Proceedings of 11th International Conference on Computer and Information Technology (ICCIT 2008)

25-27 December, 2008, Khulna, Bangladesh

A Lossless Image Compression Technique Using Generic
Peano Pattern Mask Tree

Mohammad Kabir Hossainl, Shams M Imam ', Khondker Shajadul Hasan ', William Perrizo >

'Computer Science & Engineering, North South University, Dhaka, Bangladesh.
Computer Science, North Dakota State University, Fargo, ND, USA

Email: mkhossain@northsouth.edu, shams.mahmood@gmail.com, shajadul@northsouth.edu,
william.perrizo@northsouth.edu

Abstract — Digital Image processing has become
ubiquitous in our daily life and the demands to produce
and process images are ever increasing. Large amounts
of space are required to store these images. Image
compression techniques are in high demand as they
allow reduction in this storage space. The basis for
image compression, as is for most other compression
techniques, is to remove redundant and unimportant
data. Lossless image compression techniques retain the
original information in compact form and do not
introduce any errors when decompressed. In this paper,
we discuss such a lossless technique using a data
structure that we name “Generic Peano Pattern Mask
Tree”. It is an improvement over a previously discussed
Lossless Image compression technique — “Peano Pattern
Mask Tree”. Both these structures are based on the data
structure — Peano Mask Tree.

Index terms — Lossless Image Compression, Peano
Tree, Peano Mask Tree, Peano Pattern Mask Tree,
Generic Peano Pattern Mask Tree, Data mining Ready.

[. INTRODUCTION

For many applications lossless image compression
is extremely important to be able to store more images
in a given amount of disk or memory space at the
same time to retain the original image. Such
applications include medical images, legal papers or
image scans made for archival purposes, aerial
photography from satellites etc. In these cases a
perfect reproduction of the original image is necessary
and any sort of degradation cannot be tolerated [2, 3].

There are basically two types of Image
Compression methods: Lossy and Lossless [4]. Lossy
compression involves the loss of some information
that makes it capable of achieving much higher
compression at the cost of accuracy. When the
information from the compressed data using lossy
technique is reconstructed, it introduces compression
artifacts. In lossless compression schemes, the

1-4244-2136-7/08/$20.00 ©2008 [EEE

317

reconstructed image, after compression, s
numerically identical to the original image. A perfect
reproduction of the original image can be achieved
using it.

In this paper we are proposing a method of lossless
image compression technique which is an
improvement over a previous work done by Shams
Mahmood et. al. [1] and Fazle Rabbi et. al. [2]. In the
next sections of the paper we are giving a short
description of Peano Count Tree, Peano Mask Tree
and Peano Pattern Mask Tree. Also we will discuss
how these data structures can be used in lossless
image compression. After that we will introduce the
improved version of Peano Pattern Mask Tree which
we call ‘Generic Peano Pattern Mask Tree’ and its
application in lossless image compression.

[I. PEANO TREES AND ITS VARIATIONS

A. The Peano Count Tree

Peano Count Tree (P-tree) is a lossless, compressed,
and data-mining ready data structure. The P-tree is a
quadrant-based tree representation of the original
spatial data [S, 6]. The general concept of P-tree is to
recursively divide the entire spatial data into
quadrants and to record the count of 1-bits for each
quadrant, thus forming a quadrant count tree. Using P-
tree structure, all the count information can be
calculated quickly. For example, a P-Tree for the
given 8 x 8 image of single bit in figure 1 is explained
below. Corresponding P-Tree is shown in figure 2.

RHEREROROR
HRRERERRER
RPRRERERROO
HRRERRHROO
OHORRERRER
RRRERoOoOO
RRHRERHEROR
cCorRROoOORR

Fig. 1. 8-bit by 8-bit image.

1117 Tevel 0
I I | I
l(l) Sl) 16 I12 Tevel 1
[Y B I I | I | | I |
3 0 3 4 2 3 2 2 3 4 3 2 Tevel 2
I | | I | | | I I
[11] [11] L LD e 1l iy LI 11
1101 1101 1010 1101 1010 1010 1101 1101 1010 Tevel 3
Fig.2. P-Tree for data in figure 1.

