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Abstract: Background: Drug-Target Interactions (DTI) play a crucial role in discovering new drug 
candidates and finding new proteins to target for drug development. Although the number of detected 
DTI obtained by high-throughput techniques has been increasing, the number of known DTI is still 
limited. On the other hand, the experimental methods for detecting the interactions among drugs and 
proteins are costly and inefficient.  

Objective: Therefore, computational approaches for predicting DTI are drawing increasing attention in 
recent years. In this paper, we report a novel computational model for predicting the DTI using ex-
tremely randomized trees model and protein amino acids information.  

Method: More specifically, the protein sequence is represented as a Pseudo Substitution Matrix Repre-
sentation (Pseudo-SMR) descriptor in which the influence of biological evolutionary information is 
retained. For the representation of drug molecules, a novel fingerprint feature vector is utilized to de-
scribe its substructure information. Then the DTI pair is characterized by concatenating the two vector 
spaces of protein sequence and drug substructure. Finally, the proposed method is explored for predict-
ing the DTI on four benchmark datasets: Enzyme, Ion Channel, GPCRs and Nuclear Receptor.  

Results: The experimental results demonstrate that this method achieves promising prediction accura-
cies of 89.85%, 87.87%, 82.99% and 81.67%, respectively. For further evaluation, we compared the 
performance of Extremely Randomized Trees model with that of the state-of-the-art Support Vector 
Machine classifier. And we also compared the proposed model with existing computational models, 
and confirmed 15 potential drug-target interactions by looking for existing databases.  

Conclusion: The experiment results show that the proposed method is feasible and promising for pre-
dicting drug-target interactions for new drug candidate screening based on sizeable features. 

Keywords: Drug-target interactions, pseudo substitution matrix representation, drug substructure fingerprint, extremely  
randomized trees, computational model. 

1. INTRODUCTION 

The identification of drug-target interactions (DTI) has 
recently emerged as an area of intense research activity due 
to its crucial role in discovering new drug candidates and 
finding new proteins to target for drug development. How-
ever, the knowledge of drug-target interactions is still defi-
cient and only a small share of them is experimentally tested 
and is detected as interactive. Much effort has been devoted 
to use experimental methods to identify drug-protein interac-
tions but the experimental tests are both costly and difficult. 
It often costs billions of dollars for developing a successful 
novel chemistry-based drug and nearly a decade for intro-
ducing the drug to market. Only few of the drug candidates 
can be approved to reach the market by Food and Drug Ad 
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ministration (FDA) while most of them fail during clinical 
trials showing adverse side effects. However, recent re-
searches have definitely showed that the interactions be-
tween drugs and some proteins related to specific toxicity 
greatly influence the side-effects or toxicity of drug com-
pounds. Identifying protein-target interactions help under-
standing the toxicity of drug candidates. Furthermore, it also 
contributes to finding new potential targets for an old drug 
which provides insights into its potential toxicity or new 
application to treating other disease. Due to the inevitable 
drawbacks of experimental methods, computational ap-
proaches for predicting drug-target interactions have gained 
increasing attention in recent years. Screening databases of 
small molecules against certain classes of protein, computa-
tional methods can potentially find some drug candidates 
with better bio-activity from the statistical perspective and 
therefore accelerates drug discovery. 

Due to the development of molecular medicine and the 
completion of the human genome project, the amount of 
available knowledge in biology and chemistry rapidly in-
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creases and enables the researchers to retrieve compound 
information and properties and study drug-target interaction 
problems by a systematic integration. A number of databases 
have been built for storing these data and some of them focus 
on drug-target relations such as DrugBank [1], Therapeutic 
Target Database (TTD) [2], Kyoto Encyclopedia of Genes 
and Genomes (KEGG) [3], SuperTarget and Matador [4], 
etc. These accumulated data of these databases offer signifi-
cant material for the researches of prediction methods on a 
genome-wide scale. 

A number of computational methods have been proposed 
for predicting drug-target interactions and most of them be-
long to two categories: Docking simulation and machine 
learning. Docking simulation is an effective molecular mod-
eling approach which uses dynamic simulation to predict the 
positive interactions when drug molecule and protein bound 
to each other. However, this method usually requires the 
three-dimensional (3D) structure data of targets (traditional 
docking) or a large set of drugs (inverse docking). Up to 
now, the proteins with known 3D structures cover only a 
small part of all proteins and therefore this requirement is 
difficult to meet. Compared with the known 3D structure 
data, the amount of detected protein sequence data are rela-
tively larger and increases exponentially. Hence, it is more 
practical to build a computational model for predicting DTI 
based on protein sequence data. 

