Appl Intell
DOI 10.1007/s10489-016-0892-x

@ CrossMark

A recommendation approach for programming online
judges supported by data preprocessing techniques

Raciel Yera! - Luis Martinez?

© Springer Science+Business Media New York 2016

Abstract The use of programming online judges (POJ) to
support students acquiring programming skills is common
nowadays because this type of software contains a large
collection of programming exercises to be solved by stu-
dents. A POJ not only provides exercises but also automates
the code compilation and its evaluation process. A common
problem that students face when using POJ is information
overload, as choosing the right problem to solve can be quite
frustrating due to the large number of problems offered. The
integration of current POJs into e-learning systems such as
Intelligent Tutoring Systems (ITSs) is hard because of the
lack of necessary information in ITSs. Hence, the aim of this
paper is to support students with the information overload
problem by using a collaborative filtering recommendation
approach that filters out programming problems suitable
for students’ programming skills. It uses an enriched user-
problem matrix that implies a better student role represen-
tation, facilitating the computation of closer neighborhoods
and hence a more accurate recommendation. Additionally
a novel data preprocessing step that manages anomalous
users’ behaviors that could affect the recommendation gen-
eration is also integrated in the recommendation process. A
case study is carried out on a POJ real dataset showing that
the proposal outperforms other previous approaches.

P4 Luis Martinez
martin@ujaen.es

Raciel Yera
yeratoledo@ gmail.com

University of Ciego de Avila, Ciego de Avila, Cuba

Computer Science Department, University of Jaén, Jaén,
Spain

Published online: 07 March 2017

Keywords Programming online judges - Recommender
systems - Collaborative filtering - Users’ inconsistencies

1 Introduction

Programming online judges (POJs) are software tools that
contain a large collection of programming exercises to
be solved by their users (usually students), whose main
purpose is to automate the compilation and evaluation
processes for the users’ solutions to the proposed prob-
lems. Over the last few years the popularity of POJs has
increased, being successfully used in two different scenar-
ios: training for students that participate in ACM-ICPC-like
programming contests, and the systematic practice of pro-
gramming skills for students in computer science colleges
[27, 30, 41, 54].

Basically, traditional POJs present a sequential list of
programming problems that users, at their own personal-
ized pace, can choose and try to solve. In the last few
years, world-wide acceptance of these tools has implied an
increase in the amount of information associated with these
kind of applications. As examples, among the more widely
recognized POJ are the Peking University Online Judge
(http://poj.org/), at the moment with 600000+ users and
3000+ problems, the University of Valladolid Online Judge,
with 210000+ users and 1700+ problems (https://uva.
onlinejudge.org), and the Caribbean Online Judge (http://
coj.uci.cu/), with 23000+ users and 3400+ problems. Other
relevant POJs are also the SPOJ Online Judge (http://www.
spoj.conmt/), the Timus Online Judge (http://acm.timus.ru/),
and the Saratov State University Online Judge (http://acm.
sgu.ru/).

In these applications it is considered that the users
with better performance are those that solve the most

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-016-0892-x&domain=pdf
mailto:martin@ujaen.es
mailto:yeratoledo@gmail.com
http://poj.org/
https://uva.onlinejudge.org
https://uva.onlinejudge.org
http://coj.uci.cu/
http://coj.uci.cu/
http://www.spoj.com/
http://www.spoj.com/
http://acm.timus.ru/
http://acm.sgu.ru/
http://acm.sgu.ru/

R. Yera, L. Martinez

problems, because it subsequently implies a strong degree
of achievement and satisfaction [45]. Such growing sat-
isfaction would increase the learners’ efforts and perfor-
mance in problem solutions and programming subjects,
according to a basic pedagogical rule (“learners’ effort
will increase if they are more satisfied”) [37]. In this way,
the users’ learning process in computer science subjects is
enhanced, as has been also pointed out in related works such
as [45].

It is easy to see that the learning process in current POJs,
based on the previous view the more problems solved the
better skills acquired by the students, are far from other
e-learning systems such as ITSs or ontology-supported
e-learning approaches.

Nevertheless, nowadays the increasing popularity of
POJs has caused an information overload regarding the
amount of available problems. For this reason, usually many
novice users fail to solve problems because they are not able
to choose appropriate problems to solve, in accordance with
their existing level of knowledge. This produces widespread
discouragement in POJ participation, resulting in students
losing any benefits that this application might have provided
them.

