Frequent Pattern Mining
with Non-overlapping Inversions

Da-Jung Cho, Yo-Sub Han®), and Hwee Kim

Department of Computer Science, Yonsei University, 50, Yonsei-Ro,
Seodaemun-Gu, Seoul 120-749, Republic of Korea
{dajung,emmous,kimhwee}@cs.yonsei.ac.kr

Abstract. Frequent pattern mining is widely used in bioinformatics
since frequent patterns in bio sequences often correspond to residues
conserved during evolution. In bio sequence analysis, non-overlapping
inversions are well-studied because of their practical properties for local
sequence comparisons. We consider the problem of finding frequent pat-
terns in a bio sequence with respect to non-overlapping inversions, and
design efficient algorithms.

Keywords: String processing algorithms - Frequent pattern mining -
Non-overlapping inversions

1 Introduction

Agrawal et al. [1] studied the frequent pattern mining for finding associations
among market products and increasing profit. For example, frequent patterns in
customer behavior are useful for setting affordable product price, promotion and
store layout. They investigated the problem of finding meaningful associations
over market transactions. Frequent patterns are also useful in other domains
including sequential data, bio sequences or strings [10-12,14,18,20].

In bioinformatics, frequent motifs in DNA or protein sequences often corre-
spond to residues conserved during evolution due to an important structural or
functional role [18]. Note that traditional pattern mining algorithms are not suit-
able for bio sequences, since they cope with a large number of items and short
sequence lengths [11]. Wang et al. [18] first proposed an algorithm that finds
sequential patterns on bio sequences. Recently, Liao and Chen [12] designed an
algorithm for the problem with gaps—regions not conserved in evolution.

From a biological aspect, an inversion—breakage and rearrangement within
itself—is one of the most important operations since such an event produces
new gene sequences from an original gene sequence and sometimes causes a dis-
ease [13]. Schoniger and Waterman [15] introduced a simplification hypothesis
that all regions involved in the inversions do not overlap. This hypothesis—
non-overlapping inversions—is realistic for local DNA comparisons on relatively
closed sequences [17]. On the string with non-overlapping inversions,
Chen et al. [4] designed an O(n?) algorithm to solve the alignment with non-
overlapping inversions, which was improved to O(n?) by Vellozo et al. [17]. Amir

© Springer International Publishing Switzerland 2015
A.-H. Dediu et al. (Eds.): LATA 2015, LNCS 8977, pp. 121-132, 2015.
DOI: 10.1007/978-3-319-15579-1_9

122 D.-J. Cho et al.

and Porat [2] proposed an O(n?) approximation algorithm for the problem, and
Cho et al. [6] proposed an O(n?®) algorithm for the modified problem where
inversions occur to both strings. For the pattern matching, Cantone et al. [3]
proposed O(nm) algorithm to solve the pattern matching with non-overlapping
inversions. On formal language theory, researchers [5,8] have studied properties
and decision problems of formal languages considering inversions. This leads us
to consider frequent pattern mining problem on a string with non-overlapping
inversions.

Due to the irregularity of gene evolution, rearrangements—for instance,
non-overlapping inversions—may occur in conserved regions P. Suppose that
a sequence S;y1 is obtained from a sequence S; that has conserved regions,
and non-overlapping inversions occur during the evolution from S; to S;1+1 (See
Fig. 1 for an illustrative example of this phenomenon.). We search for a con-
served region P in S;11, which now may have been modified by non-overlapping
inversions from S;. Note that often we do not have all evolution sequences of a
gene. For instance, here S; ;1 is a mere sequence that we have and, thus, we do
not know where exactly non-overlapping inversions occur in S;y;. This makes
the problem of finding similar or same pattern occurrences in S; challenging
when we have only S;11 and the fact that S;;; is generated from S; by some
non-overlapping inversions.

Si
~ ita
- |

Fig. 1. Let S; be a gene sequence of the ith generation and S;+1 be a gene sequence of
the ¢4 1th generation. During the evolution from S; to Si+1, non-overlapping inversions
flip subsequences of the conserved regions P.

