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Abstract—Many studies have shown roles of miRNAs 

(microRNAs) on human disease and a number of computational 

methods have been proposed to predict such associations by 

ranking candidate microRNAs according to their relevance to a 

disease. Among them, network-based methods are becoming 

dominant since they well exploit the “disease module” principle 

in miRNA functional similarity networks. Of which, Random 

Walk with Restart (RWR) algorithm-based method on a miRNA 

functional similarity network, namely RWRMDA, is state-of-the-

art one. The use of this algorithm was inspired from its success in 

predicting disease gene because “disease module” principle also 

exists in protein interaction networks. Besides, many other 

algorithms were also designed for prediction of disease genes. 

However, they have not yet been utilized for disease microRNA 

prediction. In this study, we proposed a method, namely 

RWRHMDA, for prediction of disease-associated miRNAs. This 

method was based on RWRH algorithm, which was successfully 

proposed for disease gene prediction on a heterogeneous network 

of genes and disease phenotypes. In particular, we used this 

algorithm to rank disease candidate miRNAs on a heterogeneous 

network of phenotypes and miRNAs, which was constructed by 

integrating a shared target gene-based microRNA functional 

similarity network and a disease phenotype similarity network. 

Comparing the prediction performance of RWRHMDA with that 

of RWRMDA on a set of 35 disease phenotypes, we found that 

RWRHMDA significantly outperformed RWRMDA irrespective 

of parameter settings since it better exploited “disease module” 

principle. In addition, using RWRHMDA method, we identified 

eight novel Alzheimer’s disease-associated miRNAs. 

Keywords—disease-associated miRNA; Random walk with 

restart algorithm; RWRH; Alzheimer’s disease. 

 

I.  INTRODUCTION 

Finding underlying molecular mechanisms of diseases is 
one of the important goals in biomedical research. Many 
methods have been proposed to identify genetic factors of 
diseases. In which, prediction of disease-associated genes have 
been taken much attention in last decades [1, 2]. Recently, 
studies on the molecular mechanisms of diseases have been 
extended to microRNA (shortly called miRNA) which is a 
class of small non-coding regulatory RNAs that play an 
important role in the post-transcriptional regulation of gene 
expression [3, 4]. More importantly, many studies have shown 

role of miRNAs in both common [5-9] and rare diseases [10]. 
For instance, miRNAs have been related to metabolic diseases 
[11], obesity, diabetes and cancer [12]. 

To predict novel disease-associated miRNAs, a number of 
network-based methods have been proposed to associate 
miRNAs to diseases. Depending on how the network is 
represented, different approaches can be envisaged. For 
instance, study [13] built a heterogeneous miRNA target-
dysregulated network based on physical miRNA-target 
interactions, then analyzed topological features of  the network 
to prioritize candidate disease miRNAs. However, most 
network-based methods exploit “disease module” principle 
(i.e., functionally related miRNAs tend to be associated with 
phenotypically similar diseases [14, 15]) in homogeneous 
miRNA functional similarity networks (i.e., nodes represent 
miRNAs and edges represent the degree of functional 
relatedness between the miRNAs) for prediction of disease-
associated miRNAs [16-19]. For instance, local similarity 
measure-based methods only assessed direct neighbors of 
known disease-associated miRNAs [13, 16]. Meanwhile, 
global similarity measure-based methods such as Random 
Walk with Restart (shortly called RWR) algorithm, have been 
recently proposed and shown to outperform local similarity 
measure-based ones [19-21]. The application of RWR 
algorithm on miRNA functional similarity networks to predict 
disease-associated miRNAs is inspired from its success in 
disease gene prediction on protein interaction networks. 
Indeed, this algorithm has been successfully applied in a 
number of studies for disease gene prediction [22-24] and also 
considered a state-of-the-art method in that field compared to 
other network-based methods [25]. The success of RWR in 
both prediction of disease-associated genes and miRNAs is 
because it well exploits “disease module” principle, which 
appears in both protein interaction networks (i.e., proteins 
associated to the same or similar disease tends to form 
functional/physical module in protein interaction networks [26-
28]) and miRNA functional similarity networks (i.e., 
functionally related miRNAs tend to be associated with 
phenotypically similar diseases [14, 15]). However, these 
methods just used the RWR algorithm for disease miRNA 
prediction on homogeneous networks (i.e., all nodes in the 
miRNA functional similarity networks are miRNAs). Recently, 
a variant of RWR algorithm, namely RWRH, was proposed for 
a heterogeneous network. This algorithm was then applied to 
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predict disease-associated genes on a heterogeneous network of 
genes and disease phenotypes [29]. That study showed that 
RWRH better exploit “disease module” principle than RWR 
[22] since a disease phenotype similarity network was 
additionally integrated with a protein interaction network for 
disease gene prediction [29].  