Existing computational models for predicting drug-target 
interactions usually represent the known drug-target interac-
tions as a bipartite graph. In this bipartite graph, nodes de-
note drugs and targets and the interactions between them are 
represented by the edges between these nodes. Therefore, we 
can treat the DTI prediction problem equivalent to predicting 
new edges in the bipartite graph. Based on the topology of 
the graph, some of algorithms have been proposed for pre-
dicting the new drug-target interaction. To predict if a drug 
interacts with a target, these approaches consider the edges 
involving these two nodes [5]. They can be generally divided 
into three kinds of supervised inference methods: drug-based 
similarity inference (DBSI), target-based similarity inference 
(TBSI) and network-based inference (NBI). Cheng et al. [6] 
has proposed a method derived from the recommendation 
algorithms of complex network theory for predicting DTIs 
and this method is based on network-based inference. Fak-
hraei et al. [7] have proposed a prediction model which uses 
probabilistic soft logic and considers both target-target 
similarity and drug-drug similarity. However, these 
algorithms do not work well in the case that the predicted 
interaction involves a “new drug” or a “new target”. Herein, 
a “new drug” means a drug candidate without any 
interactions and a “new target” means a target protein 
without any interactions. In addition, these algorithms do not 
consider the biological information in the protein domain. 

Another popular approach for predicting DTIs is to use 
machine learning techniques to build a classification model 
which consider each drug-target pair as one sample. The 
drug-target pairs which are known to interact are labeled as 
positive. Each sample is represented by a feature vector 
which is composed by a drug feature vector and a protein 
feature vector. The drug features usually extracted from the 
two-dimensional chemical structures. Francisco et al. [8] 

have proposed a method for predicting DTIs which calcu-
lates 2D molecular descriptors for drug feature extraction. 
Chen et al. [9] consider the information of chemical-
chemical similarities, chemical-chemical connections and 
chemical-protein connections and propose an effective clas-
sifier for identifying drug-target groups. However, these 
methods do not take the biological interpretation into ac-
count. 

In this article, we report a novel computational model for 
predicting drug-target interactions. We formulate this predic-
tion problem as an extended structure-activity relationship 
(SAR) classification problem assuming that the interactions 
between drugs and target proteins greatly depend on the 
structure information not only from the molecular substruc-
ture fingerprints of drug compounds but also from target 
protein sequences. The positive sample set is constructed by 
the known interactional drug-target pairs and the negative 
sample set is randomly connected from the other pairs. We 
represent drugs by utilizing their molecular substructure fin-
gerprints and encode protein sequence using a novel feature 
extraction method called Pseudo-SMR. Here, we explore 
Extremely Randomized Trees (ETs) classifier for building 
prediction model for four kinds of pharmaceutically useful 
protein target: enzymes, ion channels, GPCRs and nuclear 
receptors. ER-trees have inherent advantages to deal with 
drug-target prediction problem due to its distinctive charac-
ters: explicitly randomized cut-points and attribute which can 
reduce variance, and the usage of the original training set 
which helps to minimize bias. The goal of our study is to 
establish an effective prediction model for finding new drug-
target interactions and to provide deeper insights into DTIs 
by seeking the influential factors. 

2. MATERIALS AND METHODS 

2.1. Golden Standard Datasets 

In this study, we explore the proposed method for pre-
dicting drug-target interactions on four types of protein tar-
gets: enzymes, ion channels, GPCRs and nuclear receptors. 
These data are collected from the KEGG BRITE [3], 
BRENDA [10], SuperTarget & Matador [4] and DrugBank 
[1] databases and used as the gold standard datasets by Ya-
manishi et al. [11]. The numbers of drugs known to target 
enzymes, ion channels, GPCRs and nuclear receptors are 
445, 210, 233 and 54 respectively. The numbers of protein 
known to be targeted by the drugs are 664, 204, 95 and 26 
respectively. Among these drug-target pairs, 5127 pairs of 
them are known to interact with each other. The numbers of 
known interactions involving enzymes, ion channels, GPCRs 
and nuclear receptors are 2926, 1476, 635 and 90 respec-
tively. We finally use these known interactions to construct 
all the four positive sample sets. 