We formulate our problem as a frequent pattern mining problem on a string;:
Given a text T of length n over an alphabet X a pattern length m and a
pattern occurrence threshold r, our goal is to compute the set of all patterns P
of length m that occur in T at least r times when we allow non-overlapping
inversions on P. Note that P may not be a substring or a subsequence of T', which
is different from other frequent pattern mining problems in the literature. We first
compute a set of all possible substrings T; of length m and construct digraphs G;
representing all strings that can be generated by non-overlapping inversions on
T;. Next, we overlay all such GG;’s and obtain a weighted multidigraph G. Then,
we find all paths in G with the bottleneck lower bound r—each path represents P
and the bottleneck is the number of occurrences of P. We show that we can find
all patterns in O(nm? 4+ C'm) time using O(m) space, where C is the number of
matching patterns. If we want to store all matching patterns instead of reporting

Frequent Pattern Mining with Non-overlapping Inversions 123

them, then we can construct a DFA that recognizes the set of all such patterns
in O(nm?) time using O(m) space.

2 Preliminaries

Let Alai][as]-- - [ay] be an n-dimensional array, where the size of each dimen-
sion is a; for 1 < i < n. Let Ali1][ia]---[in] be the element of A with
indices (i1,12,...,%,). Given a finite set X of characters and a string w over

XY, we use |w| to denote the length of w and wli] to denote the symbol of w at
position i. We use wli : j] to denote the substring w[i] - - - w[j], where 0 < i < j.

For a finite set X' of characters, X* denotes the set of all strings over X. A
language over X' is any subset of X*. The symbol () denotes the empty language
and the symbol X\ denotes the null string. A finite-state automaton (FA) A is
specified by A = (Q, X, 4, s, F), where @ is a set of states, X is an alphabet,
0 C Q x X x(@Q is a set of transitions, s € @Q is the start state and F C @Q
is a set of final states. For a transition d(p,o) = ¢, we say that p has an out-
transition and g has an in-transition. Moreover, we call q a target state of p.
A string w is accepted by A if there is a labeled path from s to a final state
in F' such that the path spells out w. The language L(A) of an FA A is the
set of all strings accepted by A. If |[{d(p,0)}| = 1 for all p € Q and 0 € X,
we say that A is a deterministic finite-state automaton (DFA); otherwise, A is a
nondeterministic finite-state automaton (NFA). For more knowledge in automata
theory, the reader may refer to textbooks [16,19].

We cousider a biological operation inversion 6 and denote by 6(w) the reverse
of a string w. We define an inversion operation 6, ;) for a given range (i, j)
to be 0 jy(w) = O(w[i : j]). When the context is clear, we denote 0(; ;) as
(i,7). We say that the length of (,7) is j — i + 1. We define a sequence © =
((p1,q1), (p2,G2), - -, (DK, qr)) of inversions for a string w to be non-overlapping
(NOI-sequence for short) if it satisfies the following conditions: For 1 < i < k,
pr > 1, g < |wl, pi < ¢ and piy1 > ¢+ 1 for 1 < i < k— 1. For the

sake of easier explanation of our algorithms, for any given index i, we assume

that there always exists an inversion whose range covers ¢; namely, p;1 = 1,
gr = |w| and p; 11 = ¢; + 1, since a non-inversed range (i,j) can be represented
by a sequence ((4,%), (i+1,i41),...,(4,)) of inversions. Now, in summary, given

an NOI-sequence © = ((p1,q1), (p2,42),---,(Pk,qr)) and a string w, O(w) =
Bwlpy = @))0wlpa : ga]) - Ouwlpy - an).

An undirected graph G = (V, E) consists of a finite nonempty set V' of nodes
and a set E of unordered pairs of distinct nodes of V. Each pair e = {u,v} of
nodes in F is an edge of G and e is said to join v and v. A directed graph or
digraph D consists of a finite nonempty set V' of nodes and a set E of ordered
pairs of nodes. For an edge e = (u,v) of a digraph, we say that e is from node u
to node v. A multidigraph is a digraph where more than one edge can join two
nodes. The reader may refer to Harary [7] for more details in graph theory.

Given two strings X and Y of the same length, we say that X and Y have
an alignment with non-overlapping inversions (NOI-alignment for short) if there

124 D.-J. Cho et al.

exists an NOI sequence © such that O(Y) = X. Given a text T of length n and a
pattern P of length m, the NOI-occurrence Occ(T, P) of T and P is the number
of indices ¢ where T; = T'[i : i+m—1] has an NOI-alignment with P.