In this example, 47 is the number of 1’s in the
entire image which is stored in root node which is
labeled as level 0. The numbers 10, 9, 16, and 12
found at the next level (level 1) are the 1-bit counts
for the four major quadrants in raster order, or Z order
(upper left, upper right, lower left, and lower right).
This process of storing the count of the number of
ones for each of the major quadrants is repeated.
When quadrants are composed entirely of 1-bits
(called pure-1 quadrants), sub-trees are not needed,
and these branches terminate. Similarly, quadrants
composed entirely of 0-bits (called pure-0 quadrants),
also cause termination. A quadrant which is neither
pure-1 nor pure-0 is called mixed quadrant. This
pattern is continued recursively using the Peano-
ordering, or Z-ordering (recursive raster ordering), of
the four sub-quadrants at each new level. Eventually,
every branch terminates (since, at the “leaf” level, all
quadrants are pure either pure-1 or pure-0).

B. The Peano Mask Tree

A variation of the P-tree data structure is the Peano
Mask Tree (PM-Tree) in which masks, rather than
counts, are used. In a PM-tree, we use three valued
logic to represent pure-1, pure-0, and mixed
quadrants. (A 1 denotes pure-1; 0 denotes pure-0; and
M denotes mixed.) The PM-Tree for the previous

example is given in figure 3. We can easily construct
the original P-tree from its PM-tree by calculating the
counts from the leaves to the root in a bottom-up
fashion.

This PM-Tree data structure was used for
compression in [2]. It is obvious that this method will
work excellent when neighborhood pixels share the
same bit values with high probability. This is usually
the case in higher-order bits for pixels in image data.
However, neighboring lower order bits have different
values due to precision difference. The PM-Tree
structure does not provide good compression, if any at
all, for such lower order bits. This happens as
quadrants that are mixed are introduced and recursive
definition of data quadrants goes on till pure-1 or
pure-0 quadrants are one bit long. The above
mentioned paper thus chose to use only the higher
four bits to construct the PM Tree. However in
instances where these higher order bits lack a high
degree of correlation a similar problem to the one just
described might occur. A PM-Tree has three states; at
least two bits are required to save the information for
each node of the tree. Two bits are able to provide us
with four combinations; hence, one combination
remains unexploited in the PM-Tree method. This
lacking was addressed in [1] which proposed a new
data structure, The Peano Pattern Mask Tree.

M
I
I I | I
M M 1 M
I I [
[O I I I I I | I I
M 0 ™M 1 M M M M M 1 M M
I I I I I I I I I
[1]] 111 LR TEEE L T |11 LILE T
1101 1101 1010 1101 1010 1010 1101 1101 1010

Fig. 3. PM-Tree for data in figure 1.

318

C. The Peano Pattern Mask Tree

The Peano Pattern Mask Tree (PPM-Tree) is
another variation of the P-Tree. It shares many
features of the PM-Tree and addresses some
unexplored area of the PM-Tree [1]. However, instead
of using three-value logic, the PPM-Tree uses four-
value logic. We name this fourth logic as P, for
pattern. This pattern is not fixed like pure-1 or pure-0,
but rather assumes dynamic values depending on the
tree constructed. In fact, the pattern state is a special
case of a mixed state. An example will help us better
understand the method. To construct a PPM Tree for
any data set, we first need to construct a PM Tree for
the same data set. Once the PM Tree is created, we
search through the leaf level quadrants to look for the
most frequently occurring four-bit combination. In the
example for PM Tree shown in figure 3, we see that
“1101” is the most frequently occurring quadrant at
the leaf level. We make this our Pattern and change
the original PM Tree. All M nodes having the Pattern
Parent property are transformed into a P node and all
children removed. This search is carried out in a
bottom-up manner where nodes at the lowest levels
are transformed before any node at a higher level is
transformed. As a result of this. we finally get the
PPM Tree as shown in figure 4.