Drug-target interaction network is usually modeled as a 
bipartite graph, where the initial edges describe the real 
drug-target interactions already detected by experiments. 
Compared with a completely connected bipartite graph, the 
number of initial edges is relatively small [12]. Take the en-
zymes dataset for an example, there totally exists to be 
445×664=295480 connections in the corresponding bipartite 
graph. However, there are only 2926 initial edges which rep-
resent the known drug-target interactions. Therefore, the 



470    Current Protein and Peptide Science, 2018, Vol. 19, No. 5 Huang et al. 

number of positive samples (e.g., 2926) is significantly 
smaller than the possible number of negative samples (e.g., 
295480-2926=292554), which presents a bias problem. To 
solve this problem we randomly collected the negative sam-
ples with the same size of the positive sample datasets. 
Therefore, the sample numbers of enzymes, ion channels, 
GPCRs and nuclear receptors datasets are 2926, 1476, 635 
and 90 respectively. In fact, such negative sample sets may 
possibly contain drug-target pairs that interact really. How-
ever, in view of the large scale of DTI bipartite graph, the 
number of real interactions pairs which are possibly col-
lected in negative sets is very small. 

2.2. Drug Molecules Representation 

Different kinds of descriptors for representing drug com-
pounds have been proposed, such as geometrical, topologi-
cal, constitutional and quantum chemical properties. Re-
cently, some current researches [13] indicate that it is effec-
tive to use a variety of molecular substructure fingerprints to 
represent drug compounds. Substructure fingerprint de-
scribes the structure information of a given drug compound 
using a Boolean substructure vector. It separates the drug 
molecule into fragments and records the existence of the 
substructures. Specifically, the pattern of substructure vec-
tors is predefined according to the substructure dictionary 
and each binary bit in the fingerprint vector denote the pres-
ence or absence of a particular substructure. If a substructure 
exists in a given drug molecule, the corresponding bit in the 
vector is set to be 1; conversely, it is set to be 0 if the sub-
structure is absent. In this way, substructure fingerprint is 
capable of describing the complex structure of drug mole-
cules. In this work, the chemical structures fingerprints set 
we used are collected from the PubChem System. Finger-
prints property is "PUBCHEM_CACTVS_ SUBGRAPH-
KEYS" in PubChem and Base64 encoded which provides a 
textual description by the binary data. The a drug fingerprint 
records the information of 881 substuctures and therefore a 
drug moleclue feature is a 881 binary vector. 

2.3. Target Protein Representation 

A number of feature extraction methods have been pro-
posed for representing protein sequences. Effective protein 
feature descriptors can mine the significant information and 
therefore boost the performance of protein-associated predic-
tion models, such as protein function prediction model and 
protein-protein interaction prediction model. Most of these 
feature extraction methods derive from the concept of 
Chou’s pseudo amino acid (PseAA) composition. Extracted 
from the original protein sequences, this kind of feature de-
scriptors expends the simple amino acid composition by tak-
ing the information of sequence order into account. How-
ever, there are some novel feature extraction methods utiliz-
ing biological kernels. Jaakkola et al. [14] have proposed 
Fisher kernel considering homology information. Leslie et 
al. [15] have put forward another mismatch string kernel for 
protein sequence representation. Unlike the PseAAC-based 
methods which extract feature directly from protein se-
quences, these kernel-based methods remain some kinds of 
prior biological information and extract more comprehensive 
feature descriptors. 

As a variant of representation method proposed by [16], 
Substitution Matrix Representation (SMR) is used for the 
representation of protein feature. Given any protein sequence 
of length N, this method transform it into an N×20 matrix by 
using a specific substitution matrix which helps retaining the 
evolutionary information. In this article, we use the BLO-
SUM62 matrix (i.e., blocks of amino acid substitution matrix 
used for comparing the sequences with 62% similarity) for 
this transformation. Depicting the substitution probabilities 
of amino acids, this matrix and often used to score align-
ments between evolutionarily divergent protein sequences. In 
this transformation, SMR can be depicted as follow: 
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where N is the length of the given protein sequence; Bi,j de-
notes the rate value of BLOSUM62 and represents the possi-
bility that the ith amino acid of the given protein sequence 
mutates to amino acid j in the evolution process. Since the 
lengths of protein sequences are different, the SMR matrixes 
from this transformation cannot be used as feature descrip-
tors directly. To address this problem, we adopt the concept 
of pseudo amino acid composition in the second step of the 
feature extraction. Similar to reports in [17], we further con-
sidered the neighborhood of each amino acid residues. Spe-
cifically, the pseudo-SRM descriptor is obtained from a 
SMR matrix by the following equations: 
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where lg represents the distance between one residue and its 
neighbors; N is the length of a given protein sequence; M is a 
normalized version of SMR matrix. In this work, we set the 
value of maxlag to be 15. Therefore, every protein sequence 
is represented by a Pseudo-SMR feature whose length is 320. 
Considering the features of drug molecules are binary, we 
normalize the Pseudo-SMR feature into the range from 0  
to 1. 