A typical solution for information overload problems is
the use of recommender systems in the corresponding sce-
nario [1, 32]. Recommender systems (RS) are applications
focused on providing users with the information items that
best fit their preferences and needs in an overloaded search
scenario. With this aim in mind, RS have been used in sev-
eral scenarios such as e-commerce [23], e-learning [25],
tourism [39], libraries [10], social networks [11], and other
applications areas.

Specifically, e-learning recommender systems have
become a widely-developed area in the last few years [16].
However, recent reviews have shown that most work in this
area is focused on specific domains [12, 25]. These issues
make the use of such previous developments to build a
recommendation approach for suggesting problems in the
current POJ scenario to overcome the information overload
really difficult.

Moreover, it is also difficult to adapt typical approaches
for building personalized e-learning systems, such as the
already-mentioned cases of ITSs and ontology-supported
e-learning approaches, to be used in POJs. ITSs [17, 44,
50], are dynamic and adaptive systems for personalized
instruction based on the students’ characteristics and behav-
ior that involve a combination of various fields such as
artificial intelligence, cognitive psychology and educational
research. However, they tend to be composed of com-
plex architectures that include a domain model, a student
model, a teaching model, and interfaces [36]; therefore

@ Springer

their modelling is not possible in current POJs because
they do not manage the required information to build
them (such as problem difficulties, user learning objectives,
etc.).

On the other hand, ontologies are partial, explicit spec-
ifications of a conceptualization, representing by means
of a declarative formalism, the knowledge of a domain
in terms of classes, properties, axioms and instances of
classes [19, 20]. Specifically, over the last few years they
have been increasingly used to support e-learning systems
[18] (e.g. recently Miranda et al. [35] pointed out that
subject ontologies could be used to semantically organize
typical items related to e-learning systems, such as learn-
ing objects, learning activities, learning goals, assessment
events, and learning events, resulting in the improvement
of the recommendation processes). However, once again
current POJs do not contain such items, and therefore
it is hard to combine them with ontological approaches,
taking this task out of the scope of the current research
paper.

Additionally, the lack of information previously indi-
cated regarding learning objectives, difficulty of problems,
and so on, makes the use of POJs in recommendation
approaches such as content-based recommendation diffi-
cult [13, 31]. For these reasons, previous work focused
on recommending problems to solve in POJs is based on
collaborative filtering (CF) and does not depend on addi-
tional information [57, 61]. Therefore, the current research
proposal is focused on improving the performance of
this type of recommendation regarding previous propos-
als in the specialized literature, using a memory-based CF
approach.

Memory-based collaborative filtering was pioneer in col-
laborative filtering research, and it is still widely-used due
to its simplicity and performance [25]. This paper presents
a memory-based collaborative filtering recommendation
approach to support students trying to overcome informa-
tion overload in POJs by personalizing the problems that
they should solve according to their current skills, avoid-
ing failures and frustrating experiences. Specifically, the
novelty of this proposal is twofold:

1. This approach is based on a user-problem matrix that
incorporates information related to the students’ fail-
ures when they try to solve problems. The use of this
enriched matrix implies a better student’s profiling,
facilitating the computation of closer neighborhoods
and hence a more accurate recommendation.

2. TItincorporates a data preprocessing step that detects and
corrects anomalous users’ behaviors that could affect
the recommendation generation. This step is based on

A Recommendation approach for programming online judges supported. . .

the concept of natural noise management associated
with users’ preferences in recommender systems [29,
58-60].

Even though our proposal has been conceived and devel-
oped specifically for POJs, its novel ideas could be also
applied to other e-learning recommendation domains asso-
ciated with problem solving.

Finally the proposal is validated by a case study on a
real dataset of a POJ in order to show its performance as
compared with previous approaches.

The rest of the paper is structured as follows.
Section 2 revises the required background for the pro-
posal presentation, related to programming online judges,
collaborative filtering, e-learning recommender systems,
and natural noise management in recommender systems.
Section 3 presents the recommendation approach for
POJ, which is composed of three steps: extended user-
problem matrix building (Section 3.1), extended user-
problem matrix preprocessing (Section 3.2), and recom-
mendation of problems (Section 3.3). Section 4 shows
an experimental evaluation of the proposal, by using a
dataset extracted from a POJ and comparing its results
with other approaches. Finally, Section 5 concludes the
contribution.

2 Background

This section presents the required background for this
research, specifically it refers to programming online
judges (Section 2.1), collaborative filtering (Section 2.2),
e-learning recommender systems (Section 2.3), and natural
noise management in recommender systems (Section 2.4).