Inspired from the success of RWR-based methods on a 
miRNA functional similarity network for disease miRNA 
prediction (i.e., RWRMDA [20] and ours [19]), we proposed a 
method, RWRHMDA, which was based on the RWRH 
algorithm, for disease miRNA prediction in this study. To test 
the performance of RWRHMDA, we constructed a 
heterogeneous network of miRNAs and disease phenotypes. To 
this end, we constructed a homogeneous miRNA network by 
integrating an existing miRNA functional synergistic network 
collected from [30] and miRNA functional similarity networks 
constructed based on shared target genes of miRNAs. Then, we 
integrated this network with a disease phenotype similarity 
network by known disease phenotype-miRNA associations to 
construct a heterogeneous network of miRNAs and disease 
phenotypes. The performance of RWRHMDA was assessed 
based on average AUC (area under ROC curve) over a set of 
disease phenotypes. Experimental results showed that the 
performance RWRHMDA is better than that of RWRMDA, 
which run only on the homogeneous miRNA, for prediction of 
disease-associated miRNAs irrespective of parameter settings. 
This is because RWRHMDA better exploited “disease module” 
principle with the integration of disease phenotype similarity 
information. In addition, we used RWRHMDA to find novel 
miRNAs associated to Alzheimer’s disease. The evidence 
search from literature about the associations between 100 
highly ranked candidate miRNAs and Alzheimer’s disease 
confirmed eight of them, which are not yet recorded in public 
disease-miRNA association database. 

 

II. METHODS 

A. Construction of a homogeneous miRNA network 

To construct a homogeneous miRNA network, we 
integrated a miRNA functional synergistic network collected 
from [30] and miRNA functional similarity networks 
constructed based on shared target genes of miRNAs. More 
specifically, we collected a network consisting of 3,872 
functional interactions among 692 miRNAs from [30]. To 
construct shared target gene-based miRNA functional 
similarity interactions, we used 143,596 miRNA-target gene 
associations of human from PITA [32] and 520,526 miRNA-
target associations of human from TargetScan [33], then 
followed the same procedure as in [16] to construct miRNA 
functional similarity interactions. Particularly, two miRNAs 
were defined to functionally interact if they share at least one 
target gene and the weight of that interaction was defined by 
the number of shared target genes divided by the number of 
target genes of miRNA which targets to a smaller number of 
genes. This definition resulted in a network containing 1,526 
functional interactions among 331 miRNAs collected from 
PITA and a network consisting of 46,118 functional 
interactions among 1,428 miRNAs collected from TargetScan. 
Final, to integrate these different miRNA functional networks, 

we normalized the weight of each interaction in these networks 
in a range of [0, 1] as follow: 

𝑤𝑖𝑗
′ =

𝑤𝑖𝑗 −𝑚𝑖𝑛

𝑚𝑎𝑥 − 𝑚𝑖𝑛

where wij is weight of interaction between miRNA i and j, 
min and max are the smallest and largest values of interaction 
weights of each miRNA functional network, respectively.    

Then, these three miRNA functional networks were 
combined using “per-edge average” method as follow: 

�̅�𝑖𝑗 =
1

𝑀
∑(𝑤𝑖𝑗

′ )𝑘

𝑀

𝑘=1

 

where M is number of networks containing interaction 
between miRNA i and j. 

As a result, a comprehensive homogeneous miRNA 
network consisting of 1,521 miRNAs and 51,362 functional 
interactions was constructed. 

B. Database of known phenotype-miRNA associations 

miR2Disease [34] is a comprehensive resource of miRNA 
and human disease which is manually curated. In this study, we 
obtained 270 experimentally verified disease phenotype–
miRNAs associations from this database. This can be 
considered a bipartite network connecting a total of 53 disease 
phenotypes and 118 miRNAs.  