2.4. Extremely Randomized Trees 

Introduced by Geurts et al. [18], Extremely Randomized 
Tree (ER-Tree) growing algorithm combines the attribute 
randomization of random subspace with a totally random 
selection of the cut-point. Extremely randomized tree is a 
tree-based ensemble method which constructs an ensemble 
of unpruned decision or regression trees through a top-down 
procedure. Unlike other tree-based ensemble methods, the 
ER-Tree algorithm splits nodes by choosing cut-points fully 
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at random. In addition, it uses all the learning samples (rather 
than a bootstrap replica) for growing the trees. Specifically, 
the procedure to build ER-trees works in a recursive fashion 
by successively splitting the nodes until all the output vari-
able or candidate attributes are constant in training set. In the 
first step of this recursive procedure, given a training set T 
with m-dimensional attributes A={a1,a2,…,am}, K attributes, 
{a1,…, ak} would be randomly selected without replacement. 
For each selected attribute, its split value is then randomly 
generated as {v1,…,vk}. Define the maximal and minimal 

value of an attribute, a, as 
samin and

samax , the split value 

would be drawn uniformly in [ min
sa , max

sa ]. All split would 

be evaluated by a scoring formula as follow: 

2 ( )
( , )
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s

c
c
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I T
Score s T

H T H T
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+
                 (4) 
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where TR and TL are two subtrees divided by the split s from 
T; HC(T) denotes the entropy of the classification in T; HC(T) 
denotes the split entropy; )(TI S

C denotes the mutual infor-

mation of the split outcome and the classification and meas-
ures the ability of split s to produce pure successors. 

Based on the computed evaluation scores, the split would 
be chosen with the maximal score: 

i 1,...,
( *, ) max ( , )K iScore s T Score s T==                  (8) 

According to the s*, T is then divided into left and right 
subtree, TL and TR. Both of subtrees are attached to the split 
node and then separated in the next iteration. 

The reason of good accuracy of ER-trees mainly lies in 
the explicitly randomized cut-points and attribute which can 
reduce variance, and the usage of the original training set 
which helps to minimize bias. By averaging over a suffi-
ciently large ensemble of trees, variance caused by randomi-
zation can be canceled. In particular, ER-trees can tolerate 
high levels of bias of class probability estimates when deal-
ing with classification problems. 

In this work, we explore this method for predicting the 
drug-target interactions. We employ scikit-learn to imple-
ment ER-trees. Scikit-learn is a python package for machine 
learning and supports popular and powerful tools for data 
mining. It is available at http://scikit-learn.org/sta- 
ble/index.html. In this work, we set the parameters of ER-
trees classifier to be the same for all experiments (i.e., 
n_estimators=2000; max_features="sqrt"). 

3. RESULTS AND DISCUSSION 

3.1. Evaluation Criteria 

To evaluate the performance of the proposed method, we 
use the following criteria: the overall prediction accuracy 
(Accu.), sensitivity (Sens.), precision (Prec.) and Matthews 
correlation coefficient (MCC) were calculated. They are de-
fined as follows: 
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where true positive (TP) is the number of drug-target pairs 
classified as interacting correctly; false positive (FP) is the 
number of samples classified as interacting incorrectly; true 
negative (TN) is the number of samples classified as non-
interacting correctly; false negative (FN) is the number of 
samples classified as non-interacting incorrectly. For a 
deeper evaluation, we also compute the receiver operating 
characteristic (ROC) curve. To summarize ROC curve in a 
numerical way, the area under an ROC curve (AUC) was 
computed.  

3.2. Measurement of Structural Diversity of Drug and 
Protein Molecules 

A number of methods have been proposed for measuring 
the molecular similarity and diversity. In this work, we cal-
culate the average value of the dissimilarity between all the 
pairwise drug molecules for this evaluation [19]. Specifi-
cally, the average dissimilarity of a given drug fingerprint 
dataset G is calculated as follow: 

( ) ( )
1 1, [1 ( , )]

( )
( )[ ( ) 1]

N G N G
i j i j similarityd i j

Diversity G
N G N G

= = ≠∑ ∑ −
=

−       (13) 

( 1, 2)
c

similarityd f f
a b c

=
+ −                     (14) 

where N(G) is the number of samples in dataset G; similari-
tyd(*) is a function to calculate the similarity between two 
drug fingerprints by using Tanimoto coefficient; c is the 
number of mutual substructure existing in both fingerprint f1 
and fingerprint f2; a and b are the substructure numbers ex-
isting in fingerprint f1 and fingerprint f2 respectively. 