2.1 Programming online judges

Programming online judges (POJs) are web applications
that store a list of programming problems to be solved.
The typical interaction between the user and the POJ is as
follows:

1. The user selects a problem to be solved in the POJ.
The user writes a program as a solution for the selected
problem.

3. The user uploads this solution to the POJ.

4. The POJ evaluates this solution by using predefined
input-output data. If the solution is correct, the problem
is considered as solved. Otherwise, the user can go to
step 2 to try an alternative solution for the same prob-
lem, or go to step 1 to choose a different exercise to
solve.

Recently, there have been several developments focused
on the use of these applications to support programming
subjects. Kurnia et al. [27] formally presents POJs as tools
for the evaluation of source codes developed by students as
problem resolution. Leal and Silva [28] present Mooshak, a
system to support programming contest management which
could also be used as an online judge. Verdu et al. [52]
present EduJudge, which aims at developing the UVa Online
Judge into an effective educational environment that inte-
grates Moodle and the competitive e-learning tool QUES-
TOURnament. Similarly, Petit et al. [41] present Jutge.org, a
new application composed of a large collection of exercises
focused on teaching and learning programming subjects, for
which popularity is still increasing. Llana et al. [30] present
FLOP, a user-centered system for automatic exercise assess-
ment which prioritizes the administration facilities, and
as such outperforming previous proposals. Finally, Wang
et al. [54] present OJPOT, a novel teaching idea that inte-
grates online judges with practice oriented programming
teaching, focusing on cultivating students’ practical abilities
through several kinds of programming practices. Beyond
these works there are other important contributions that,
although generally do not manage the term online judge, are
focused on the automatic assessment of programming prob-
lems solutions. Some reviews in this area were presented by
Ala-Mutka [2] and Caiza and Del Amo [7].

Our proposal aims at empowering programming online
judges research and development by providing a tailored
recommendation approach, supported by data preprocessing
techniques.

2.2 Collaborative filtering

CF emerged at mid 90s as an effective paradigm for building
recommender systems. CF methods are currently among the
most widespread recommendation approaches [46], and in
addition, as an added value, they receive less information
as input than other paradigms like content-based [33] and
knowledge-based [34].

The CF approaches have been divided in two main fami-
lies: the memory-based CF approaches and the model-based
CF approaches [1]. In the memory-based approaches [1], the
recommendations are generated using preference informa-
tion associated with users that are similar to the active user.
On the other hand, model-based approaches [1] focused
on discovering intermediate knowledge (such as association
rules, graphs, and other forms of knowledge representation),
are to be able to build a predictive model that is then used to
generate final recommendations.

Even though many memory-based CF approaches have
been developed over the last 20 years, it is still an active

@ Springer

R. Yera, L. Martinez

research area in recommender systems [32] and often
applied in real-world recommender systems because of their
simplicity, justifiability, efficiency, and stability [38]. Due
to these desirable features, the recommendation approach
presented in this paper is a memory-based approach.

2.3 Recommender systems in e-learning

E-learning scenarios have always been one of the main
application areas for recommender systems. Therefore, sev-
eral surveys have been published to condense the relevant
research in this area [12, 25]. Regarding this large amount of
information, this section will review the work related with
the current context, which is the recommendation to support
programming subjects.

As a result, De Oliveira et al. [14] presented a rec-
ommender system to support the programming practices,
through recommending “classes” of activities. This task is
treated as a multi-label classification approach, where the
student’s profile is associated with some of the mentioned
“classes”. “Math operators”, “data types”, “if structure”,
“while structure”, and others could be cited as examples of
these classes.

Hsiao et al. [22] presented JavaGuide as a system to
guide students through the appropriate questions in a Java
programming course. In the system, each question is com-
posed of a small source code fragment, where the student
has to introduce the final value for some variable, or deter-
mine the final output of the code. In addition, the authors
investigated the real-time effect of the system in a group of
people.

Klasnja-Milicevic et al. [24] and Vesin et al. [53]
described the recommendation module associated with an
intelligent programming tutoring system, that could be auto-
matically adapted to the students’ knowledge levels. The
system is able to recognize the students’ learning styles, and
with this aim, uses several domain ontologies. Its main pur-
pose is to find access sequences for the activities, in order to
use traditional CF techniques to recommend relevant links
and actions during the learning process.

Ruiz-Iniesta et al. [47] presented a knowledge-based
strategy to recommend educational resources in a program-
ming course, in order to provide personalized access. The
proposal depends on a resource description based on meta-
data standards, enriched by semantic information repre-
sented by ontologies, and also contextual user information.