Definition 1 (Frequent Pattern Mining with Non-overlapping Inver-
sions). Given a text T of length n over X, a pattern length m and a mini-
mum number r of pattern occurrences, find all pairs (P € X™,Occ(T, P)) where
Oce(T, P) > r.

3 The Algorithm

Given a text T, our algorithm starts from inspecting all substrings 7; of T'. We
first compute a set of all NOI-alignment strings for T; and construct a digraph G;
that represents the set. Then we overlay all G;’s and construct a weighted
digraph G, and find all frequent patterns P from G, where Oce(T,P) > r.
We construct inversion fragment tables for all substrings 7;.

Definition 2. Given a text T, an index i and a pattern length m, the inversion
fragment table (IFT for short) is defined as follows:

((4, k), T;[k]) otherwise

for 1 <j k<m.

We call all elements in F;[j][k] inversion fragments (IFs for short) of T;. For
an IF F = ((p,q),0), we say that F yields the character o. For a sequence of
IFsFq,...,F;, where F; yields o;, we say that the sequence yields a string o7 - - - 0.
Fig. 2 shows an example of an IFT.

F 1 2 3 4

1] (1,4] ((1,2),4) | ((1,3),4) | ((1,4),4)
2 | ((1,2),6) | ((2,2),G) | ((2,3),G) | ((2,4),6)
31 ((1,3),0) | ((2,3),C) | (3:3),€) | (3,4),C)
4] ((1,4),7) | (2,4),7) | (3,4).7) | ((4,4),7)

Fig.2. IFT F; for T = AGCTA and m = 4. Shaded cells denote IFs for 63 4)(11).

IF's become useful for computing a substring created by an inversion because
of the following property of the inversion operation:

Observation 3. For a text T, an index i and its IFT F;, a sequence F;[j][k],
Eilj+1)[k=1],..., Fi[k=1][j+1], Fi[k][j] of IFs yields 0;)(T5).

Frequent Pattern Mining with Non-overlapping Inversions 125

From Observation 3, we know that if we apply 0(wmin(j,k),max(j,k)) to Ti, then
o yielded by F;[j][k] becomes the jth character of the result string. Using
Observation 3, we construct a digraph G; for T and i by Algorithm 1, which
we call an inversion graph. In an inversion graph, each node (j,o) represents
that there exists an NOI-alignment between P and T; where P[j] = o. Each
edge ((4,01), (j+1,02),00, f = ¢ or v) represents that if P[j—1] = ¢ and P[j] =
o1, then we can set P[j+1] = o3 to ensure that P and T; have an NOI-alignment.
The last element f is the flag that indicates whether P[j] and P[j+1] are from a
single inversion on the text (v) or from two adjacent inversions (c). Fig. 3 shows
an example of an inversion graph.

Fig. 3. An inversion graph G for T = AGCT A (flags of the edges are omitted). The
dashed path represents P = GATC, which has an NOI-alignment with 71 = AGCT.

We can retrieve all strings that have an NOI-alignment with 7T; from G;.

Theorem 4. Given a text T, an index i, a pattern length m and an tnversion
graph G;, a string P has an NOI-alignment with T; if and only if

1. (1, P[1]), (2, P[2]), #. f) € E; and
2. ((4, Pl]), G+1, P[j+1]), P[j—1], f) € E; for2 <j<m— L

In the literature, people often assume that the alphabet size is constant, since
X is a finite set. Then, it is straightforward to verify that Algorithm 1 runs in
O(m3) time. Since the size of F; is O(m?) and the size of E; is O(m), Algorithm 1
requires O(m?) space. We improve the runtime of Algorithm 1 by relying on the
following property of IFTs.

Observation 5. For1 <i<n—m and 2 < j,k <m,

1. If Ei[j][k] = ((4, k), 0), then Fipa[j—1][k=1] = ((j—1,k=1),0).
2. If F[j][k] = ((k,j), o), then Fipq[j—1][k—1] = ((k=1,j—1),0).