For evaluating the diversity of protein sequences, we cal-
culate the similarity between two protein sequences using a 
normalized version of Needleman–Wunsch score. It is popu-
lar to use Needleman–Wunsch algorithm for calculating the 
alignment score between two protein sequences. Specifi-
cally, the average dissimilarity of a given protein sequence 
dataset P is calculated as follow: 
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where N(P) is the number of samples in dataset P; similari-
typ(*,*) is a function to calculate the average normalized 
Needleman-Wunsch between two protein sequences; nw(*,*) 
is the original Needleman-Wunsch function which return the 
Needleman-Wunsch scores. Herein, we set match award 
score, mismatch penalty and gap penalty as 5, -1 and -1 re-
spectively. Obviously, the similarity value of 0 for a pair of 
protein sequences or drug substructure fingerprints denotes 
that two molecules have no any similarity which the similar-
ity value of 1 means that the information of two molecules 
are totally the same. Therefore, for any given dataset A, the 
closer Diversity(A) is to 1, the more diverse the dataset A is.  

Fig. (1) shows the analysis results for drug molecules and 
protein sequences of the four datasets. The average normal-
ized Needleman-Wunsch scores of the datasets of enzymes, 
ion channels, GPCRs and nuclear receptors are 82.30%, 
86.26%, 75.02% and 73.97%. The dissimilarity scores of the 
datasets of enzyme, ion channel, GPCRs and nuclear recep-
tor are 65.17%, 61.43%, 59.55% and 53.47%. The dissimi-
larity score of drug is lower than the protein sequence. These 
results suggest that the protein sequence datasets are very 
structurally diverse and complex and that the drug com-
pounds datasets are less diverse and have relatively moderate 
similarity compared with the protein datasets. It is indicated 
that the interactions experimented in this work are function-
ally and structurally diverse. 

 

Fig. (1). The diversity analysis of drugs and target proteins for four 
datasets. 

3.3. Assessment of Prediction Ability 

For the fairness, we set the same corresponding parame-
ters of ER-Trees classifier when performing on the four dif-
ferent datasets: enzymes, ion channels, GPCRs and nuclear 
receptors. In this work, five-fold cross validation is used for 
evaluating the prediction performance of the proposed 
method. Specifically, we evenly divide the dataset into five 
parts of which four are used for training the ER-Trees and 
the other part is used for testing. The process is repeated five 
times and every part can be predicted as a validation set.  

 Tables 1-4 list the 5-fold cross validation results per-
formed by the proposed model on four datasets (i.e., en-

zymes, ion channels, GPCRs and nuclear receptors). When 
exploring the Enzyme dataset, we obtained the good results 
of average accuracy, precision, sensitivity and MCC of 
89.94%, 90.27%, 89.58% and 81.89% respectively. The 
standard deviations of these criteria values are 0.83%, 
2.09%, 1.04% and 1.34% respectively. When predicting 
drug-target interactions of Icon Channel dataset, the pro-
posed method yielded results of average accuracy, precision, 
sensitivity and MCC of 87.87%, 87.86%, 87.94% and 
78.71% and the standard deviations are 1.34%, 1.95%, 
1.13% and 2.03% respectively. When predicting DTIs of 
GPCRs dataset, the averages of accuracy, precision, sensitiv-
ity and MCC come to be 82.91%, 82.18%, 83.98% and 
71.58% and the standard deviations are 1.51%, 4.54%, 
2.32% and 1.97% respectively. When predicting DTIs of 
Nuclear Receptor dataset, the averages of accuracy, preci-
sion, sensitivity and MCC come to be 83.33%, 76.39%, 
95.29% and 71.56%. However, since the number of samples 
of Nuclear Receptor dataset is only 90, relatively smaller 
than other datasets, it yields the highest standard deviations 
which are 5.20%, 8.04%, 2.74% and 7.43% respectively. 
Figs. (2-5) shows the ROC curves performed by the pro-
posed method on enzymes, ion channels, GPCRs and nuclear 
receptors. The average AUC values range from 90.53% to 
96.34% (Enzyme: 96.01%, Icon Channel: 93.82%, GPCRs: 
90.53% and Nuclear Receptor: 96.34%), suggesting that a 
big separation for two classes is indeed obtained from ER-
Trees. 

These good results collectively suggest that the informa-
tion including protein sequences and drug substructure fin-
gerprints is sufficient enough for predicting whether a given 
drug-protein pair interact or not, and that powerful prediction 
capability for predicting drug-target interactions can be ob-
tained by using a ER-Trees-based model combined Pseudo-
SMR protein features and drug substructure fingerprints. 
This strong prediction performance derives from the feature 
extraction method for protein sequences and the choice of 
machine learning classifier. Pseudo-SMR descriptors not 
only quantitatively describe the differences between amino 
acids, but also partially incorporate the sequence-order in-
formation. ER-Trees classifier performs well due to the en-
semble model and its novel random tree splitting strategy.  