 

C. Construction of a heterogeneous network of disease 

phenotypes and miRNAs 

To construct a heterogeneous network of disease 
phenotypes and miRNAs, we collected a disease phenotype 
similarity matrix from [31], where an element of the matrix 
represents degree of similarity between two phenotypes. By 
selecting only five neighbors which have largest similarities for 
each node, we constructed a disease phenotype similarity 

 

Fig. 1. Construction of a heterogeneous network of miRNAs and disease 

phenotypes. Phenotype similarity and homogeneous miRNA networks are 

connected by bipartite network. 
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network consisting of 19,791 interactions among 5080 
phenotypes. Then, we connected this network with the 
homogeneous miRNA network by the bipartite network of 
known disease phenotype-miRNA associations. Figure 1 shows 
illustrative sample of such the heterogeneous network. 

 

D. Network-based ranking algorithms 

Given a connected weighted graph G(V, E) with a set of 
nodes V={v1, v2, …, vN} and a set of links E={(vi, vj)| vi, vj∈V}, 

a set of source/seed nodes SV and a NN adjacency matrix W 
of link weights. Here, we are going to introduce algorithms for 
measuring relative importance of node vi to S. By modeling the 
miRNA networks (i.e., the homogeneous/heterogeneous 
miRNA networks) as a graph, ranking/prioritization of 
candidate miRNAs is to predict novel miRNAs associated to a 
disease phenotype of interest (d). The rankings of candidate 
miRNAs are based on their relative importance to a set of 
known d-associated miRNAs and d. This value also measures 
how much relevant to d a candidate miRNA is. 

 

Random Walk with Restart on a homogenous miRNA network 

RWR is a variant of the random walk and it mimics a 
walker that moves from a current node to a randomly selected 
adjacent node or goes back to source nodes with a back-

probability (0, 1). RWR can be formally described as 
follows:  

𝑃𝑡+1 = (1 − 𝛾)𝑊′𝑃𝑡 + 𝛾𝑃0 

where 𝑃𝑡 is a N1 probability vector of |V| nodes at a time 
step t of which the ith element represents the probability of the 

walker being at node vi∈V, and 𝑃0 is the N1 initial probability 
vector. 𝑊′ is the transition matrix of the graph, the (i, j) 
element in 𝑊′, denotes a probability with which a walker at vi 
moves to vj among V\{vi}. All nodes in the network are 
eventually ranked according to the steady-state probability 
vector 𝑃∞. The steady-state of each node represents its relative 
importance to the set of source nodes S. 

 Inspired from the success of this algorithm for disease gene 
prediction [22], study [20] proposed the RWR-based method, 
RWRMDA, for disease miRNA prediction on a homogeneous 
miRNA network. In which, the transition matrix 𝑊′is defined 
as follow: 

(𝑊𝑀
′ )𝑖𝑗 =

(𝑊𝑀)𝑖𝑗
∑ (𝑊𝑀)𝑖𝑗𝑗

 

where 𝑊𝑀 is adjacency matrix of the homogeneous miRNA 
network. 

In addition, the set of source nodes (S) was specified by 
miRNAs known to be associated with d. Therefore, the initial 
probability vector was defined as follow: 

𝑃0 = {

1

|𝑆|
    𝑖𝑓 𝑣𝑖 ∈ 𝑆

0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

Random Walk with Restart on a heterogeneous miRNA network 

RWRH algorithm was first proposed for disease gene 
prediction on a heterogeneous network of genes and disease 
phenotypes [29]. This can be considered a variant of the RWR 
algorithm, since it was defined in the same formula as for 
RWR. The difference is construction of transition matrix 𝑊′.  