In short, these proposals were conceived for specific sce-
narios and are high content-dependent, beyond the basic
user-item interaction. In this way, in the current context
associated with POJs, only the users’ log is available when
they try to solve the existing problems. Therefore, it is

@ Springer

very difficult to adapt most of the previous research to this
context.

However, the closest antecedents related to the current
contribution are the proposals presented in [57, 61]. At first,
the proposal introduced in [57] presents a user-based col-
laborative filtering approach to suggest problems to solve
in a programming online judge. However, in contrast to
our proposal, it is mainly focused on a direct application
of the traditional collaborative filtering techniques in the
mentioned context, and does not consider any kind of data
preprocessing method. On the other hand, the work pre-
sented in [61] suggests the application of an item-based
collaborative filtering approach to suggest problems to solve
in this context. With this aim, the authors proposed the use
of a binary user-problem matrix [61]. In the experimental
section a direct comparison will be performed with these
works, in order to show the advantages introduced by the
current proposal.

2.4 Natural noise management in recommender systems

The natural noise management (NNM) [40, 59] is a rela-
tively new research area in the RS research field. In contrast
to the traditional research in RS, which aims at proposing
new algorithms that directly improve the recommendation
accuracy, the NNM approaches work toward this improve-
ment by processing inconsistent user preferences. There-
fore, they assume that the removal of noisy preferences
implies a performance enhancement of recommendation
algorithms.

Natural noise in recommender systems refers to those
imprecise ratings unintentionally introduced by users,
which do not reflect their real preferences, and that affect
the recommendation result. Several authors have suggested
that these ratings are introduced due to diverse causes
such as personal conditions, social influences, the context,
emotional state, or certain rating scales [4, 48].

Yera Toledo et al. [59] grouped the natural noise man-
agement approaches in two groups: 1) the methods that use
additional information beyond the user-item matrix for the
recommendation generation [5, 42], and 2) the methods that
only use the user-item matrix with this aim in mind [9, 29,
58-60].

The referred research preprocess users’ inconsistencies
in recommender systems using the traditional recommen-
dation scenario as a base [1]. However, several contri-
butions have referred to the presence of inconsistencies
associated with recommendation scenarios beyond the tra-
ditional rating matrix [26, 43]. In this way, the current
research introduces a data preprocessing step to iden-
tify and correct anomalous user behaviors in the POJs

A Recommendation approach for programming online judges supported. . .

scenario (which could be recognized as natural noise),
in order to improve the recommendation accuracy in this
context.

3 A recommendation approach for programming
online judges

This section presents a novel recommendation approach for
programming online judges (POJ), supported by the users’
behavior when trying to solve the presented problems.

Specifically, the proposal receives as input a set of triples
<u, p, j >, each one representing a user u attempt to solve
a problem p, receiving as verdict the judgment j (which
could be "accepted” if the problem was successfully solved,
or "not accepted” in any other case). In order to facili-
tate the proposal presentation, the relation D : (u, p) —
(n, solved) will be assumed, so that a corresponding user
u and problem p is received as input, and is returned the
number of times n that the user tries to solve the prob-
lem, and if the problem was finally solved by the user
(solved).

Because of the lack of additional information in the
current context, this approach is built using the memory-
based CF recommendation paradigm. In addition to the
advantages associated with this paradigm, presented in
Section 2.2, it has also been widely used in e-learning
scenarios [55, 56].

Figure 1 shows the general overview of the approach,
which receives as input the relation D and the active user
x, and returns as output the list of recommended prob-
lems to be solved by x. The following sections describe
this approach in further detail. It is composed of three main
steps: extended user-problem matrix building (Section 3.1),
extended user-problem matrix preprocessing for natural
noise management (Section 3.2), and problems recommen-
dation (Section 3.3).

3.1 Extended user-problem matrix building

Firstly, the transformation of all available data into an
appropriate format is required in order to apply a memory-
based collaborative filtering approach. Therefore, we use a
boolean user-problem matrix M that is filled with one val-
ues (1) if the corresponding user solves the corresponding
item, and if not is assigned the zero value (0). Equation (1)
shows this initialization procedure.

Mlu, p]l = D(u, p).solved (1)

Nevertheless, the dynamic of the user-problem interac-
tions in POJs suggests that the information behind this basic
matrix M is not enough to calculate a proper user simi-
larity that takes into account user knowledge and abilities.
In this way, instead of the analysis of a simple similar-
ity regarding accepted or not accepted problems by users,
we propose the enrichment of the matrix M by considering
the amount of unsuccessful solution attempts (D (u, p).n),
in addition to the final problem’s accepted or not accepted
judgment. This enrichment would allow the construction
of a new matrix M™* that guarantees a more precise simi-
larity calculation and consequently better recommendation
accuracy.