3.4. Comparison Between Pseudo-SMR Descriptor and 

Pseudo-AAC Descriptor 

In order to evaluate the importance of the transformation 
of SMR, we compare its performance with that of Pseudo-
AAC on Enzyme dataset in this section. The Pseudo-AAC 
here we explored is a variant version which computes the 
autocovariance and retain the hydrophobicity information of 
amino acids. Both Pseudo-SMR and Pseudo-AAC descrip-
tors consider the influence of neighbor residues. However, 
unlike Pseudo-SMR, Pseudo-AAC descriptors are extracted 
directly from the original protein sequences and therefore do 
not retain the information from biological substitution ma-
trix. Given a protein sequence P, Pseudo-AAC descriptors 
can be defined in a 20+λ dimensional space. Herein, we set λ 
to be 20. It can be formulated as follow: 

1 2 20 21 20[ ]
Tp p p p p p λ+= … …

          
 (17)
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Table 1. 5-fold cross validation results performed by proposed model on Enzyme dataset. 

Test set Accu.(%) Prec.(%) Sen.(%)� MCC(%)� AUC(%)�

1� 90.34� 91.91� 88.26� 82.53� 95.51�

2� 91.11� 92.47� 89.64� 83.80� 96.51�

3� 89.74� 89.34� 89.65� 81.58� 96.41�

4� 89.57� 90.40� 89.20� 81.31� 95.56�

5� 88.91� 87.25� 91.13� 80.26� 96.06�

Average� 89.94±0.83� 90.27±2.09� 89.58±1.04� 81.89±1.34� 96.01±0.46�

Table 2. 5-fold cross validation results performed by proposed model on Icon Channel dataset. 

Test set Accu.(%) Prec.(%) Sen.(%) MCC(%) AUC(%) 

1 87.46 88.14 86.96 78.06 93.36 

2 89.83 90.36 88.46 81.70 95.38 

3 88.31 88.96 88.08 79.34 93.79 

4 87.63 86.27 89.49 78.30 93.89 

5 86.15 85.57 86.73 76.13 92.67 

Average 87.87±1.34 87.86±1.95 87.94±1.13 78.71±2.03 93.82±1.00 

Table 3. 5-fold cross validation results performed by proposed model on GPCRs dataset. 

Test set Accu.(%) Prec.(%) Sen.(%) MCC(%) AUC(%) 

1 81.89 75.40 86.36 70.07 91.93 

2 84.25 86.43 85.21 73.14 90.65 

3 84.65 86.29 82.95 74.00 90.88 

4 81.10 81.75 80.47 69.35 87.51 

5 82.68 81.06 84.92 71.33 91.66 

Average 82.91±1.51 82.18±4.54 83.98±2.32 71.58±1.97 90.53±1.77 

Table 4. 5-fold cross validation results performed by proposed model on Nuclear Receptor dataset. 

Test set Accu.(%) Prec.(%) Sen.(%) MCC(%) AUC(%) 

1 83.33 78.26 94.74 71.11 95.67 

2 83.33 76.19 94.12 71.79 94.43 

3 80.56 75.00 94.74 66.89 95.98 

4 77.78 65.00 92.86 64.34 95.78 

5 91.67 87.50 100.00 83.67 99.68 

Average 83.33±5.20 76.39±8.04 95.29±2.74 71.56±7.43 96.34±1.98 
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Fig. (2). ROC curves performed by proposed method on Enzyme 
dataset. 

 

Fig. (3). ROC curves performed by proposed method on Icon 
Channel dataset. 

 

Fig. (4). ROC curves performed by proposed method on GPCRs 
dataset. 

 

Fig. (5). ROC curves performed by proposed method on Nuclear 
Receptor dataset. 

where p1,p2,…p20 is the values of the conventional amino 
acid composition, while the rest components are obtained by 
adopting autocovariance approach (AC) method: 

20
20

1

( ( ) ) ( ( ) )
( ) [21, ..., 20 ]

( 20)

k k i
N i

k

index p index p
AC i i

N i

μ μ
λ

σ
+ −

− +

=

− ⋅ −
∑= ∈ +

⋅ − +  (18) 

20

1

1
( )

20 i
index iμ

=
∑= ,                                  (19) 

20 2

1

1
( ( ) )

20 i
index iσ μ

=
∑= −

                           (20)

 where index(i) is a function returning the physicochemical 
property values (hydrophobicity) for the i-th amino acid; μ 
and σ denote the normalized mean and the variance of hy-
drophobicity values of the 20 amino acids. By computing 
AC feature descriptor, we can obtain 20-dimensional feature 
vectors for retaining the influence of neighbor residues as 
well as the information of amino acid hydrophobicity. 

