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ABSTRACT

MicroRNAs are a class of small non-coding regulatory RNA molecules that modulate the expression of
several genes at post-transcriptional level and play a vital role in disease pathogenesis. Recent research
shows that a range of miRNAs are involved in the regulation of immunity and its deregulation results in
immune mediated diseases such as cancer, inflammation and autoimmune diseases. Computational dis-
covery of these immune miRNAs using a set of specific features is highly desirable. In the current inves-
tigation, we present a SVM based classification system which uses a set of novel network based
topological and motif features in addition to the baseline sequential and structural features to predict
immune specific miRNAs from other non-immune miRNAs. The classifier was trained and tested on a bal-
anced set of equal number of positive and negative examples to show the discriminative power of our
network features. Experimental results show that our approach achieves an accuracy of 90.2% and out-
performs the classification accuracy of 63.2% reported using the traditional miRNA sequential and struc-
tural features. The proposed classifier was further validated with two immune disease sub-class datasets
related to multiple sclerosis microarray data and psoriasis RNA-seq data with higher accuracy. These
results indicate that our classifier which uses network and motif features along with sequential and
structural features will lead to significant improvement in classifying immune miRNAs and hence can

be applied to identify other specific classes of miRNAs as an extensible miRNA classification system.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In this post genomic era, the importance of microRNAs
(miRNAs) involved in the regulation of genes has become more
and more apparent. miRNAs regulate their targets by translational
inhibition and mRNA destabilization [1]. miRNAs are small (~22
nucleotide), noncoding RNAs that bind to their cognate mRNAs
via a recognition sequence region named seed sequence which is
located between second and eighth nucleotides of the miRNA [2].
With respect to the immune system, these small regulators are
known to affect all facets of immune system development, from
hematopoiesis to activation in response to infection during both
the innate and the adaptive immune response [3]. More than
1800 human miRNAs have been discovered so far, and they are
known to regulate approximately 30-60% of all protein-coding
mRNA genes [4].

Generally miRNAs have multiple mRNA targets. Such miRNAs
may belong to same miRNA family, with members sharing
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identical or highly similar seed sequences [5]. A single miRNA
can regulate hundreds to thousands of target genes and play a
significant role in the regulation of a large percentage of the gen-
ome including activities such as controlling the development of a
normal and functional arm of the immune system [6,7]. Thus,
deregulated miRNA expression can cause serious complications
for the immune system. Similar to mRNA, miRNA transcription
and processing involves complex regulatory mechanisms.
Deregulation of these miRNAs and its target may be linked to the
development and progression of several diseases including
immune disorders and cancer [8]. Thus miRNAs have emerged as
novel molecular regulators of numerous genes and pathways
involved in normal immune responses, pathogenesis of cancer,
inflammation and autoimmune diseases [9].

Autoimmunity results when the immune system fails to recog-
nize self and directs immune responses against self-antigens,
leading to cellular and tissue destruction [10]. Within the past dec-
ade, the field of immunology has increasingly intersected with the
field of miRNA biology [11]. While the earliest studies of miRNA
function in the immune system have demonstrated an essential
role for miRNAs as a whole, recent studies have focused on the
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contribution of specific miRNAs to specific immunologic processes
[12,13].

The first computational analysis which involves miRNAs and
protein-protein interaction networks (PPIN) was done by Liang
and Li [14]. The modeling and analysis of protein interactions as
undirected graphs has been adopted for prediction of protein func-
tion [15], functional module identification [16], candidate disease
gene identification [17] and prioritization of disease genes [18].
miRNA-regulated PPI networks will not only determine the func-
tional role of miRNAs that play in PPI networks, but will also deter-
mine the potential candidates involved in the dysregulatory
function of a disease [19]. Hsu et al. studied the human miRNA-
regulated PPI network by utilizing Human Protein Reference Data-
base (HPRD) data [20]. They found that miRNA often targets the
hub gene of the PPI network, despite of the fact that they are not
involved in characterizing the pathological events regulated by
miRNA target genes [21].

A number of machine learning tools such as support vector
machines, neural networks, hidden markov model and naive baye-
sian techniques have been widely used to predict miRNAs [22-25].
These machine learning based computational tools identify miR-
NAs using features such as sequence conservation, structure, and
folding energy of sequences as their training data [27,28]. In addi-
tion to the above generic miRNA classification systems, Xu et al.,
introduced a network centric approach which uses four network
topological features and one sequence fold change feature to clas-
sify miRNAs that was significantly different between prostate can-
cer and non-prostate cancer [26].

Motivated by the above works, we developed an immune
miRNA classification system to predict immune disease associated
miRNAs from non-immune miRNAs. In addition to the traditional
sequence and structural features, ten network topological features
and two sequence motif features were added to illustrate the per-
formance of the classifier. The network topological features were
generated using a heterogeneous network which includes
miRNA-disease association, miRNA-target gene association, and
target gene-gene association. In addition, network motif patterns
that were over represented in the immune network were also used
as network motif features. To our knowledge this is the first avail-
able approach to classify immune miRNAs from non-immune miR-
NAs based on network topological and motif features. The
workflow of this classification approach was shown in Fig. 1.

2. Methods
2.1. Dataset

2.1.1. Positive data

Immune miRNA disease dataset was retrieved from two curated
databases namely, Human miRNA associated disease database
(HMDD) [29] and miR2Disease [30]. Additionally, new associations
from the literature based on the MeSH disease category of immune
system diseases were also included in the dataset. Finally, the pos-
itive dataset contains 245 miRNAs (Supplementary datal,
Table S1)! involved in 92 immune system diseases (Supplementary
datal, Table S2).

2.1.2. Negative data

Compiling the set of negative data is more difficult for the clas-
sification problem. Hence, we have used two different negative
datasets. In the first dataset, non-immune miRNAs were retrieved
using the same strategy for immune miRNA extraction from the

1 Supplementary data S1-S7: Available for download at http://biominingbu.org/
SupplementaryData.

two standard databases HMDD [29] and miR2Disease [30]. The
condition applied here was that in the two databases the selected
negative miRNAs should not have any association with immune
system diseases such as inflammation, cancer and autoimmune
diseases. In miRNA classification problem, earlier researchers
demonstrated that balanced datasets with equal number of posi-
tive and negative samples provided a higher sensitivity and speci-
ficity whereas specificity is increased highly with the increase in
negative samples [25]. This was also addressed by most of the cur-
rent researchers where they used balanced datasets to avoid data
imbalance problem [31,32]. A set of 245 non-immune miRNAs
were randomly selected and used as negative dataset (Dataset 1)
to avoid the imbalance problem (Supplementary datal, Table S3).

To further enhance the classification results, an additional neg-
ative gene expression dataset was chosen for the study from GEO
(GSE61741). GSE61741 was specifically chosen to determine the
miRNAs that are not expressed in immune system diseases. Genes
that showed higher expressions in a specific disease were referred
to as disease expressed genes [33,34]. Hence it is assumed that
miRNAs with lowest expression in normal sample are the least
involved in immune diseases. Similar to earlier balanced dataset,
245 miRNAs with lower expression values were chosen as negative
dataset 2 (Supplementary datal, Table S4).