 Based on the RWRH algorithm, in this study, we proposed 
a method, RWRHMDA, for disease miRNA prediction on the 
heterogeneous network of miRNAs and disease phenotypes. 
More specifically, 𝑊′ was defined as follow: 

𝑊′ = [
𝑊𝑀

′ 𝑊𝑀𝑃
′

𝑊𝑃𝑀
′ 𝑊𝑃

′ ] 

where 𝑊𝑀
′  and 𝑊𝑃

′  are intra-subnetwork transition matrices 
of the homogeneous miRNA network and the phenotype 
similarity network, respectively. 𝑊𝑀𝑃

′ , 𝑊𝑃𝑀
′  are inter-

subnetwork transition matrices. Let  be the jumping 
probability the random walker jumps from the miRNA network 
to the phenotype network or vice versa. Then, these matrices 
were defined as follow: 

(𝑊𝑀𝑃
′ )𝑖,𝑗 = 𝑝(𝑝𝑗|𝑚𝑖) = {

(𝑊𝑀𝑃)𝑖𝑗
∑ (𝑊𝑀𝑃)𝑖𝑗j

     𝑖𝑓 ∑ (𝑊𝑀𝑃)𝑖𝑗
j

≠ 0

0                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒             

 

(𝑊𝑃𝑀
′ )𝑖,𝑗 = 𝑝(𝑚𝑗|𝑝𝑖) = {

(𝑊𝑀𝑃)𝑗𝑖
∑ (𝑊𝑀𝑃)𝑗𝑖j

     𝑖𝑓 ∑ (𝑊𝑀𝑃)𝑗𝑖
j

≠ 0

0                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒             

 

(𝑊𝑀
′ )𝑖,𝑗 =

{
 
 

 
 
(𝑊𝑀)𝑖𝑗
∑ (𝑊𝑀)𝑖𝑗j

          𝑖𝑓 ∑ (𝑊𝑀𝑃)𝑖𝑗
j

= 0

(1 − )(𝑊𝑀)𝑖𝑗
∑ (𝑊𝑀)𝑖𝑗j

       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒          

 

(𝑊𝑃
′)𝑖,𝑗 =

{
 
 

 
 
(𝑊𝑃)𝑖𝑗
∑ (𝑊𝑃)𝑖𝑗j

          𝑖𝑓 ∑ (𝑊𝑀𝑃)𝑗𝑖
j

= 0

(1 − )(𝑊𝑃)𝑖𝑗
∑ (𝑊𝑃)𝑖𝑗j

       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒          

 

where 𝑊𝑃  and 𝑊𝑀𝑃 are adjacency matrices of the 
phenotype similarity and bipartite networks. 

 By letting  be the parameter to weight the importance of 
each network, the initial probability vector was defined as 
follow: 

𝑃0 = {
(1 − )

1

|𝑆|
    𝑖𝑓 𝑣𝑖 ∈ 𝑆

                     𝑖𝑓  𝑣𝑖 ≡ 𝑑 
0                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

  

 For these two algorithms, all remaining miRNAs in the 
networks, which are not known to be associated to d, were 
selected as candidates for ranking. 
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III. RESULTS AND DISCUSSION 

A. Performance comparison 

To compare the performance of RWRHMDA with that of 
RWRMDA, we used leave-one-out cross-validation (LOOCV) 
method for each disease phenotype in a set of disease 
phenotypes. Due to using LOOCV, only 35 of 53 disease 
phenotypes associating to at least two miRNAs were finally 
selected for assessment. For each disease phenotype (d), in 
each round of LOOCV, we held out one known d-associated 
miRNA. The rest of known d-associated miRNAs and d were 
used as seed nodes. The held-out miRNA and remaining 
miRNAs in the homogeneous miRNA network, which were not 
known to be associated to d, were ranked by RWRHMDA and 
RWRMDA methods. Then, we plotted the receiver operating 
characteristic (ROC) curve and calculated the area under the 
curve (AUC) to compare the performance of these two 
methods. This curve represents the relationship between 
sensitivity and (1-specificity), where sensitivity refers to the 
percentage of known d-associated miRNAs that were ranked 
above a particular threshold and specificity refers to the 
percentage of miRNAs which were not known to be associated 
to d ranked below this threshold. Consequently, the 
performance of each method was an average of AUC values 
over the set of 35 disease phenotypes. For fair comparison, we 

varied the back-probability () in a range of [0.1, 0.9]. Two 

other parameters (i.e.,  and ) of RWRHMDA were also 
varied in {0.1, 0.3, 0.5, 0.7, 0.9}. Figure 2 shows that the 
performance of RWRHMDA was better than that of 

RWRMDA statistically significantly for all combinations of  

and  (All P-values < 0.05, using two-sample t-Test for 
means). In addition, the performance of RWRHMDA was 

getting better when  increased, whereas that of RWRMDA 

slightly changed. This indicated “disease module” principle is 
better exploited when the disease phenotype similarity 

information is taken together. Indeed, when  is high, the 
random walker tends to assign miRNAs located near seed 
nodes (i.e., remaining known disease miRNAs) higher scores; 
therefore, the held-out miRNA, which is still closely connected 
to remaining known disease miRNAs, was given a higher rank. 