Table 5 lists list the 5-fold cross validation results per-
formed by the ER-Trees-based model combined with the 
PseAAC features on the Enzyme dataset. The yielded aver-
ages of accuracy, precision, sensitivity and MCC come to be 
84.96%, 84.37%, 85.82% and 74.44%, significantly lower 
than those performed by the proposed method, which are 
89.85%, 90.31%, 89.33% and 81.76%. In this comparison, 
the corresponding parameters of ER-Trees and the feature 
descriptor for drug molecules are the same in these two ex-
periments. From these results, we can see the transformation 
of SMR can indeed improve the prediction performance of 
the ER-Trees-based model. 

Currently, researches have pointed out that the homology 
information of protein sequences has significant impact on 
the prediction accuracy of protein-associated models. The 
results for highly homologous datasets are usually shown to 
be statistically significantly higher than those for the datasets 
with low homology. Homology information can offer useful 
insights into the relationship between protein and other 
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molecules and therefore shows great potential in other bioin-
formatics problems. Using BLOSUM62 matrix, Pseudo-
SMR descriptor contains evolutionary information about 
homologous protein sequence, which allows for estimating 
the tendency of evolutionary conservation and the various 
degrees of similarity among the protein sequences. In addi-
tion, adapting the concept of Chou’s pseudo amino acid 
composition, Pseudo-SMR descriptor not only remains the 
protein sequence order but also considers the correlations 
between neighbor residues and the residues with a moderate 
distance. 

3.5. Comparison between ER-Trees and Support Vector 

Machine 

Support Vector Machine (SVM) is one of the most popu-
lar machine learning classifiers for data mining. In this sec-
tion, we explore it with the same feature descriptors on the 
Enzyme dataset for further evaluation of the performance of 
ER-Trees. The parameters of SVM are optimized by using a 
grid search method (c=0.5; g=0.4). Table 6 lists list the 5-
fold cross validation results performed by the SVM-based 
model combined with the proposed descriptors on the En-
zyme dataset. The preformed averages of accuracy, precision, 
sensitivity and MCC are 81.90%, 89.97%, 71.87% and 
74.44%, significantly lower than those performed by the 
proposed method, which are 89.85%, 90.31%, 89.33% and 
81.76%. 

From this comparison, we can see that the ER-Trees clas-
sifier obtain a better performance with the proposed feature 
descriptors than SVM classifier. This is benefited from the 
ensemble model and its random tree splitting strategy. In 
addition, the parameters of ER-Trees are more easily opti-
mized than those of Support Vector Machine. 

3.6. Comparison with Other Methods 

For predicting the drug-target interactions, various kinds 
of computational model have been proposed. To further 
evaluate the performance of the proposed method, we here 
compare it with other previously proposed models which 
apply the same validation framework of 5-fold cross valida-
tion and explore the same datasets (i.e. Enzymes, Icon Chan- 
 

nels, GPCRs and Nuclear Receptors). The comparison re-
sults are listed in Table 7. It is observed that the model we 
proposed obtain a significant improvement in the prediction 
performance for drug-target interaction in term of the yielded 
AUC values. The growths in average values achieve 0.1281, 
0.1348, 0.0483 and 0.124 on the datasets of Enzymes, Icon 
Channels, GPCRs and Nuclear Receptors, respectively. The 
improvement may come from the effective representation of 
Pseudo-SMR descriptor as well as the powerful prediction 
ability of ER-Trees. Unlike these comparison methods which 
are mainly based on the drug/protein network similarity, the 
proposed model has a wider application and avoids the in-
formation bias in the known drug-target interaction network 
due to the independence from known drug-target interac-
tions.  

3.7. Potential Drug-target Interactions of Top-10 Ranks 

Verified from Databases 

After evaluating the effectiveness of the proposed model 
by using the 5-fold cross validation method, we here calcu-
late the interaction possibility for all potential drug-target 
pairs in the datasets of GPCRs and Nuclear Receptors. Spe-
cifically, the whole negative and positive data explored in 5-
fold cross validation experiments are used for training and all 
the unknown drug-target pairs are used as training set. The 
predicted drug-target pairs with top-10 ranks in the drug’s 
potential target lists are considered as highly potential drug-
target interactions and further verified by four public data-
bases (i.e. KEGG [3], Supertarget [4], Drugbank [1] and 
ChEMBL [23]). These databases have been supplemented by 
some newly detected drug-target interactions since the gold 
standard data explored in this study was collected in 2008. 
All the predicted possibilities for all potential drug-target 
interactions in GPCRs and Nuclear Receptors can be ob-
tained in Supplementary Table 1 and 2, respectively. As a 
result, 15 new drug-target interactions are finally confirmed. 
Specifically, we confirmed 8 and 7 drug-target interactions 
based on the predicted results on GPCRs and Nuclear Recep-
tors, respectively. Note that the high-ranked interactions that 
are not reported yet may also exist in reality. Based on these 
results, we anticipate that the proposed model is feasible to 
predict new drug-target interactions.  