2.2. Features set

The features used for miRNA prediction includes three miRNA
sequential features such as AT, GC content and miRNA length
and standard structural features such as minimal free energy, self
containment index (SCI) [35], stem, loop and additional 32 triplet
base pair features, which were computed using RNAfold [36]. Fur-
ther, we used 10 novel network based features compiled from
miRNA target gene-disease associations and 2 motif features for
immune specific miRNA classification. In total, we have used 51
features for the classification task (Table 1). The compilation steps
of the network and motif features were explained below.

2.2.1. Network features

The compilation of network based features involves four pre-
requisite information extraction steps from various external data-
bases as given below:

(i) miRNA target gene extraction

(ii) miRNA target gene - disease association extraction
(iii) miRNA - disease association extraction
(iv) miRNA target gene - protein association extraction

2.2.1.1. miRNA target gene extraction

miRNA target genes were acquired from eight miRNA target
databases: miRanda [37], PicTar [38], TargetScan [39], DIANA-
microT [40], RNA22 [41], RNAhybrid [42], miRDB [43] and PITA
[44]. We extracted the regulatory associations between miRNAs
and target genes that were found to appear in at least four of these
databases in order to populate the most reliable miRNA-target
associations. The miRNA-gene association data thus obtained con-
tains 101,426 miRNA-gene associations involving 245 miRNAs and
11,130 genes.

2.2.1.2. miRNA target gene — disease association extraction

Finally, gene disease associations were obtained from curated
entries of CTD database [45] for all the MeSH diseases. A total of
6537 gene-disease associations were obtained.
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Fig. 1. Workflow of miRNA classification approach. (The complete work flow of immune miRNA classification approach depicts the various features generated and the

classification schema using SVM.)

2.2.1.3. miRNA target gene — protein association extraction

miRNA target gene protein associations were extracted from the
HPRD (Release 9) database [20]. The current release of HPRD con-
tains 145,134 human PPI interactions. The miRNA target genes
were mapped to the HPRD and the corresponding PPl were
extracted. The extracted PPI network contains 18,753 genes and
570,870 interactions. The data retrieval of target genes, PPI and
its integration workflow is shown in Fig. 2.

2.2.1.3.1. Immune gene targets. Similar to miRNA target gene pro-
tein network, the PPI were extracted for the target genes which
were exclusively related to immune diseases and immune gene
protein network was constructed as shown in Fig. 2. The target
genes which were related to immune diseases and their PPI were
found using two databases IMGT [46] and InnateDB [47]. The
Immune functional gene network contains 8230 immune genes
which are involved in 22,683 immune target gene interactions
and 73,046 immune target gene protein interactions.

miRNA disease association data was extracted as described in
Section 2.1.1. From these four associations (i.e. miRNA-disease,
gene-disease, miRNA-gene and gene-gene interactions), a hetero-
geneous network of immune miRNAs was constructed using
Cytoscape [48].

In this network, nodes represent biomedical entities (i.e.
miRNA, disease, or gene), and edges between nodes represent asso-
ciations between two nodes (i.e. association between miRNA and
genes, miRNA and disease, gene and gene, etc.). For each miRNA
in the network, we defined 10 measures (i.e. DTout, Dout, NmiRNA,
RpcmiRNA, RtarpcmiRNA, miRD, miRPPI-interactome, miRTGlI,
miRDcoreg, miRDSW) based on network properties. Further, to
assess the significance of variation in these 10 features between
the immune and non-immune miRNA, the median and their p-
value was computed. The discrimination between positive and
negative instances is determined using p-value computed by
Mann-whitney Wilcoxon'’s test using R-statistical package. Each
feature with its description and corresponding p-value was shown
in Table 1.

2.2.2. Motif and sequential features

In addition to above network features, sub networks were gen-
erated to identify smaller common patterns, or motifs. Small over-
represented motifs found in the biological networks forms an
essential functional unit of various biological processes [49]. The
feed-forward loop (FFL) motifs are found to be over-represented
in biological networks and they represent the functional units of
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Table 1
SVM features for miRNA network prediction.
Feature Description Median P-value
Positive Negative

Network features
1 Drout The total number of nodes from target miRNA 365 296 0.0137
2 Dout [Xu et al.] Total number of target genes connected to miRNA 9 6 0.2267
3 NmiRNA [Xu et al.] Number of coregulatory miRNAs 13 7 0.0340
4 Rp-miRNA [Xu et al.] The proportion of Immune miRNAs in coregulatory set 1.597 0.036 0.0035
5 Rearpe-miRNA [Xu et al.] Fraction of targets coregulated by itself and other immune miRNAs 0.2857 0.0739 0.0054
6 miRp Total number of diseases connected to miRNA 2 0 0.0033
7 MiRppl.interactome Total number of protein pairs in the interactome network 2368 2039 0.0010
8 miRrg Total number of immune target genes connected to miRNA 32 25 0.0512
9 MiRpcoreg Number of disease coregulators of miRNA 7 3 0.0034
10 miRpsw Disease spectrum width of miRNA 2.392 0.893 0.0034
Motif features
11 miRnm Number of motifs in the network 5 2 0.0056
12 MiRpr Number of feed-forward loops in the network 2 0 0.067
Sequential features
13 MiRiength Length of the miRNA 84 80 1.95 7%
14 miRgc GC content of miRNAs 4.68 5.68 0.248
15 miRay AU content of miRNAs 3.63 3.843 0.365
Structural features
16 miRye Minimal free energy of miRNA -38.3 —-24.6 0.0026
17 miRgq Modularity of miRNA (self containment index) 0.937 0.812 0.3646
18 mMiRjo0p miRNA loops 0.222 0.15 0.0237
19 miRstem miRNA stems 0.340 0.33 0.338

32 triplet base pair features are also computed.
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Fig. 2. Data retrieval of target genes, PPI and its integration - Workflow.

biological processes in cells [50]. For this, we defined two measures
to compute motif features (i.e. miRNM, miRFFL). The motifs and its
computation are shown in Table 2. For these motif features, three
noded network motifs were identified from miRNA-disease-gen
e-protein network. To generate statistically significant network
motifs (P<0.05), 1000 randomized networks were generated.
Motifs that appeared at least 5 times in the network and have a
Z-score greater than 2 were chosen. The Z-score and P-value were

calculated by the network motif (NM) discovery procedure using
FANMOD tool [51].

2.3. Functional properties of miRNA
Next, we carried out the following two experiments to demon-

strate the functional properties of miRNAs used in our classifica-
tion task.
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Table 2
[llustration of motifs and its feature description.

Motifs Description Property
Count of number of motifs in  miRNM
the network
Count of number of miRFFL

feed-forward loops (over
represented network motif)
in the network

(i) Human miRNA clustering
(ii) Pathway and GO enrichment analysis.

