Figure 6: Time of comparison of Chvátal-Sankoff algorithm.

The algorithm proposed in this 
paper has lower time complexity 
than Hirschberg algorithm.

the algorithm proposed in this
paper is more efficient in time
than Hunt-Szymanski algorithm.the algorithm proposed in this 

paper is more efficient in both
time and space than Chvátal-
Sankoff algorithm.
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Figure 7: Comparison of efficiency against classical algorithms.

the algorithm proposed in this paper takes 𝑂(𝑛+𝑟) space and
𝑂(𝑟+ (𝑛2 −𝑛)/2) = 𝑂(𝑛2) time.Therefore, the proposed algo-
rithm has lower time complexity than Hirschberg algorithm.
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This submission is about an algorithm of an engineering
problem.The efficiency of the algorithm is provenmathemat-
ically in theory.
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