D. Opportunities Unexplored in PPM-Tree

As mentioned earlier lower order bits for pixels in
images share the same bit values with a low
probability. As a result quadrants in the PM-Tree and
PPM-Tree can usually be 1-bit long, which usually
means no compression at all. Also due to the low
probability of sharing bit values in neighborhood
pixel, pure-0 and pure-1 quadrants are also rare.
Hence the decision to stick with pure-0 and pure-1 as
two of the four states do not help in compressing, i.e.

reducing the number of levels, the tree structure. We
intend to address this lacking in the PPM-Tree
structure and propose a new data structure, The
Generic Peano Pattern Mask Tree.

[11. THE GENERIC PEANO PATTERN MASK TREE

The Generic Peano Pattern Mask Tree (GPPM-
Tree) is another variation of the P-Tree. It shares
many features of the PPM-Tree and addresses some
unexplored areas. Like the PPM Tree, the GPPM uses
four-value logic. Like the PPM-Tree there is one state
reserved for the mixed (M) type. However unlike the
PPM-Tree there are no fixed patterns, like the pure-0
and pure-1 in the PPM-Tree. Hence there are three
states available for dynamic patterns which we name
pattern-1 (P1), pattern-2 (P2), and pattern-3 (P3). P1,
P2 and P3 are determined dynamically during the tree
is created to result in maximum compression of the
tree.

The GPPM-Tree improves on the PPM-Tree by
being able to choose three of the available sixteen
patterns. In the PPM-Tree we were able to choose
only one of available fourteen patterns, <“0000” and
“1111” being reserved as pure-0 and pure-1 states
respectively. It can be clearly seen that the GPPM-
Tree structure is a more “generic” version of the
PPM-Tree as none of the available sixteen patterns
are given any special privilege prior to the
construction of the tree. An example will help us
understand better the GPPM-Tree structure. Consider
the 8-bit by 8-bit image of Figure 1. When broken
down to the leaf levels in the PM-Tree structure we
get the tree in figure 5. We then perform a frequency
distribution of the bit patterns in the leaf nodes.
(Result in Table)

Fig. 4. PPM-Tree for data in figure I.

Fig.5. PM-Tree (broken down to make a complete tree)
for data in figure 1. [Vertical Layout used to fit in page]

320

TABLE |

FREQUENCY DISTRIBUTION OF THE BIT PATTERNS IN
THE PM-TREE OF FIG. 5.

Pattern Frequency
1111 6
1101 5
1010 4
0000 1

From Table 1 we can see that the three most frequent
bit patterns are 1111, 1101 and 1010. Hence we
assign these three patterns the states P1, P2 and P3
respectively to get the GPPM-Tree in figure 6

From figure 6 we can see that the GPPM-Tree has
fewer nodes than the corresponding PPM-Tree, 21
nodes compared to 33 nodes. A breadth-first
representation of the GPPM-Tree in figure 6 is as
follows: M-M-M-P1-M-P2-M-P2-P1-P3-P2-P3-P3-
P2-P1-P2-P3-0-0-0-0.

IV. PROPOSED SCHEME

Any image can be viewed as a two-dimensional
array of pixels, with each pixel having various
descriptive attributes. A 256 color BMP image
contains descriptive attributes of size three bytes, one
each for Red, Blue and Green components. Each of
these color components can take an intensity value in
the range from 0 to 255. Thus, BMP images require
24 bits per pixel. Representing such an image will
require 24 Peano trees for each of the arrays formed
from the bit positions.

The nodes of a GPPM-Tree are stored in breadth-first
order using the following encoding scheme:

* For pattern-1 quadrant, store binary value 00

* For pattern-2 quadrant, store binary value 01

* For pattern-3 quadrant, store binary value 10

* For mixed quadrant, store binary value 11

M
I
| [| |
M M Pl M
| | |
| O O |
P2 M P2 P1 P3 P2 P3 P3 P2 P1 P2 P3
|
111
0000
Fig. 6. GPPM-Tree for data in figure 1.