Therefore, we propose converting the matrix M (contain-
ing the ”accepted or not accepted” user-problem interaction
values), into a matrix M* composed of five different inter-
action values.

At first, we suggest transforming the former “not
accepted” category M[u, p] = 0 in M, into the following
three categories in M*:

e M*[u, p] = 0, when the user u has never tried to solve
the problem p

e M*[u, p] = 1, when the user u has not solved the
problem p, and has tried it just few times

POJ Extended users-problems Natural noise management Problems recommendation
matrix building
Dataset Find Find nearest neighbors
\ Create binaryj contradictionsin for the current user and
matrix extended matrix the input matrix
/ Problems
Noisy J/ Nearest to solve
M interactions neighbors
. Recommend problems
Remove noisy M** P
Create extended | M* ; ; through a user-user
interactions -
matrix neighborhood approach
Current

user

Fig. 1 General overview of the recommendation approach for programming online judges

@ Springer

R. Yera, L. Martinez

e M*[u, p] = 2, when the user u has not solved the
problem p, and has quite a few previous failed attempts

In addition, we also propose transforming the former
“accepted” category M[u, p] = 1 in M, into the following
two categories in M*:

Mlu, pl=0— M*[u, p]l = solution attempts)

solution attempts)
Mlu, pl =1— M*[u, p] =
4,if D(u, p).n < Ap2

e M*[u, p] = 3, when the user u solved the problem p,
having failed many times beforehand

e M*[u, p] = 4, when the user u solves the problem p
quickly

0, if D(u, p).n = 0 (no solution attempts)

1,if D(u, p).n > Ap_1 (notsolved, with many

@)

2,if D(u, p).n > 0and D(u, p).n < Ap_|
(not solved, with few solution attempts)

3,if D(u, p).n > Ap2 (solved with many

3

(solved, with few solution attempts)

Equations (2) and (3) formalize this transformation from
matrix M to matrix M*. These equations strongly depend
on the thresholds A, 1 and A, >, which represent the bound-
ary between the few and the many attempts categories in not
solved and solved cases, respectively. In order to find proper
initial values for these thresholds, we propose a problem-
based strategy. In both cases we define the threshold as
the average number of failures associated with all users
that respectively have not solved or have solved the current
problem p. Equations (6) and (7) illustrate the initialization
strategies; NS, and S, being the set of users that have not
solved/solved the problem p (4) and (5), and v any user in
the dataset.

NS, ={v| D(v, p).solved = false} “4)

Sp ={v | D(v, p).solved = true} (®)]

Yvens, D@, p)n
INS,]

(6)

Apl =

ZUESP D(U, p)n

7
IS, (N

Apo =

@ Springer

3.2 Preprocessing natural noise in the extended
user-problem matrix

This step aims at preprocessing inconsistent data associated
with the user-problem matrix M* to improve the recom-
mendation generation, and specifically we will be focused
on data unintentionally inserted by users, i.e. natural noise.
Section 2.4 presented a brief survey on previous research
related to natural noise management, concluding that this
research is mainly focused on the general (e-commerce) rec-
ommendation scenario, and not on more specific contexts.
However, there have been empirical studies showing that
natural noise could affect and appear in any recommenda-
tion scenario [4].

Specifically in e-learning scenarios, Thai-Nghe et al. [51]
and Klasnja-Milicevic et al. [25] have pointed out that some-
times the students do not know how to solve the oriented
activities, but guess them correctly; and in contrast, some-
times they know how to solve them, but make a mistake.
These authors consider that this unexpected behavior should
be taken into account in order to process any subsequent
user data. Regarding this scenario and the causes related to
the natural noise appearing, it can be concluded that these
inconsistencies could be catalogued as natural noise.

Using these previous works as a basis in the POJ context,
we characterize natural noise as those cases where the user
does not solve a problem using the expected required effort
according to: 1) his/her current knowledge levels, and 2)
the difficulty of the current problem. These circumstances
could be caused due to diverse factors, such as guessing,

A Recommendation approach for programming online judges supported. . .

plagiarism, or the appearance of unexpected slip-ups in the
application of well-acquired knowledge.

In order to identify and process this inconsistent behav-
ior in the matrix M*, we propose an approach that is
basically presented in Fig. 2. It initially performs a clas-
sification for users, problems and interactions, and it then
focuses on finding contradictions between these classifica-
tions. Afterwards, the detected contradictions are used to
find inconsistent interactions (i.e. noisy interactions), which
are finally corrected to obtain a new set of interactions with
mitigated noise.