Table 5. 5-fold cross validation results performed by ER-Trees model combined with PseAAC descriptors on Enzyme dataset. 

Test set Accu.(%) Prec.(%) Sen.(%)� MCC(%)�

1� 84.36� 84.42� 84.27� 73.61�

2� 84.87� 83.59� 85.51� 74.31�

3� 84.70� 85.08� 85.50� 74.04�

4� 86.24� 85.07� 87.84� 76.25�

5� 84.64� 83.67� 85.96� 73.99�

Average� 84.96±0.74� 84.37±0.73� 85.82±1.29� 74.44±1.04�

Proposed method� 89.94±0.83� 90.27±2.09� 89.58±1.04� 81.89±1.34�
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Table 6. 5-fold cross validation results performed by SVM model combined with the proposed feature descriptors on Enzyme 

dataset. 

Test set Accu.(%) Prec.(%)� Sen.(%)� MCC(%)�

1� 82.91� 92.20� 71.50� 70.89�

2� 80.43� 89.82� 68.93� 67.70�

3� 84.10� 90.17� 75.61� 72.81�

4� 80.60� 89.14� 70.93� 68.20�

5� 81.48� 88.52� 72.35� 69.32�

Average� 81.90±1.57� 89.97±1.40� 71.87±2.45� 69.79±2.09�

Proposed method� 89.94±0.83� 90.27±2.09� 89.58±1.04� 81.89±1.34�

Table 7. Prediction performances of DBSI [6], Yamanishi et al.(2010) [20], KBMF2K [21], NetCBP [22] and our method on the 

four benchmark datasets in terms of average AUC values. 

Dataset The proposed model DBSI 
Yamanishi et 

al.(2010) 
KBMF2K NetCBP 

Enzymes 0.9601±0.0046 0.8075 0.821 0.832 0.8251 

Icon Channels 0.9382±0.0100 0.8029 0.692 0.799 0.8034 

GPCRs 0.9053±0.0177 0.8022 0.811 0.857 0.8235 

Nuclear Receptors 0.9634±0.0198 0.7578 0.814 0.824 0.8394 

Table 8. The newly confirmed drug-target interactions with high ranks in the datasets of GPCRs and Nuclear Receptors. 

Drug ID Target ID 
Rank in the drug’s potential tar-

get proteins�
Evidence�

D00059� hsa:1814� 4� KEGG�

D00059� hsa:1816� 10� KEGG�

D00415� hsa:3355� 5� Supertarget,Drugbank�

D00419� hsa:5031� 6� KEGG�

D04625� hsa:154� 3� KEGG�

D02358� hsa:154� 5� Drugbank�

D00283� hsa:1814� 7� Drugbank�

D02349� hsa:154� 5� Drugbank�

D00182� hsa:2099� 3� ChEMBL�

D00898� hsa:2100� 9� ChEMBL,KEGG�

D00348� hsa:6258� 7� ChEMBL�

D00327� hsa:5915� 8� ChEMBL�

D00443� hsa:367� 7� Supertarget�

D00554� hsa:3174� 10� KEGG�

D00066� hsa:4306� 2� Drugbank�
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CONCLUSION 

In the post-genomic era, the knowledge of DTIs play a 
crucial role in discovering new drug candidates and finding 
new proteins to target for drug development. However, the 
experimental methods are expensive and inefficient. In this 
article, we report a computational model based on extremely 
randomized trees for predicting the drug-target interactions. 
An underlying idea of our proposed approach is that the 
structures of drug molecules and protein amino acids se-
quence have a great influence on the DTIs. In addition, we 
take the biological evolutionary information into account in 
the process of protein feature extraction. From the compari-
son with PseAAC descriptor, the evolutionary information of 
BLOSUM62 matrix proves to be useful for predicting DTIs. 
Our proposed method obtains good results preformed on four 
different datasets (i.e., enzymes, ion channels, GPCRs and 
nuclear receptors.), suggesting it has ability to predict drug-
target interactions from large-scale datasets. 
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