Since two bits are required to store the nodes of both
PPM and GPPM Trees, for any set of data the GPPM
tree will require lesser or equal space than the PPM
Tree. However in the case of GPPM-Tree we also
need to store the two additional patterns.

Our initial compression scheme will deal with
images that have size as exact powers of 2. Consider

an n pixel image. In our proposed scheme, we first
construct 24 nxn dimensional arrays using each of the
24 bits of each pixel. We then create a GPPM tree for
each of these arrays. If two of the patterns for the
GPPM-Tree turn out to be “0000” and “1111”, then
we store the tree as a PPM-Tree avoiding the
overhead of storing the two additional patterns, else
we store the tree as a GPPM-Tree. Next we decide if
storing this GPPM-Tree/PPM-Tree for the
corresponding data set from which it was generated
requires lesser space than the raw data. If so then the
tree is stored, else the original raw data is stored. We
require a header file to keep track of which sets are
stored in raw or one of the two compressed forms.
Since we have three forms of storing the data we need
two bits to store this information. The header file
format is described below in table 2:

Tree which is mentioned in [1]. The superiority of
PPM-Tree over PM-Tree is shown in [2]. A program
was written for implementing the image compression
scheme using GPPM-Tree. The result is summarized
in Table IV. The images used in this experiment can
be found at:
http://picasaweb.google.com/shams.mahmood/Advan
cedPPTImages?authkey=K7eg90a0_p4

TaABLE III

SPACE REQUIRED IN STORING THE BIT PATTERN (F
FIGURE 1 INVARIOUS FORMATS

Techniques Number of bit requirements

Raw data 64 bits

GPPM-Tree (B3x4)+(17x2)+ (1 x4)bits=
50 bits.

PPM-Tree (I1x4)+(17x2)+ (4 x4)bits=
54 bits

PM-Tree (17 x2) + (9 x 4) bits = 70 bits.

TaBLEII
PROPOSED FILE FORMAT
Description Size in
bytes
Length of original image as a power of 2 1
Bits representing which segment are 6
stored in raw or compressed form.
[24 x 2 bits = 48 bits = 6 bytes]
Data for Red Component (8 Segments) Variable
size
Data for Green Component (8 Segments) | Variable
size
Data for Blue Component (8 Segments) Variable
size

While storing the GPPM-Tree, we store the patterns
in the first twelve bits (represented in bold in the
figure 7) and then store the nodes of the tree in
breadth-first order. Since we do this, we do not
require storing a count of the number of nodes in the
tree. While decoding the tree, decoding stops when all
nodes are non-mixed nodes or nodes with quadrant
size of | bit are reached. We can summarize the
results of storing the raw bit pattern in Table 3.

1111 1101 1010 11 11 11 00 11 01 11 01 00
10 01 10 10 01 00 01 10 0000

The first three 4-bit (bolded text)
segments are the three chosen patterns.
The next series of 2-bits (normal text)
are representations for each of the non-
1-bit length nodes/quadrants.

The last series of 4-bits (emphasized
text) are the patterns of the 1-bit
length quadrants.

Fig. 7. Bit Representation of the GPPM-Tree of figure 6.

V. EXPERIMENTAL RESULTS

In this paper we only compared the performance of
our method to the compression scheme using PPM-

The experimental results show that our proposed
algorithm performs better than method in [1]. We see
significant compression improvements have been
achieved in certain cases (Jupiter Aurora and
Bangladesh). We consider this as a quite significant
improvement as the PPM-Tree structure was
previously thought to be a mature and optimal
evolution of the P-Tree structure. We also proof with
the help of our results that the GPPM-Tree is a further
improvement for storing data using P-Trees