Hence, to classify the interactions we use the criteria pre-
sented in Section 3.1, specifically in (2) and (3). Therefore,
the initial interactions’ classification matches the categories
associated with the matrix M*, presented in the previous
section.

On the other hand, it is necessary to propose a classi-
fication approach for the users and problems. We suggest
identifying users according to the following tendencies:

Users’ tendencies:

1. Precise user: the user tends to solve most of the finally
solved problems quickly

2. Imprecise user: the user tends to have many failed
solution attempts, prior to attaining the final problem
solution

3. Variable user: the user’s behavior varies between the
two previous categories

Similarly, we suggest identifying problems according to
the following tendencies:

Problems’ tendencies:

1. Easy problem: a problem where users tend to need only
a few failed solution attempts to finally solve it

2. Difficult problem: a problem where the users tend to
need several previous failed solution attempts prior to
attaining the final solution

3. Variable problem: a problem in which behavior varies
between the two previous categories

To facilitate the formal definition for these tendencies
in order to perform the user and problem classification,

Fig. 2 The proposed approach
for natural noise management in
the presented scenario

Classify
users

we propose grouping the problems solved by user u (those
problems p associated with the categories M*[u, p] = 3
and M*[u, p] = 4). Specifically, we group them in two sets:

1. Set of problems solved by user u, needing too many
attempts, C1,: C1, = {p | M*[u, p] = 3}

2. Set of problems solved by user u, needing few attempts,
C2,: C2, ={p | M*[u, p] = 4}

In addition, we group the users that solved the problem
p, into the following two sets:

1. Set of users that solved the problem p, needing too
many attempts, C1,: C1, = {u | M*[u, p] = 3}

2. Set of users that solved the problem p, needing few
attempts, C2,: C2, = {u | M*[u, p] = 4}

Table 1 formally defines the mentioned tendencies asso-
ciated with users and problems, based on the cardinalities
of these sets C1,, C2,, Cl,, and C2,. Specifically, the
precise user is defined as one whose amount of problems
solved needing few attempts (|C2,]), is equal or bigger than
twice the amount of problems solved needing too many
attempts (|C1,]); and the imprecise user is defined as the
reverse case. On the other hand, a problem is defined as
easy, if the number of users that solved it with few attempts
(IC2,]) is bigger or equal to twice the amount of users that
solved it with too many attempts (|C1,]), and the difficult
problem is defined as the reverse case. Finally, the vari-
able user and problem for those cases in which any of the
previous conditions are not respectively verified have been
defined.

The initialization of the coefficients in Table 1 (also
used later in (8) and (9)), is a hard task because the opti-
mal values necessarily depend on the nature of the data
associated with the POJ. Therefore, we focus on assigning
suitable initial values supported by different experiments
that we carried out and common sense as can be seen in the
following points:

1. It is clear that the coefficient should be higher than 1,
because a value equal to 1 would imply that there were
not any users or items belonging to the variable cate-
gories. On the other hand, values lower than 1 could
imply that some users or items were simultaneously
classified in more than one class.

Find

Noisy
interactions

contradictions Correction |—>| Interactions with

mitigated noise

Classify
interactions

Interactions Classify —3
problems

@ Springer

R. Yera, L. Martinez

2. In addition, high values for the coefficient would pro-
duce a very restrictive classification implying that most
of the users and items were classified as variable, and
therefore they were not checked for possible inconsis-
tencies, as it will be shown below in (8) and (9)

Therefore, we choose the value 2 as a promising initial
value for the coefficients. It is worthy to note that in addi-
tion to the previous reasoning, we have empirically explored
the performance associated with different coefficient val-
ues through experimentation, usually obtaining the best
performance for values equal or very close to the value 2.

Once each interaction, user, and problem have been
classified, this information is used to find noisy interac-
tions based on the definition of two groups of homologous
classes (Table 2). In this way, the classes precise and
easy are homologous because in both cases the interaction
M*[u, p] = 4 represents the majority of the interactions;
and the classes imprecise and difficult are homologous
because in this case M*[u, p] = 3 represents the majority.
We note that the literature related to the users’ performance
in programming online judges suggests the presence of
these user and problem classes, and the presented associa-
tion between them [6, 49].