These studies help us to gain some preliminary knowledge
about both immune related (positive dataset) and non immune
(negative dataset) miRNAs used in this study. Both the methods
were briefly discussed below:

2.3.1. Human miRNA clusters

A miRNA cluster is a set of miRNAs in which each member has
at least one other member of the same set within 10 kb according
to chromosomal locations. Chromosomal positions for all miRNAs
in the human immune system were obtained from miRBase [52].
About 48 human miRNA clusters were obtained from miRBase
[52]. Similarly miRNA family clusters were obtained for all the
245 miRNAs based on their gene family determined using miRFam
as shown in Supplementary data2. The clustering results helps us
to understand how miRNA clusters were formed among immune
miRNAs and also to demonstrate whether the miRNAs associated
with same diseases occur in same clusters.

2.3.2. Pathways and GO enrichment analysis

Functional annotation of genes involved in immune miRNA net-
work is performed using KEGG [53] and GO [54] dataset available
from miRwalk database [55]. Target genes involved in immune
miRNA network were subjected to cross validation with GO anno-
tation terms and enriched pathways from KEGG. Enriched path-
ways and functional annotations of various immune signaling
cascades were obtained using miRwalk. The involvement of
immune signaling pathways in this functional network were ana-
lyzed using Immune signaling pathway networks of KEGG. The
pathway and GO enrichment analysis helps us to show whether
the target genes of miRNA were associated with immune related
GO categories such as t-cell activation and innate immune
response and KEGG pathway categories such as B-cell and T-cell
receptor signaling pathway.

2.4. Classification algorithm and validation

2.4.1. Support vector machine (SVM)

For classification, we used SVM classifier to classify immune
miRNAs from other non-immune miRNAs. SVM can process classi-
fication and prediction through different kernel functions and suit-
able parameters. SVM classifier, using a radial bias function (RBF)
available in the SVMlight package [56] was used to construct a
classifier [57]. To build the good SVM models, two factors Gamma
(v) and C are especially important. C is the parameter for the soft
margin cost function in the support vector which controls the

influence of each component vector and has trading error penalty.
Gamma is the parameter of a RBF Kernel which could cause lower
data bias when the margin is small and the variance will be higher.
A suitable adjustment of these parameters results in a better clas-
sification hyper-plane found by the SVM, and thereby enhances the
classification accuracy. A grid search method [58] was used to tune
the SVM parameters C and ). The grid search method checks all
possibilities of C and y and determines the optimum parameters
of the classifier. The SVM was trained and tested using five-fold
cross-validation.

2.4.2. Principal component analysis (PCA)

In addition, we also explored a feature selection method PCA to
demonstrate the impact of feature selection algorithm in miRNA
classification. PCA is a powerful tool for dimension reduction and
feature extraction in data analysis [59]. The main advantage of
PCA is that when data compression is performed, i.e. by reducing
the number of dimensions, loss of information is much limited.
miRNA features generated were subjected to feature selection
using PCA [60]. PCA involves the following steps (i) subtraction
of mean from the feature vectors, (ii) calculation of covariance
matrix, (iii) calculation of eigenvectors and eigenvalues of the
covariance matrix, (iv) choosing the components from feature vec-
tor and (v) derivation of new dataset. Finally the transpose of the
generated feature vector is multiplied with the original data. An
in-house developed PCA feature selection program using these
computations was used for miRNA feature reduction and analysis.

2.4.3. Performance evaluation

The performance of our method was evaluated using five-fold
cross-validation method [26,61]. A five-fold cross-validation
method was applied, where the miRNA data was divided into five
equal-length datasets, four of which were used for training in each
turn, with one dataset held out for testing and the assessment was
performed. To measure the performance of the prediction system,
values such as Accuracy (Ac), Sensitivity (Sn), Specificity (Sp) and
Receiver Operating Characteristic (ROC) were calculated using
the following equations:

Sn = TP/(TP + FN)
Sp = TN/(IN + FP)

Acc = (TN + TP)/(TN + FP + TP + FN)
ROC = Sensitivity/1 — specificity

where:

TP = True Positives, TN = True Negatives
FP = False Positives, FN = False Negatives

3. Results and discussion
3.1. Network based classification approach

Pre-miRNA prediction methods rely on sequential and struc-
tural based features generated from miRNA sequences. These
approaches aim to discriminate pseudo hairpins from known and
novel miRNAs [62] or locate the mature miRNAs [63]. However,
an approach to discriminate miRNAs based on their function
remains unexplored. In the current investigation, we aimed to pre-
dict miRNAs that are specific to immune function mainly based on
network features. This novel approach incorporating network and
motif features would demonstrate a better discriminative power
than traditional methods based on structural and sequential
features.

For this classification approach, heterogeneous network was
constructed for each of the miRNA using gene, disease and protein
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interaction with the miRNA from which network and sub-network
features were computed. The heterogeneous miRNA target gene
network was shown in Supplementary data3.

Network features were computed based on the global proper-
ties of the miRNA. To further understand the network functionality,
sub-networks were generated and provided as a feature to the
classifier. More than five NMs including feed-forward NMs were
determined for each of the miRNA in the network with a significant
p-value of less than 0.05. We then investigated the degree distribu-
tion of different types of entities in the integrated network such as
miRNA and genes and generated a scale-free network (a network
whose degree distribution follows power law). The correlation
value (R?) was found to be 0.91 and 0.94 for in-degree and out-
degree distribution of miRNA and target genes. The heterogeneous
miRNA network and its degree distribution graph were shown in
Fig. 3. The degree distribution of this miRNA network follows
power law distributions and their R? values are both greater than
0.90, and hence the network is scale-free, which is one of the most
important characteristic of real-world biological networks [64,65].

3.2. Functional properties of immune miRNAs

Functionally related miRNAs tend to be associated with pheno-
typically similar diseases. For example, one of the autoimmune dis-
eases, Psoriasis is regulated by 34 miRNAs [29,30]. Based on these
properties, miRNA co-regulators of diseases were chosen as one of

1800 || ® B
=1 | Slope = -1.254
150\14‘
1500 2
= R?=0.91
Q1300 |
S
S ooy
S 1000 |
2 9001 o
O 8001
"g 700
=5 600 { .
Z, L
400 | .

300 | So0
| ...

204 Coeeq,,

100 | - 2%0 0000

o 2000000000000 00 sunnune

0 2 4 8 8 10 12 14 18 18 20 22 24 28 28 30 32 34 36 38 4 42 44 48 48 50 52

In-degree

the feature. miRNAs are pleotropic, and hence they share common
mRNA targets between other miRNAs. Hence, determination of
gene co-regulators would also be one of the key factors in miRNA
classification. Disease spectrum width (DSW) of one miRNA could
be a metric to evaluate its importance in function and human dis-
ease [29]. This is calculated as fraction of the total number of dis-
eases associated with a particular miRNA and the total number of
diseases that have been reported to be associated with the com-
plete miRNA dataset.

miRNAs tend to be associated with same diseases, if they occur
in same clusters based on chromosomal location or its family. Mir-
381 located in the chromosome 14, forms one of the largest cluster
with 19 miRNAs. For instance, miRNAs that belong to let-7 family
are known to be involved in immune associated diseases. They
form the largest cluster in the immune miRNA data with 12 known
miRNAs. mir-10 family has 8 miRNA associations in its cluster.
Other miRNA families such as mir-154, mir-181 and mir-515 share
5 miRNAs each in its cluster. They are also known to be associated
with immune system diseases.