TABLE IV

EXPERIMENTAL RESULTS

Image Image Size | Size Size
Name Dimension | in using using
KB PPM- | proposed
Tree GPPM-
Tree
Circles 128x128 48.0 | 28.15 27.90
Jupiter 512x512 | 768.0 | 381.73 | 376.72
Aurora
Bangla 512x512 | 768.0 | 60.56 59.54
desh
Bright 512x 512 [768.0 | 398.24 | 398.07
Dell- 512x 512 | 768.0 | 453.462 | 453.458
wallpaper

321

VI. CONCLUSION

P-tree has been successfully applied in data mining
applications ranging from Classification and
Clustering with K-Nearest Neighbor, to
Classification with Decision Tree Induction, to
Association Rule Mining [7-10]. The P-Tree based
decision tree induction method is significantly faster
than existing classification methods [10, 11]. P-Tree

data structure allows computing the Bayesian
probability values efficiently. Bayesian classification
with P-trees has been used successfully on remotely
sensed image data to predict yield in precision
agriculture [7]. Experimental results showed that
using p-tree techniques in an efficient association
rule-mining algorithm, P-ARM has significant
improvement compared to FP-growth and A-priori
algorithms. [7]. Basic P-Trees can be constructed
from the compressed file trivially after reconstruction
of the GPPM Tree. Once the basic P-Trees have been
created, we get data mining ready structure that
facilitates efficient data mining tasks [1]. Thus the
proposed scheme, the GPPM-Tree structure, is also a
data mining ready structure providing it an upper
hand over other compression techniques when used in
data mining applications.

REFERENCES

[1] Shams Mahmood, Rezaul = Hoque,
Mohammad Kabir Hossain, William Perrizo,
“A New Technique of Lossless Image
Compression using PPM-Tree”, in the
Proceedings of 8™ International Conference
of Computer and Information Technology

ICCIT) 2005, Dhaka, Bangladesh.

Fazle Rabbi, Mohammad Kabir Hossain,
William Perrizo, “Lossless Image
Compression using P Tree” in the
Proceedings of 6™ International Conference
of Computer and Information Technology
ICCIT), 2003, Dhaka, Bangladesh.

Erickson B J, Manduca A, Persons K R, et.
al. “Evaluation of irreversible compression
of digitized posterior interior chest
radiographs,” J Digit Imaging 1997; 10 3):
97 102.

B. C. emuri, S. Sahni, F. Chen, C. Kapoor,
C. Leonard, and J. Fitzsimmons “Lossless
image compression,” Available at
http://citeseer.nj.nec.com/559352.html

H. Samet, “The Quadtree and related

hierarchical data structure,” ACM Computing
Survey, 16, 2, 1984.

W. Perrizo, Peano count tree lab notes,
Technical report NDSU CSOR TR 01 1,
Fargo, ND, 2001.

Mohammad Kabir Hossain, et. al. “Bayesian
Classification for Spatial Data Using P tree,”
Proceedings of IEEE INMIC 2004,
December 24 26,2004 in Lahore, Pakistan.

Mohammad Kabir Hossain and W. Perrizo,
“Automatic fingerprint identification system
using p treg” in the Proceedings of 5™
International Conference of Computer and

(2]

B3]

[4]

[3]

(6]

(71

(8]

322

9]

[10]

[11]

Information Technology
Dhaka, Bangladesh.

William Perrizo, William Jockheck, Amal
Perera, “Multimedia Data Mining using P
Trees,” Available at http://www
staff.it.uts.edu.au/~simeon/mdm_kdd2002/ab
stracts/14.html

Quang Ding, Qin Ding and William Perrizo.
“Decision tree classification of spatial data
streams using peano count trees,”
Proceedings of ACM Symposium on Applied
Computing SAC °02), Madrid, Spain,
March 2002, pp. 413 417.

Mohammad Kabir Hossain, et. al.
“Automatic Face Recognition System using
P tree and K Nearest Neighbor Classifier”,
in the Proceedings of 7" International
Conference of Computer and Information
Technology ICCIT) 2004, Dhaka,
Bangladesh.

ICCIT) 2002,