126 D.-J. Cho et al.

Algorithm 1. ConstructInversionGraph

Input: Text T over X of size t, index i and a pattern length m

Output: Digraph G; = (V, E;), where V = {1,2,...,m} x X and
E; CV XV x(XU{#}) x{v,c}

construct F;

V—{1,2,...,m} x X

for j «—1tom—1do

W N =

/* check the case that an inversion ends at index j */
4 for k — 1 to j do
5 let o1 be yielded by F;[j][k]
/* find all first characters of inversions starting from
index j 4+ 1 and record the edge */
6 for/ — j+1tomdo
7 let o2 be yielded by F;[j+1][]
8 if j =1 then
9 | add ((4,01), (j+1,02), #, ¢) to E;
10 else
11 for each og where ((j—1,00),(j,01),0’, f) € E; do
12 L L add ((4,01), (j+1,02),00,c) to E;
/* check the case that index j is within the range of an
inversion */
13 for kK — 2 to m do
/* find the next character in the inversion and record the
edge */
14 let o1 be yielded by F;[j][k] and o2 be yielded by F;[j+1][k—1]
15 if j =1 then
16 | add ((4,01), (j+1,02), #,v) to E;
17 else if k # m then
18 | add ((j,01), (j+1,02),00,v) to E;, where F;[j—1][k+1] yields oo
19 if j <k and j # 1 then
20 for each og where ((j—1,00), (j,01),0',¢c) € E; do
21 L L add ((4,01), (j+1,02),00,v) to E;

22 return (V, E;)

From Observation 5, we know that G; and G;41, constructed from F; and
F; 11 respectively, have common edges (See Fig. 4.). We make use of these edges
to reduce the construction time of G;1+1 by adding a new label (k, k') for each
edge ((j,01), (j+1,02),00, f) € E;, representing that the edge is from IFs F;[j][k]
and F;[j+1][k']. Moreover, in Algorithm 1, F; is only used to compute characters
yielded by IFs. Since F;[j][k] always yields T;[k], we do not need to construct F;
in the algorithm. By modifying Algorithm 1, we obtain a new algorithm with
improved time and space complexity. Algorithm 2 preserves all edges in E;_1
that are made from IFs in F; and runs Algorithm 1 only for edges that are not

in Ei—

Frequent Pattern Mining with Non-overlapping Inversions

127

1 but in E;. While adding new edges to F;, Algorithm 2 does not use F;.

Thus, Algorithm 2 constructs the same G; as Algorithm 1 except for additional

labels.

Algorithm 2. ConstructFastInversionGraph

Input: Text T over X of size t, index i, pattern length m and inversion graph

Gi—1=(V,Ei—1)

Output: Digraph G; = (V, E;), where V = {1,2,...,m} x ¥ and

E,CVxVx(ZU{#}) x{v,c} x{1,2,...,m}?

/* retrieve common edges from F;_; */
1 for each ((j,01), (j+1,0’2),0’0,f,k‘,/€/) € E;_1 do
2 if 2<j<m-—1and2<k,k then
3 | add ((j—1,01), (4, 02), 00, f, k—1,K'=1) to E;
4 for j«—1tom—1do
/* add only new edges for j using a part of Algorithm 1 */
5 for k — 1 to j do
6 o1 «— T;[k], o2 — T;[m)]
7 if j =1 then add ((1,01), (2,02), #,¢,k,m) to E; else
8 for each oo where ((j—1,00), (j,01),0", f,k', k) € E; do
9 L L add ((4,01), (j+1,02),00,¢,k,m) to E;
/* add edges for j =m — 1 using a part of Algorithm 1 x/
10 if j =m — 1 then
11 for k—2tom—1do
12 o1 HTi[k],UgHTi[kfl]
13 L add ((m—1,01), (m,02), T;[k+1],v, k, k—1) to E;
14 o1 «— Ti[m—1], 02 «— T;[m]
15 for each o where ((m—2,00), (j,01),0’,¢c,k’, k) € E; do
16 L add ((4,01), (j+1,02),00,v,k,k—1) to E;
17 return (V, E;)
Fy 1 2 3 4
L@, 0] s, a] a0 [R 1 2 3 i
2 1((1,2),60)]((2,2),6)| ((2,3), &) [((2,4),G)] |1 |((1,1).G)]((1,2),6)|((1,3),G)| ((1,4),G)
3 1(1,3,0)(2:3),0)](3:3,0)(3,:9,0)] |2 [((1,2,0)](2.2,0)](2.3),0)] (2.9,C)
4 1(1,4),7)]((2,4),1)] (3,4),T)| (4,4, T)| |3 |((1,3),17)]((2,3),7)]((3,3),7)| ((3,4),T)
4 (0, 0] (2.9, 4] (3,4),4)] ((4,9),4)