To further cross validate the functional properties of the target
genes associated with immune miRNAs, we performed the enrich-
ment analysis of the genes using KEGG [53] and GO [54] dataset
available from miRwalk database [55]. From this analysis it is
found that 2741 target genes are involved in the immune signaling
functions and pathways. From the results, 790 target genes are
known to be involved in KEGG immune signaling pathways and
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Table 3

Five-fold cross-validation results of SVM classifier.
Features Sensitivity Specificity Accuracy

Dataset 1 Dataset 2 Dataset 1 Dataset 2 Dataset 1 Dataset 2

SS 0.632 +0.044 0.624 +0.015 0.616 £0.019 0.640 £ 0.016 0.624 + 0.029 0.632 +0.008
NM 0.869 +0.010 0.878 £ 0.009 0.861 +0.007 0.873 £ 0.007 0.865 + 0.005 0.876 + 0.002
NMSS 0.893 +0.017 0.881 +0.007 0.865 +0.004 0.898 + 0.009 0.879 +0.008 0.889 + 0.006
Combined FS 0.910+0.010 0.906 = 0.008 0.885+0.010 0.897 +0.008 0.897 + 0.004 0.902 +0.005

the remaining 1951 genes are involved in GO functions of the
immune system. Target genes that are involved in the immune
functions are further identified using the list of immune genes
(Supplementary data4) collected from the immune gene databases
such as InnateDB [47] and IMGT [46].

3.3. SVM classification and evaluation

Five-fold cross-validation evaluations were carried out with
SVM classifier to show the effect of network and motif features
in immune miRNA classification. Four different evaluations were
carried out using two different datasets (Dataset 1: 245 positive
data and 245 negative data from miRNA disease associations data-
bases HMDD and miR2Disease, Dataset 2: 245 positive data (data-
setl) and 245 negative data from microarray gene expression)
using RBF Kernel in SVM classifier [58]. The data generation pro-
cess for the classification study is shown in Fig. 4.

For this study, four different evaluations were performed using
the following feature sets:

(i) Sequential + Structural features (SS) (3 + 36 features)
(ii) Network + Motif features (NM) (10 + 2 features)
(iii) Network + Motif + Sequential + Structural features (NMSS)
(10 + 2 + 3 + 36 features)
(iv) Combined features + feature selection using principal com-
ponent analysis (NIMSSFs)

All the evaluation results were shown in Table 3 for dataset 1
and dataset 2. Extraction procedure for negative dataset 2 was
shown in Fig. 5. Evaluation 1 includes a set of 35 structural features
and 3 sequential features [61] computed from the primary
sequence and its secondary structure using RNAfold program
[36] along with miRNA modularity feature (SCI index) [35]. Evalu-
ation 2 is performed using a set of 10 network topological features
and 2 sub-networks features and achieves a better accuracy of
86.5% and 87.6% than evaluation 1. Evaluation 3 combines the first
two features with network features and the accuracy is improved
to 87.9% and 88.9% for the two different datasets. In the final eval-
uation, all these features are combined and a feature selection
algorithm using principal component analysis is applied to the
datasets in order to enhance the accuracy. This combined approach

(NMSSFs) achieves the best results with an accuracy of 89.7% and
90.2% for dataset1 and dataset2 respectively. ROC plot for these
four evaluations is constructed and compared for the two different
datasets (Fig. 6). We then investigated the ROC curve of the classi-
fier and found that the Area Under Curve (AUC) of the classifier was
around 0.9 (0.91), suggesting that the classifier has performed a
good discrimination.

3.4. Comparison of feature selection approaches

Classification performance was comparatively poor when struc-
tural features were combined with sequential features (SS) and
achieved an accuracy of 62.4% and 63.2% for dataset1 and dataset2.
Corresponding sensitivity and specificity were shown in Table 3.
AUC metrics computed from ROC plot were shown in Table 4.
These results show that topological features of network and motif
(NM) could improve the prediction power of miRNAs associated
with immune disease than SS features. To further illustrate the
combined effect of network, motif, sequential and structural fea-
tures (NMSS) on the performance of the classifier, a combination
model is generated. This achieved the top scoring results with an
accuracy, sensitivity and specificity of 88.9%, 88.1% and 89.8%
respectively.

This combinatorial model (NMSSFs) has 51 features (10 net-
work features, 2 sub-network features, 3 sequential features and
36 structural features). To test whether the performance accuracy
improves upon feature selection, principal components were used
to serve as feature selection for classification problems. Top 20
most discriminative features were further selected for the classifi-
cation problem. It is obvious that applying feature selection
method improves the accuracy to 89.7% and 90.2% for two different
datasets. Hence, the integrated feature selection and classification
algorithm is capable of identifying significant miRNAs. From the
classification results, it is evident that classification model per-
forms even better while using PCA. The best results were achieved
by selecting the first 20 principal components, out of the 51 fea-
tures used in the classification system. The use of PCA has not only
increased the accuracy of the classifier, but also decreased the
standard variation of the results. These results show that using this
PCA method in combination with SVM classifier may improve the
classification accuracy.
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Fig. 5. Mapping of miRNA and network construction. (Differentially expressed miRNAs are mapped to known miRNA disease association from HMDD and miR2disease to be

considered as classification data.)
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references to color in this figure legend, the reader is referred to the web version of this article.)
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Table 4
Area under curve metrics of ROC plot.
Features AUC
Five-fold cross-validation
Dataset 1 Dataset 2
SS 0.591 +£0.031 0.632 +0.042
NM 0.869 + 0.006 0.875 +0.007
NMSS 0.8685 + 0.003 0.889 +0.006
Combined FS 0.890+0.010 0.912 + 0.008

3.5. Evaluation on unbalanced negative data

To demonstrate the size of the negative examples in classifier
performance, the second evaluation was carried out by combining
both negative datasets (Dataset1 and Dataset 2) and choosing a
random set of 80, 160, 245, 370, 490 negative examples by retain-
ing the positive examples as constant (245 known miRNAs).

The NMSSFs features which gives best results in balanced data
classification was used as features for this evaluation. SVM classi-
fication with five-fold cross-validation was repeated for the unbal-
anced negative data and the evaluation results were shown in
Table 5. The results shows that with equal number of 245 positive
and 245 random negative data yielded 91% sensitivity, 88.5% speci-
ficity and with a higher accuracy of 89.7%. When the number of
negative instances increases, there is increase in specificity by
10% but there is also decrease in the sensitivity of the classifier.
The results indicate that with higher number of negative instances
there is a possibility of more false predictions and agrees with the
results reported by Yousef et al. [25]. Hence, balanced dataset
might influence the correct predictions and appreciate the perfor-
mance of the classifier with higher accuracy. Prediction perfor-
mance of the classifier as a function of size of the negative class
is shown in Fig. 7.