In addition, Figure 2 also shows that when  and  increase the 
performance of RWRHMDA increased. This indicated that 
disease phenotype similarity information is more important 
than miRNA functional similarity information. 

 

B. Case study: Alzheimer’s disease 

In this experiment, we tried to predict novel miRNAs 
associated to Alzheimer’s disease (MIM ID is 104300). 
Alzheimer's disease is a multi-factorial and fatal 
neurodegenerative disorder for which the mechanisms leading 
to profound neuronal loss are incompletely recognized. 
According to the database of disease-miRNA associations, 
miR2Disease [34], six miRNAs are known to be associated 
with Alzheimer’s disease. To predict novel miRNAs associated 
to this disease, we used those known associated miRNAs and 
the MIM ID of Alzheimer’s disease as source nodes, and other 
miRNAs in the homogeneous miRNA network as candidates. 

We set  =  =  = 0.9, since RWRHMDA achieved best 
performance with these values. After all candidate miRNAs 
were ranked, we selected 100 highly ranked candidates for 
evidence search about the association between miRNA and 
Alzheimer’s disease from literature on PubMed using Entrez 
Programming Utilites [35]. Table 1 shows eight evidenced 
candidate miRNAs. For instance, study [36] (PubMed ID: 
23585551) showed de-repression of FOXO3a death axis by 

 

Fig. 2. Performance comparison between RWRHMDA and RWRMDA 
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hsa-miR-132 and hsa-miR-212 causes neuronal apoptosis in 
Alzheimer's disease. In addition, it was reported that hsa-miR-
132 may contribute to disease progression through aberrant 
regulation of mRNA targets in the Tau network [37] (PubMed 
ID: 24014289).  Also, hsa-miR-181b regulates serine 
palmitoyltransferase and in turn amyloid β, novel targets in 
sporadic Alzheimer's disease [38] (PubMed ID: 21994399). 
Other not yet evidenced miRNAs in the top 100 miRNAs can 
be good candidates for biologists for further investigation (This 
list will be provided upon request). 

 

TABLE I. Eight evidenced Alzheimer’s disease-associated 
miRNAs among top 100 ranked candidates 

Rank miRNA PubMed ID 

1 hsa-miR-132 23585551, 24014289 

6 hsa-miR-181b 21720722, 21994399 

15 hsa-miR-27a 24212398 

20 hsa-miR-339 24352696 

28 hsa-let-7g 23922807 

72 hsa-miR-590-3p 21548758 

75 hsa-miR-545 23922807 

93 hsa-miR-206 22926857, 24465270 

 

IV. CONCLUSIONS 

The identification of novel disease-associated miRNAs is 
an important task in biomedical research. In this study, we 
proposed a method, RWRHMDA, which was based on a state-
of-the-art algorithm for disease gene prediction problem, for 
disease miRNA prediction. Experiment results showed that the 
performance of RWRHMDA was better than that of a state-of-
the-art method, RWRMDA, irrespective of parameter settings. 
In addition, RWRHMDA better exploited the “disease module” 
principle since it achieved better performance when the back-
probability increases. Moreover, the performance of 
RWRHMDA was more superior when the jumping and weight 
parameters increase. This indicated that disease phenotype 
similarity information is more important than miRNA 
functional similarity information for prediction of disease-
associated miRNAs. Finally, using RWRHMDA, we predicted 
eight novel miRNAs, including hsa-miR-132, hsa-miR-181b, 
hsa-miR-27a, hsa-miR-339, hsa-let-7g, hsa-miR-590-3p, hsa-
miR-545 and hsa-miR-206, associated to Alzheimer's disease, 
those are not yet recorded in the database of disease-miRNA 
associations, miR2Disease. 
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