* _ Kk —
M7{u, pl =3 — M™[u, p] = { 3.in other cases

* _ k3k —
M7{u. pl =4 — M™[u. p] = { 4, in other cases

4,if |C2,| = 2|C1,] and |C2,| > 2IC1,|

3,if |C1,] = 2|C2,] and |[C1,| > 2|C2)]

Using these groups, we detect noisy interactions by
assuming that for those cases where a user tries to solve
a problem, and both the user and the problem belong to
the same group of homologous classes, then the associated
interaction category should also belong to this group. There-
fore, a certain interaction where the corresponding user and
problem have homologous classes, but the interaction cate-
gory is not homologous with both classes, is then considered
as natural noise.

Specifically, a precise user that solved an easy prob-
lem, should perform this task by needing few attempts
(M*[u, p] = 4), being considered noise if he/she performs
it needing too many attempts (M*[u, p] = 3). On the con-
trary, if an imprecise user solves a difficult problem, then
it is expected that too many previous attempts were needed
(M*[u, p] = 3), being considered a noisy interaction if it
was achieved requiring only a few attempts (M*[u, p] = 4).

Afterwards, our natural noise management approach pro-
poses the correction of the interaction categories detected as
noisy, by assigning the homologous category according to
the corresponding user and problem classes. Equations (8)
and (9) summarize this correction strategy respectively
applied to each group in Table 2, returning a matrix M** of
interactions with mitigated noise.

®)

®

It is remarkable that the noise management approach
was proposed by taking into account the two interaction
categories associated with the successful problem solution,
because they directly match the tendencies associated with
the users or items, presented in Table 1. Although we do not
discard the suitability of searching for noisy interaction in
the “’no solution” categories (M*[u, p] = 0, M*[u, p] = 1,
and M*[u, p] = 2, in (2)), the definition of homologous
user and item classes for these categories were required,
which is not an easy task. A deeper analysis of this will be
left for future research.

3.3 Recommendation of Problems

This last step is supported by a traditional memory-based
CF paradigm focused on the enriched matrix M**. Being x
the active user for providing recommendations, this step is
composed of three phases:

1. Find the top k similar users regarding user x, according
to M**

@ Springer

2. For each problem not solved by x, calculate a score
according to the top k similar users
3. Recommend the problems with the highest scores

The rest of this section presents these phases in further
detail.

Find the top k similar users regarding user x, according
to M**: At first, it is necessary to represent the user profile
for x, which is composed of the values of the interactions

Table 1 Classes for users and problems

User classes

Precise |C2,] = 2|C1,]|
Imprecise |IC1,| = 2|C2,|
Variable In other cases
Item classes

Easy [C2,] = 2|C1|
Difficult [Clp] > 2|C2|
Variable In other cases

A Recommendation approach for programming online judges supported. . .

Table 2 Homologous classes

User classes Item classes Interaction category

Group 1 Precise Easy

Difficult

M*[u, pl =4

Group 2 Imprecise M*[u, p] =3

between user x and any problem p in the dataset, i.e. the
row associated with user x in the matrix M™**.

To find the top k similar users regarding x, at first a sim-
ilarity function must be chosen. To this effect, we select
the Simple Matching Coefficient (SMC) [3], which is a
function previously used to compare users in recommender
systems, specifically in categorical scenarios like that cur-
rently presented. Specifically, we use a modification of the
SMC function that discards the contribution of the cate-
gory M**[u, p] = 0 to the final similarity calculation. This
modification is explained as follows.

Syu being the set of problems where both the user x and
the user u have the same interaction category, which in addi-
tion is different from the zero category (M**[u, p] = 0)
(10):

Seu ={p | M™*[u, p] = M**[x, p] and M**[x, p] # 0}
(10)

And Dy, the set of problems where at least the user x
or the user u# have some interaction in a category which is
different from the zero category (11):

Dy = {p | M**[u, p] # 0 or M**[x, p] # 0} an

The similarity between x and u is then defined according
to (12):

qu
Dxu

Considering that the zero category (M**[u, p] = 0)
means no solution attempts, it is clear that the common pres-
ence of this category when two users are compared, does
not necessarily indicate closeness. Therefore, this modifica-
tion guarantees the similarity calculation only based on the
remaining categories.

Once the similarity values between x and all users are
calculated, the users with the top k higher values are selected
as similar users and therefore employed in the following
phases of the step.

For each problem not solved by x, a score is calculated
according to the top k similar users: Once the list of top k
similar users is obtained, these profiles are used to calculate
a score w, for each problem p not solved by user x. This
score is calculated as the sum of the similarities between x

sim(x,u) = (12)

and each neighbor that solves p (13). This phase uses the
matrix M, which directly represents the success or failure in
a problem solution.

> sim(x,u) Mu, p] (13)

uctop k(x)

wp =

Recommend the problems with the highest scores: This
final phase focuses on recommending the top n problems p
with the highest scores w,, to the active user x.