3.6. Comparison with other methods

To our knowledge the only other system, which utilizes net-
work features to categorize disease specific miRNAs is the Prostate
cancer classification by Xu et al. [26]. In this work, they used four
network features (Dout, NmiRNA, Rpc-miRNA, Rtarpc-miRNA) and
a gene expression fold change feature (Fc) in prostate cancer data-
set of 37 positive samples and 44 negatives (Supplementary datal,
Table S5) from a microarray experiment (GSE8126) [26]. However,
in addition to the above four network features, we used 7 addi-
tional network features and 2 motif based features. We compared
our classification accuracy with above datasets and results are tab-
ulated in Table 6. Based on these results, we conclude that NMSSFs
method of feature selection is the effective method for model gen-
eration and classification of heterogeneous disease network data.
An ROC curve is plotted to show the performance evaluation of this
approach (Fig. 8).

Chen et al. developed a novel method to classify breast cancer
samples from normal sample. This method is based on network
motif approach where they combine a human signaling network
and high-throughput gene expression data [66]. In this study, five
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Fig. 7. Prediction performance as a function of size of the negative class for miRNAs.
%TN is the true negative ratio and %TP is the true positive ratio.

Table 6
Performance of SVM classifier for Prostate cancer dataset.

Features Sensitivity Specificity Accuracy

Combined features + PCA 0.921+0.072 0.866 +0.041 0.890 + 0.003
(Combined FS)

Network features + fold 0.864+0.004 0.875%0.001 0.870+0.002

change

motif features were used such as motifs, motif genes, breast cancer
(BC) genes, marker genes and bc-marker genes. Differentially
expressed high-stability significant expression-correlation differ-
ential motifs (HSCDMs) were identified as classification features
and a SVM classification is performed [66]. Our study is different
from this approach, as they deal with gene expression dataset
and HSCDM:s. In our approach, we developed miRNA PPl interactive
network and further defined the feature vectors using network
topological and motif based features such as motifs [29] and feed
forward loops (FFL) in the network.

3.7. Case studies

To further demonstrate the usefulness of our system, we con-
ducted two case studies with our proposed network feature based
classification system. The case study 1 is based on microarray gene
expression data and the case study 2 is based on RNA-seq data. The
result indicates that our network based classification system better
discriminates the miRNA in both gene expression as well as RNA-
seq data.

Table 5

Performance of five-fold cross-validation of negative dataset (Random size variation repeated 100 times).
Negative samples (size) Sensitivity Specificity Accuracy AUC
80 0.724 +0.046 0.65 +0.083 0.706 + 0.050 0.687 +0.030
160 0.808 + 0.030 0.777 £ 0.037 0.795 +0.037 0.792 +0.057
245 0.910 + 0.023 0.885 +0.023 0.897 +0.010 0.897 +0.034
370 0.836 +0.045 0.935 +0.032 0.895 +0.020 0.885 +0.026
490 0.804 + 0.055 0.959 +0.016 0.907 +0.025 0.881 +0.034
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Fig. 8. ROC curve for Prostate cancer dataset (Comparison of Prostate cancer
dataset generated by Xu et al. using network + Fold change features (Xu et al.) and
Combined Fs features (Our approach)) red curve represents the plot of our approach
and grey curve indicates the ROC curve of Xu et al. method. Diagonal line represents
the baseline. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Table 7
Performance of SVM classifier for Multiple Sclerosis dataset.
Features Sensitivity Specificity Accuracy
Combined features + PCA 0.904 £0.046 0.908 +0.041 0.901 +0.044
(Combined FS)
4 Network features + fold 0.858 +0.020 0.891+0.002 87.8+0.010

change

3.7.1. Case study 1: Network based classification of multiple sclerosis
using microarray gene expression data

To investigate the efficiency of this classification approach on
gene expression dataset, microarray data (GSE17846) by Keller
et al. [67] related to multiple sclerosis has been used. miRNAs that
has disease association with multiple sclerosis were identified
using miRNA disease association databases [29,30] and mapped
to miRNA expression profiles. miRNA differential expression and
its fold change were computed using SAM [68]. In total 47 miRNAs
that map to known multiple sclerosis miRNAs [29,30] were consid-
ered as positive dataset for the classification model. The above
multiple sclerosis miRNAs were provided in Supplementary datal,
Table S6. Heterogeneous miRNA network for multiple sclerosis was
constructed using target genes and PPIs that interact with the
miRNA. In total, there were 56,784 interactions between above
41 miRNAs, 5647 target genes and 21,384 PPI pairs.

Discrimination of negative miRNA dataset from the microarray
data is quite difficult and hence miRNAs that have lower expres-
sion in the dataset has been chosen for the study. In total 47 miR-
NAs that were not involved with multiple sclerosis disease
association were taken as negative dataset and other miRNAs were
eliminated. We used the 41 positive samples and 47 negative sam-
ples, to train a new model for multiple sclerosis with five-fold
cross-validation. Our model generated using NMSSFs features
shows an accuracy of 90.1%, achieving a sensitivity of 90.4% and
a specificity of 90.8% as shown in Table 7. The corresponding
ROC plot was shown in Fig. 9. This result was compared with Net-
work and fold change (NFc) features computed by Xu et al. [26]
which achieved an accuracy of 87.8%. The results indicated that
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Fig. 9. ROC curve for Multiple sclerosis (MS) dataset. (Performance evaluation of
MS dataset is performed using Combined Fs features (Our approach - solid line) and
network + Fold change features (Xu et al. approach - dotted line.) Diagonal
represents the baseline).

Table 8

Performance of SVM classifier for Psoriasis dataset.
Features Sensitivity Specificity Accuracy
Combined features + PCA 0.928 +0.018 0.904 +£0.027 0.912 +0.023

(Combined FS)
4 Network features + fold
change

0.906 +0.034 0.874+0.022 0.885+0.018

combined NMSSFs approach enhances the accuracy of the classifier
than that of network and expression based features.

3.7.2. Case study 2: Psoriasis classification using network constructed
from differential gene expression of small RNA-seq data

Psoriasis associated RNA-seq data from NCBI SRA database
(SRP007825) was chosen as a second case study. The above RNA-
seq dataset contains 67 independently sequenced libraries for pso-
riasis using Illumina GAIIx platform and generated 1.1 billion raw
and 670 million qualified reads [69]. This resulted in a set of 512
known, 13 recently described and 47 novel mature miRNAs and
miRNAs*. Psoriasis involved miRNAs and normal control datasets
were compared and the differentially expressed miRNAs were
determined.

A set of known Psoriasis miRNAs from HMDD V2.0 [29] and
miR2disease [30] database were taken for the study. Expression
values (fold change) of these psoriasis miRNAs were taken as
expression based features. Identification of negative dataset for
the classifier was achieved by finding the miRNAs with lowest
expression based on the percentage of miRNA read counts. In total
57 Psoriasis associated miRNAs used for the classification were
provided in Supplementary data, Table S7. Psoriasis miRNA disease
network contains 69,213 interactions between 57 miRNAs, 7253
target genes and 27,844 PPI pairs. To construct a more reliable neg-
ative dataset, we choose a set of 63 miRNAs with lower expression
and trained the classifier.