Fig. 4. Comparison of F; and F» for T' = AGCTA. Shaded cells denote IFs from I}
and F> that satisfy the properties of Observation 5

128 D.-J. Cho et al.

Since moving common edges from F;_; to E; takes O(m) time and adding
new edges takes O(m?) time, Algorithm 2 runs in O(m?) time using O(m) space.
Note that G; represents all possible strings that have NOI-alignments with 7;.
We overlay all G;’s to construct an accumulated inversion graph G for T by
Algorithm 3 (See Fig. 5 for an example.). Note that Algorithm 3 requires
O(nm?) time and O(m) space.

Algorithm 3. ConstructAccumulatedInversionGraph

Input: Text T of length n over X' of size ¢ and a pattern length m
Output: Weighted multidigraph G = (V, E), where V = {1,2,...,m} x X and
ECVXVx(ZU{#}) x{1,2,....,n—m+1}
Ve {1,2,....m}x %
for each (i,01), (i+1,02) € V, 00 € ¥ do
L add ((¢,01), (i+1,02),00,0) to E.

fori<—1ton—m+1do
/* modify ConstructInversionGraph not to use I} */

' W N =

5 if i = 1 then ConstructInversionGraph(T, i, m) else
ConstructFastInversionGraph(T,i,m, G;—1) for each (v1,v2,0, f, k., k') € E;
do

6 L change (vi,v2,0,9) € E to (v1,v2,0,9 + 1)

7 return (V, E)

For an edge ((4,0;), (i+1,0411),0i-1,9:) € E, we call g; the weight of the edge
and o the preceding symbol of the edge. We also say that the edge is from index ¢
to index i+1. For a path ((1,01), (2,02), #, 91), ((2,02),(3,03),01, 92), - - ., ((m—
1,0m-1), (M, 0m), Om—2,gm), we call min(g1, ga, . . . , gm) the minimum weight of
the path. From the construction of GG, we have the following statement:

Lemma 6. ForatextT oflengthn and a pattern lengthm, let P € X be a pattern
such that ((1, P[1]),(2, P[2]),#,91) € E and ((j, P[j]), (j+1, P[j+1]), P[j—1],
gj) € E for2 < j <m—1. Then Occ(T, P) = min(g;) for1 <j<m—1.

Now, our goal is to find all paths from index 1 to index m, where the mini-
mum weight of each path is greater than or equal to . We reduce the resulting
accumulated inversion graph so that any path from index 1 to index m in the
graph satisfies the condition based on a modified Kruskal’s Algorithm [9]. We
sort edges by ascending order with respect to weights as in Kruskal’s Algorithm.
Then we repeatedly remove an edge with the minimum weight until all remaining
edges have weights greater than or equal to 7. Once we remove an edge e, we then
remove all adjacent edges of e that cannot be in a path anymore because of the
removal of e. Algorithm 4 removes edges from G to return a graph G’, where any
path from index 1 to index m represents a pattern P such that Oce(T, P) > r.
Fig. 6 is an example of G’ for T = AGCTAGCTAG and r = 3.

We prove that any path from index 1 to index m in the resulting graph
represents a pattern P such that Occ(T, P) > r.

Frequent Pattern Mining with Non-overlapping Inversions 129

: / /
AR
R

GCNKS
;g\ 0

N

&

9

Fig. 6. A reduced accumulated inversion graph G’ for T'= AGCTAGCTAG and r = 3

Theorem 7. Suppose Algorithm 4 returns G' = (V,E’). Let P € X™ be a
pattern such that ((1, P[1]), (2, P[2]),#,91) € E’' and ((4, P[4]), (j+1, P[j+1]),
Plj—1],9;) € E for2 < j <m—1. Then Occ(T,P) > r.

Next, we analyze the time and space complexity of the algorithm.

Lemma 8. Algorithm j runs in O(nm?) time using O(m) space.