Evaluation of the constructed model was performed using five-
fold cross-validation method. Our model shows an accuracy of
91.2%, achieving a sensitivity of 92.8% and a specificity of 90.4%
as shown in Table 8. NFc features (Xu et al.) shows an accuracy
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Fig. 10. ROC curve for Psoriasis dataset (Performance evaluation of Psoriais dataset
is performed using Combined Fs features (Our approach - solid line) and network
+Fold change features(Xu et al. approach - dotted line). Diagonal represents the
baseline.

of 88.5%, achieving a sensitivity and specificity of 90.6% and 87.4%
respectively. Combined NMSSFs approach enhances the accuracy
of the classifier and finally ROC curve plotted for this dataset after
performing the cross-validation is shown in Fig. 10 with an AUC of
0.916.

4. Conclusion

In this study, we present an immune miRNA classification sys-
tem based on novel network and motif features. The average accu-
racy of prediction algorithm was 90.2%. Network topological
features were shown to demonstrate significant differences in
the discrimination of immune and non-immune miRNA-disease
associations. Further, we also validated our proposed approach
with datasets related to gene expression data and RNA-seq data
with higher classification accuracy. The future enhancement of
the system will incorporate a miRNA prediction model using an
ensemble of classifiers to classify miRNAs responsible for immune
diseases. This research seeks to develop a new approach to fasten
the detection of miRNAs involved in the immune system, which
is typically a laborious process when a novel miRNA is sequenced.
Thus, future work will focus on confirming the expressions of these
miRNAs using experimental methods such as real-time PCR, west-
ern blotting, and immunohistochemistry. Network topological fea-
tures and sub-network patterns are known to demonstrate
significant differences in the discrimination of immune and non-
immune miRNA associations. The proposed method can serve as
an ideal tool to discriminate immune functional miRNAs with
increased classification accuracy at a reduced computational cost
and time.

Conflict of interest

The authors declare that there is no conflict of interests regard-
ing the publication of this paper.

Acknowledgments

This work has been carried out at Data Mining and Text Mining
Laboratory, Department of Bioinformatics, Bharathiar University,

Coimbatore, India. AP would like to thank Indian Council of Medi-
cal Research (ICMR) for Senior Research Fellowship.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.jbi.2016.11.003.

References

[1] N. Bushati, S.M. Cohen, MicroRNA functions, Annu. Rev. Cell Dev. Biol. 23
(2007) 175-205.

[2] D.P. Bartel, MicroRNAs: target recognition and regulatory functions, Cell 136
(2) (2009) 215-233.

[3] S. Jia, H. Zhai, M. Zhao, MicroRNAs regulate immune system via multiple
targets, Discov. Med. 18 (100) (2014) 237-247.

[4] M. Li, C. Marin-Muller, U. Bharadwaj, K.H. Chow, Q. Yao, C. Chen, MicroRNAs:
control and loss of control in human physiology and disease, World J. Surg. 33
(4) (2009) 667-684.

[5] J. Satoh, H. Tabunoki, Comprehensive analysis of human microRNA target
networks, BioData Min. 4 (2011) 17.

[6] J.C. Brase, M. Johannes, T. Schlomm, M. Filth, A. Haese, T. Steuber, T. Beissbarth,
R. Kuner, H. Siiltmann, Circulating miRNAs are correlated with tumor
progression in prostate cancer, Int. ]. Cancer 128 (3) (2011) 608-616.

[7] C.M. Groce, Causes and consequences of microRNA dysregulation in cancer,
Nat. Rev. Genet. 10 (10) (2009) 704-714.

[8] J. Lu, G. Getz, E.A. Miska, E. Alvarez-Saavedra, J. Lamb, D. Peck, A. Sweet-
Cordero, B.L. Ebert, R.H. Mak, A.A. Ferrando, ].R. Downing, T. Jacks, H.R. Horvitz,
T.R. Golub, MicroRNA expression profiles classify human cancers, Nature 435
(7043) (2005) 834-838.

[9] J. Davidson-Moncada, F.N. Papavasiliou, W. Tam, MicroRNAs of the immune
system: roles in inflammation and cancer, Ann. N. Y. Acad. Sci. 1183 (2010)
183-194.

[10] R. Dai, S.A. Ahmed, MicroRNA, a new paradigm for understanding
immunoregulation, inflammation, and autoimmune diseases, Transl. Res.
157 (4) (2011) 163-179.

[11] R.C. Friedman, K.K. Farh, C.B. Burge, D.P. Bartel, Most mammalian mRNAs are
conserved targets of microRNAs, Genome Res. 19 (2009) 92-105.

[12] N. Lin, W. Baolin, R. Jansen, M. Gerstein, H. Zhao, Information assessment on
predicting protein-protein interactions, BMC Bioinformatics 5 (2004) 154.

[13] A. Casadevall, L.A. Pirofski, Host-pathogen interactions: basic concepts of
microbial commensalism, colonization, infection, and disease, Infect. Immun.
68 (12) (2000) 6511-6518.

[14] H. Liang, W.H. Li, MicroRNA regulation of human protein protein interaction
network, RNA 13 (2007) 1402-1408.

[15] B. Liu, L. Liu, A. Tsykin, G.J. Goodall, J.E. Green, M. Zhu, CH. Kim, J. Li,
Identifying functional miRNA-mRNA regulatory modules with correspondence
latent dirichlet allocation, Bioinformatics 26 (24) (2011) 3105-3111.

[16] J. Chen, B.J. Aronow, A.G. Jegga, Disease candidate gene identification and
prioritization using protein interaction networks, BMC Bioinformatics 10
(2009) 73.

[17] B.P. Lewis, C.B. Burge, D.P. Bartel, Conserved seed pairing, often flanked by
adenosines, indicates that thousands of human genes are microRNA targets,
Cell 120 (2005) 15-20.

[18] Z. Lubovac, ]. Gamalielsson, B. Olsson, Combining functional and topological
properties to identify core modules in protein interaction networks, Proteins
64 (2006) 948-959.

[19] B. Liu, J. Li, MJ. Cairns, Identifying miRNAs, targets and functions, Brief
Bioinform. 15 (1) (2014) 1-19.

[20] T.S. Keshava Prasad, R. Goel, K. Kandasamy, S. Keerthikumar, S. Kumar, S.
Mathivanan, et al.,, Human protein reference database-2009 update, Nucleic
Acids Res. 37 (Database issue) (2009) D767-D772.

[21] CW. Hsu, H.F. Juan, H.C. Huang, Characterization of microRNA-regulated
protein-protein interaction network, Proteomics 8 (2008) 1975-1979.

[22] Zhen Wang, Kan He, Qishan Wang, Yumei Yang, Yuchun Pan, The prediction of
the porcine pre-microRNAs in genome-wide based on support vector machine
(SVM) and homology searching, BMC Genomics 13 (2012) 729.

[23] M.E. Rahman, R. Islam, S. Islam, S.I. Mondal, M.R. Amin, MiRANN: a reliable
approach for improved classification of precursor microRNA using Artificial
Neural Network model, Genomics 99 (4) (2012) 189-194.

[24] S. Agarwal, C. Vaz, A. Bhattacharya, A. Srinivasan, Prediction of novel precursor
miRNAs using a context-sensitive hidden Markov model (CSHMM), BMC
Bioinformatics 11 (1) (2010) S29.

[25] M. Yousef, M. Nebozhyn, H. Shatkay, S. Kanterakis, L.C. Showe, M.K. Showe,
Combining multi-species genomic data for microRNA identification using a
Naive Bayes classifier, Bioinformatics 22 (2006) 1325-1334.

[26] J. Xu, CX.Li,].Y. Lv, Y.S. Li, Y. Xiao, T.T. Shao, X. Huo, X. Li, Y. Zou, Q.L. Han, X. Li,
LH. Wang, H. Ren, Prioritizing candidate disease miRNAs by topological
features in the miRNA target-dysregulated network: case study of prostate
cancer, Mol. Cancer Ther. 10 (10) (2011) 1857-1866.

[27] J.W. Nam, K.R. Shin, ]. Han, Y. Lee, V.N. Kim, B.T. Zhang, Human microRNA
prediction through a probabilistic co-learning model of sequence and
structure, Nucleic Acids Res. 33 (2005) 3570-3581.


http://dx.doi.org/10.1016/j.jbi.2016.11.003
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0005
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0005
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0010
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0010
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0015
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0015
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0020
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0020
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0020
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0025
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0025
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0030
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0030
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0030
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0035
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0035
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0040
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0040
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0040
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0040
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0045
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0045
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0045
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0050
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0050
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0050
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0055
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0055
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0060
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0060
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0065
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0065
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0065
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0070
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0070
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0075
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0075
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0075
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0080
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0080
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0080
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0085
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0085
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0085
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0090
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0090
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0090
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0095
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0095
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0100
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0100
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0100
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0105
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0105
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0110
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0110
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0110
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0115
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0115
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0115
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0120
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0120
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0120
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0125
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0125
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0125
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0130
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0130
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0130
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0130
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0135
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0135
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0135

A. Prabahar, ]. Natarajan/Journal of Biomedical Informatics 65 (2017) 34-45 45

[28] P. Jiang, H. Wu, W. Wang, W. Ma, X. Sun, Z. Lu, MiPred: classification of real
and pseudo microRNA precursors using random forest prediction model with
combined features, Nucleic Acids Res. 35 (2007) W339-W344.

[29] M. Ly, Q. Zhang, M. Deng, J. Miao, Y. Guo, W. Gao, Q. Cui, An analysis of human
microRNA and disease associations, PLoS One 3 (2008) e3420.

[30] Q. Jiang, Y. Wang, Y. Hao, L. Juan, M. Teng, X. Zhang, M. Li, G. Wang, Y. Liu,
miR2Disease: a manually curated database for microRNA deregulation in
human disease, Nucleic Acids Res. 37 (Database issue) (2009) D98-D104.

[31] Y. Wang, X. Chen, W. Jiang, L. Li, W. Li, L. Yang, M. Liao, B. Lian, Y. Lv, S. Wang, S.
Wang, X. Li, Predicting human microRNA precursors based on an optimized
feature subset generated by GA-SVM, Genomics 98 (2) (2011) 73-78.

[32] B. Liu, L. Fang, J. Chen, F. Liu, X. Wang, MiRNA-dis: microRNA precursor
identification based on distance structure status pairs, Mol. BioSyst. 11 (4)
(2015) 1194-1204.

[33] A. Keller, P. Leidinger, B. Vogel, C. Backes, A. EISharawy, V. Galata, MiRNAs can
be generally associated with human pathologies as exemplified for miR-144*,
BMC Med. 12 (2014) 224.

[34] Z. Hu, S.M. Gallo, Identification of interacting transcription factors regulating
tissue gene expression in human, BMC Genomics 11 (2010) 49.

[35] T. Lee, ]J. Kim, Self containment, a property of modular RNA structures,
distinguishes microRNAs, PLoS Comput. Biol. 4 (2008) e1000150.

[36] LL. Hofacker, Vienna RNA secondary structure server, Nucleic Acids Res. 31
(2003) 3429-3431.

[37] D. Betel, M. Wilson, A. Gabow, D.S. Marks, C. Sander, The microRNA.org
resource: targets and expression, Nucleic Acids Res. 36 (2008) D149-D153.

[38] A. Krek, D. Griin, M.N. Poy, R. Wolf, L. Rosenberg, EJ. Epstein, et al.,
Combinatorial microRNA target predictions, Nat. Genet. 37 (2005) 495-500.

[39] A. Grimson, K.K. Farh, W.K. Johnston, P. Garrett-Engele, L.P. Lim, D.P. Bartel,
MicroRNA targeting specificity in mammals: determinants beyond seed
pairing, Mol. Cell 27 (2007) 91-105.

[40] M. Maragkakis, M. Reczko, V.A. Simossis, P. Alexiou, G.L. Papadopoulos, T.
Dalamagas, et al., DIANAmicroT web server: elucidating microRNA functions
through target prediction, Nucleic Acids Res. 37 (2009) W273-W276.

[41] K.C. Miranda, T. Huynh, Y. Tay, Y.S. Ang, W.L. Tam, A.M. Thomson, B. Lim, L.
Rigoutsos, A pattern-based method for the identification of MicroRNA binding
sites and their corresponding heteroduplexes, Cell 126 (2006) 1203-1217.

[42] J. Kruger, M. Rehmsmeier, RNAhybrid: microRNA target prediction easy, fast
and flexible, Nucleic Acids Res. 34 (2006) W451-W454,

[43] W. Xiaowei, MiRDB: a microRNA target prediction and functional annotation
database with a wiki interface, RNA 14 (6) (2008) 1012-1017.

[44] M. Kertesz, N. lovino, U. Unnerstall, U. Gaul, E. Segal, The role of site
accessibility in microRNA target recognition, Nat. Genet. 39 (2007) 1278-
1284.

[45] CJ. Mattingly, G.T. Colby, ].N. Forrest, ]J.L. Boyer, The comparative
toxicogenomics database (CTD), Environ. Health Perspect. 111 (6) (2003)
793-795.

[46] M.P. Lefranc, V. Giudicelli, C. Ginestoux, ]. Bodmer, W. Miiller, R. Bontrop, et al.,
IMGT, the international ImMunoGeneTics database, Nucleic Acids Res. 27 (1)
(1999) 209-212.

[47] K. Breuer, A.K. Foroushani, M.R. Laird, C. Chen, A. Sribnaia, R. Lo, G.L. Winsor, R.
E. Hancock, F.S. Brinkman, D.J. Lynn, InnateDB: systems biology of innate
immunity and beyond - recent updates and continuing curation, Nucleic Acids
Res. 41 (Database issue) (2013) D1228-D1233.

[48] P. Shannon, A. Markiel, O. Ozier, N.S. Baliga, ].T. Wang, D. Ramage, N. Amin, B.
Schwikowski, T. Ideker, Cytoscape: a software environment for integrated
models of biomolecular interaction networks, Genome Res. 13 (11) (2003)
2498-2504.

[49] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, U. Alon, Network
motifs: simple building blocks of complex networks, Science 298 (5594)
(2002) 824-827.