130 D.-J. Cho et al.

Algorithm 4. ReduceAccumulatedInversionGraph

Input: Text T of length n over X' of size t, a pattern length m and a pattern
occurrence threshold r
Output: Weighted multidigraph G’ = (V, E’), where V = {1,2,...,m} x X and
ECVxVx(ZU{#}) x{1,2,....,n—m+1}
1 ConstructAccumulatedInversionGraph(T', m)
2 B« F
3 sort B’ by ascending order with respect to weights
4 while there exists an edge in E' with weight less than r do

5 e «— ((i,01), (i+1, 02), 00, g) be the edge with minimum weight in E’
6 R0 // set of edges to remove
7 if e is the only edge from index i to indez i + 1 in E’' then return (V, ()
else add e to R while R # () do
8 for each ¢’ — ((j,01), (j+1,0%),00,9') € R do
9 if ¢’ is the only edge from node (j,o}) to node (j+1,0%) in E’ then
10 add all edges from node (j+1,0%) to index j+2 with preceding
symbol o7 in E' to R
11 if there is no edge from node (j,07) to inder j+1 in E’ then
12 L add all edges from index j—1 to node (j,07) in E' to R
13 if €' is the only edge from node (j,o1) to index j+1 with preceding
symbol o, in E’ then
14 L add all edges from node (j—1,0() to node (j,o1) in E' to R
15 remove ¢’ from E’ and R

16 return (V, E’)

It requires at least O(C'm) to report all patterns with the occurrence greater
than or equal to r, where C is the number of such patterns. From G’, we can
find all such patterns by simple depth-first search in O(C'm). On the other hand,
if we want to identify all matching patterns instead of reporting them, then we
can convert G’ to a DFA A’ where L(A’) is the set of all such patterns. For
a weighted multidigraph G’ = (V, E’), where V = {1,2,...,m} x X and F C
VXV x(ZU{#}) x{1,2,...,n—m+1}, we construct a DFA A" = (Q, X, 4, s, F)
by the following procedure:

1. Q=sU{#} x T x {1} UX x ¥ x{2,...,m}.

2. F =X x X x{m}.

3. 8(s,0) = (#,0,1) for all ((1,0),(2,0"),#,9) € E’, where 0,0’ € X and
g=0.

4. §((09,01,1),02) = (01,092,i+1) for all & — ((i,01), (i+1,02),00,9) € E’,
where 0g,01,00 € Y, g>0and 1 <¢:<m—1.

From the construction of the transition function, it is straightforward that
A’ is a DFA and L(A’) is equal to the set of all patterns with the occurrence
greater than or equal to r. The construction of A’ requires O(m) time using
O(m) space. Then, we establish the following theorem.

Frequent Pattern Mining with Non-overlapping Inversions 131

Theorem 9. Given a text T of length n over an alphabet X', a pattern length m
and a pattern occurrence threshold v, we can solve frequent pattern mining with
non-overlapping inversions in O(nm?+Cm) time using O(m) space, where C' is
the number of patterns to find. Moreover, we can construct a DFA that recognizes
the set of all patterns to find in O(nm?) time using O(m) space.

4 Conclusions

We have considered non-overlapping inversions in frequent pattern mining. We
have proposed a graph-based algorithm that finds all patterns P where Occ(T, P)
> r in O(nm? + Cm) time using O(m) space, where m is the desired pattern
length, n is the size of an input text T, r is the pattern occurrence threshold
and C is the number of patterns to find. Moreover, we have proposed an algo-
rithm that constructs a DFA recognizing the set of all matching patterns in
O(nm?) time using O(m) space. Notice that we need to examine all possible
strings that have an NOI-alignment with any 7T; to find P. Since the number
of inversions in all T;’s is O(nm?), it would be challenging to design an algo-
rithm that runs faster than O(nm? 4 Cm). Since the runtime to find all patterns
depends on C, it is an interesting open question to establish the lower and the
upper bound of C. Another future direction is to find frequent patterns from a
bio sequence under other biological operations and combined operations.

Acknowledgments. This research was supported in part by the Basic Science
Research Program through NRF funded by MEST (2012R1A1A2044562) and by the
Yonsei University Future-leading Research Initiative of 2014. Kim was supported by
NRF Grant funded by the Korean Government (NRF-2013-Global Ph.D. Fellowship
Program).