[50] N.H. Tran, K.P. Choi, L. Zhang, Counting motifs in the human interactome, Nat.
Commun. 4 (2013) 2241.

[51] S. Wernicke, F. Rasche, FANMOD: a tool for fast network motif detection,
Bioinformatics 22 (9) (2006) 1152-1153.

[52] A. Kozomara, S. Griffiths-Jones, MiRBase: annotating high confidence
microRNAs using deep sequencing data, Nucleic Acids Res. 42 (2014) D68-
D73.

[53] S. Okuda, T. Yamada, M. Hamajima, M. Itoh, T. Katayama, P. Bork, S. Goto, M.
Kanehisa, KEGG Atlas mapping for global analysis of metabolic pathways,
Nucleic Acids Res. 36 (2008) W423-W426.

[54] M.A. Harris, J. Clark, A. Ireland, J. Lomax, M. Ashburner, et al., The Gene
Ontology (GO) database and informatics resource, Nucleic Acids Res. 32
(Database issue) (2004) D258-D261.

[55] H. Dweep, N. Gretz, miRWalk2.0: a comprehensive atlas of microRNA-target
interactions, Nat. Methods 12 (8) (2015) 697.

[56] N. Cristianini, J. Shawe-Taylor, An Introduction to Support Vector Machines
and other Kernel-based Learning Methods, first ed., Cambridge University
Press, 2000.

[57] T. Joachims, Making Large-Scale SVM Learning Practical. Advances in Kernel
Methods - Support Vector Learning, MIT Press, 1999, pp. 169-184.

[58] T. Hastie, R. Tibshirani, ]. Friedman, The Elements of Statistical Learning,
Springer Series in Statistics; Section 4.3, second ed., Springer, New York, NY,
USA, 2008.

[59] L. Popelinsky, Combining the principal components method with different
learning algorithms, in: Proceedings of the ECML/PKDD2001 IDDM Workshop,
2001.

[60] H. Ahmadi, A. Ahmadi, S. Azimzadeh-Jamalkandi, M.A. Shoorehdeli, A.
Salehzadeh-Yazdi, G. Bidkhori, A. Masoudi-Nejad, HomoTarget: a new
algorithm for prediction of microRNA targets in Homo sapiens, Genomics
101 (2) (2013) 94-100.

[61] J. Cheng, W. Huang, S. Cao, R. Yang, W. Yang, Z. Yun, Z. Wang, Q. Feng,
Enhanced performance of brain tumor classification via tumor region
augmentation and partition, PLoS One 10 (10) (2015) e0140381.

[62] A. Prabahar, ]J. Natarajan, Prediction of miRNA in human MHC that encodes
different immunological functions using support vector machines, Curr.
Bioinform. 9 (2014) 343-347.

[63] L. Mickael, B.D. Abdoulaye, B. Mathieu, Computational prediction of the
localization of microRNAs within their pre-miRNA, Nucleic Acids Res. 41 (15)
(2013) 7200-7211.

[64] A.L. Barabasi, Z.N. Oltvai, Network biology: understanding the cell’s functional
organization, Nat. Rev. Genet. 5 (2004) 101-113.

[65] R. Albert, Scale-free networks in cell biology, J. Cell Sci. 11 (8) (2005) 4947-
4957.

[66] L. Chen, X. Qu, M. Cao, Y. Zhou, W. Li, B. Liang, W. Li, W. He, C. Feng, X. Jia, Y. He,
Identification of breast cancer patients based on human signaling network
motifs, Sci. Rep. 3 (2013) 3368.

[67] A.Keller, P. Leidinger, ]. Lange, A. Borries, H. Schroers, M. Scheffler, H.P. Lenhof,
K. Ruprecht, E. Meese, Multiple sclerosis: microRNA expression profiles
accurately differentiate patients with relapsing-remitting disease from
healthy controls, PLoS One 4 (10) (2009) e7440.

[68] H. Li, B. Handsaker, A. Wysoker, T. Fennell, ]J. Ruan, N. Homer, G. Marth, G.
Abecasis, R. Durbin, The sequence alignment/map (SAM) format and SAMtools,
Bioinformatics 25 (2009) 2078-2079.

[69] CE. Joyce, X. Zhou, ]. Xia, C. Ryan, B. Thrash, A. Menter, W. Zhang, A.M.
Bowcock, Deep sequencing of small RNAs from human skin reveals major
alterations in the psoriasis miRNAome, Hum. Mol. Genet. 20 (2011) 4025-
4040.


http://refhub.elsevier.com/S1532-0464(16)30162-9/h0140
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0140
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0140
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0145
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0145
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0150
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0150
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0150
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0155
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0155
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0155
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0160
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0160
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0160
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0165
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0165
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0165
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0165
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0170
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0170
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0175
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0175
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0180
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0180
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0185
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0185
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0190
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0190
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0195
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0195
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0195
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0200
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0200
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0200
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0205
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0205
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0205
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0210
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0210
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0215
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0215
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0220
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0220
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0220
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0225
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0225
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0225
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0230
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0230
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0230
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0235
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0235
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0235
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0235
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0240
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0240
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0240
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0240
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0245
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0245
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0245
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0250
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0250
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0255
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0255
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0260
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0260
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0260
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0265
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0265
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0265
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0270
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0270
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0270
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0275
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0275
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0280
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0280
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0280
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0280
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0285
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0285
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0285
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0290
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0290
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0290
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0290
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0300
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0300
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0300
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0300
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0305
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0305
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0305
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0310
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0310
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0310
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0315
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0315
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0315
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0320
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0320
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0325
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0325
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0330
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0330
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0330
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0335
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0335
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0335
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0335
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0340
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0340
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0340
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0345
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0345
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0345
http://refhub.elsevier.com/S1532-0464(16)30162-9/h0345

	Prediction of microRNAs involved in immune system diseases through network based features
	1 Introduction
	2 Methods
	2.1 Dataset
	2.1.1 Positive data
	2.1.2 Negative data

	2.2 Features set
	2.2.1 Network features
	2.2.1.1 miRNA target gene extraction
	2.2.1.2 miRNA target gene – disease association extraction
	2.2.1.3 miRNA target gene – protein association extraction
	2.2.1.3.1 Immune gene targets


	2.2.2 Motif and sequential features
	2.3 Functional properties of miRNA
	2.3.1 Human miRNA clusters
	2.3.2 Pathways and GO enrichment analysis

	2.4 Classification algorithm and validation
	2.4.1 Support vector machine (SVM)
	2.4.2 Principal component analysis (PCA)
	2.4.3 Performance evaluation


	3 Results and discussion
	3.1 Network based classification approach
	3.2 Functional properties of immune miRNAs
	3.3 SVM classification and evaluation
	3.4 Comparison of feature selection approaches
	3.5 Evaluation on unbalanced negative data
	3.6 Comparison with other methods
	3.7 Case studies
	3.7.1 Case study 1: Network based classification of multiple sclerosis using microarray gene expression data
	3.7.2 Case study 2: Psoriasis classification using network constructed from differential gene expression of small RNA-seq data


	4 Conclusion
	Conflict of interest
	Acknowledgments
	Appendix A Supplementary material
	References