References

1. Agrawal, R., Imieliniski, T., Swami, A.: Mining association rules between sets of
items in large databases. ACM SIGMOD Record 22(2), 207-216 (1993)

2. Amir, A., Porat, B.: Pattern matching with non overlapping reversals - approxi-
mation and on-line algorithms. In: Cai, L., Cheng, S.-W., Lam, T.-W. (eds.) Algo-
rithms and Computation. LNCS, vol. 8283, pp. 55-65. Springer, Heidelberg (2013)

3. Cantone, D., Cristofaro, S., Faro, S.: Efficient string-matching allowing for non-
overlapping inversions. Theoretical Computer Science 483(29), 85-95 (2013)

4. Chen, Z.Z., Gao, Y., Lin, G., Niewiadomski, R., Wang, Y., Wu, J.: A space-efficient
algorithm for sequence alignment with inversions and reversals. Theoretical Com-
puter Science 325(3), 361-372 (2004)

5. Cho, D.-J., Han, Y.-S., Kang, S.-D., Kim, H., Ko, S.-K., Salomaa, K.: Pseudo-
inversion on formal languages. In: Ibarra, O.H., Kari, L., Kopecki, S. (eds.) UCNC
2014. LNCS, vol. 8553, pp. 93—-104. Springer, Heidelberg (2014)

6. Cho, D.J., Han, Y.S., Kim, H.: Alignment with non-overlapping inversions and
translocations on two strings. Theoretical Computer Science (in press)

7. Harary, F.: Graph Theory. Addison-Wesley series in mathematics. Perseus Books
(1994)

132

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

D.-J. Cho et al.

Ibarra, O.H.: On decidability and closure properties of language classes with respect
to bio-operations. In: Murata, S., Kobayashi, S. (eds.) DNA 2014. LNCS, vol. 8727,
pp. 148-160. Springer, Heidelberg (2014)

Kruskal, Jr., J.B.: On the shortest spanning subtree of a graph and the traveling
salesman problem. Proceedings of the American Mathematical Society 7(1), 48-50
(1956)

Kum, H.C., Pei, J., Wang, W., Duncan, D.: Approxmap: Approximate mining
of consensus sequential patterns. In: Proceedings of the 2nd STAM International
Conference on Data Mining, pp. 311-315 (2003)

Liao, V.C.C., Chen, M.S.: DFSP: a Depth-First SPelling algorithm for sequential
pattern mining of biological sequences. Knowledge and Information Systems 38(3),
623639 (2013)

Liao, V.C.C., Chen, M.S.: Efficient mining gapped sequential patterns for motifs
in biological sequences. BMC Systems Biology 7(4), 1-13 (2013)

Lupski, J.R.: Genomic disorders: structural features of the genome can lead
to DNA rearrangements and human disease traits. Trends in Genetics 14(10),
417-422 (1998)

Sagot, M.-F.: Spelling approximate repeated or common motifs using a suffix tree.
In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN 1998. LNCS, vol. 1380, pp. 374-390.
Springer, Heidelberg (1998)

Schoniger, M., Waterman, M.S.: A local algorithm for DNA sequence alignment
with inversions. Bulletin of Mathematical Biology 54(4), 521-536 (1992)

Shallit, J.: A Second Course in Formal Languages and Automata Theory.
Cambridge University Press (2008)

Vellozo, A.F., Alves, C.E.R., do Lago, A.P.: Alignment with non-overlapping inver-
sions in O(n®)-time. In: Biicher, P., Moret, B.M.E. (eds.) WABI 2006. LNCS
(LNBI), vol. 4175, pp. 186-196. Springer, Heidelberg (2006)

Wang, K., Xu, Y., Yu, J.X.: Scalable sequential pattern mining for biological
sequences. In: Proceedings of the 13th ACM International Conference on Infor-
mation and Knowledge Management, pp. 178-187 (2004)

Wood, D.: Theory of Computation. Harper & Row (1986)

Zhu, F., Yan, X., Han, J., Yu, P.S.: Efficient discovery of frequent approximate
sequential patterns. In: Proceedings of the 7th IEEE International Conference on
Data Mining, pp. 751-756 (2007)

	Frequent Pattern Mining with Non-overlapping Inversions
	1 Introduction
	2 Preliminaries
	3 The Algorithm
	4 Conclusions
	References