4 Experimental study

In order to evaluate the current proposal, offline experi-
ments will be developed using a real dataset obtained from
the Caribbean Online Judge from the period 2009-2010.
This dataset is composed of 1910 users, 584 problems, and
more than 148000 user attempts to solve problems. The
average number of problems solved by each user is 30.24
problems, with a standard deviation of 56.39. These val-
ues suggest a high sparsity across all users in the number
of solved problems, which is a typical feature associated
with recommender system environments in relation to the
interactions between users and items. Figure 3 shows a
histogram reflecting the number of solved problems (y-
axis) for each user (x-axis), clearly showing a long-tailed
distribution that also characterizes data in common recom-
mendation scenarios.

The experimental framework was developed according to
the procedure suggested by Gunawardana and Shani [21].
In this case the training and test sets were created using
the following procedure. For each user it randomly divides
all the solved problems in two sets, adding the first one
to the training set, and the second one to the test set. In

500
400
300
200
100
0

AN MO AN MO AR MOLW o NMO W

OO0 ONMNWLOLOVLNNITIITOHNNN

A NM ST ONONO —ANMITIW VN ©

L B B B B I B B I |

Fig. 3 Long-tailed histogram reflecting the number of solved prob-
lems (y-axis), for each user (x-axis). The users were sorted down-
wardly according to their amount of solved problems

@ Springer

R. Yera, L. Martinez

Table 3 Possible recommendation results, regarding solved and rec-
ommended problems

Recommended Not recommended
Solved True-Positive (tp) False-Negative (fn)
Not solved False-Positive (fp) True-Negative (tn)

this way, both the training and the test set would contain
data from all users. Hence, the experiments were developed
by averaging the accuracy results of several training-test
partitions created through this procedure, to avoid any unde-
sirable bias in the distribution of the user data. Therefore,
this procedure could be classified as a repeated user-driving
hold-out approach [8]. Finally, the proposal also receives
the information associated with the failed solutions for each
user-problem pair as input, therefore this information is also
stored independently.

Several evaluation measures have been proposed to eval-
uate the accuracy of the top-n recommendation task [21].
In this research we use the F1 measure, which is probably
the most popular and generally-accepted [21]. F1 (14) is
defined in terms of Precision and Recall measures (15) and
(16), which in addition, as is presented in Table 3, depend
on the amount of recommended problems that were solved
(precision) and the amount of solved problems that were
recommended (recall).

2 % precision x recall

In this work, for each user, given the list of ”solved” prob-
lems in the training set and the data regarding failures, the
proposal generates a list of recommended problems. This
list and the solved problems located in the test set are then
used to calculate the current user’s F1 value. At last, all the
users’ F1 values are averaged to obtain the final F1 value
associated with the proposal. This process is repeated 10
times, obtaining 10 different F1 values that are averaged to
obtain the final accuracy value to register.

Regarding the current proposal and previous research,
the purposes of the evaluation are focused on the following
main objectives:

e To evaluate the performance of the proposal across dif-
ferent sizes of the amount of neighbors used in the
recommendation generation phase (k).

Therefore, we evaluate the proposal varying the size
of the used neighborhood (k) in the range [90, 170] with
step 10. This evaluation was done for different sizes n
of the recommendation list, modifying n specifically in
the range [5, 40] with step 5. Figure 4 shows the results
of this experiment, showing the sensitivity of k for dif-
ferent values of n in each graph. These results conclude
that in most cases, the accuracy tends to increase when
k increases in the range [90, 130], and become stable
for k > 130. Therefore, in the remaining experiments
we will set k = 130.

e To verify whether the matrix enrichment (Section 3.1)

Fl= — (14) and the natural noise management process
precision + recall .] .)
(Section 3.2), introduce an accuracy improvement in
#1p the recommendation generation.
precision = m (15) Consequently, we initially verify the difference
p p between the neighborhoods used in the recommenda-
4 tion generation associated with each user x according
recall = —P (16) to the original binary matrix M (neighbors™), and the
#tp +#fn
04 — 04— 0,385 - 0,365
0,39 - — 038 - 0,36
0,38 - ol 037> 1 0555 z
' 038 — 0,37 1 0,35
037 1 ’ 0365 0345 +—
0,36 4 0,37 +rrrrrrm 0,36 4 0,34
o O ©O O o o ©O ©O O o o O O O o o O © O o
A = N o~ A = NN o~ A = N N~ A = N N~
L B | L B B | R B B | D B B |
() (b © (@
0345 — 0325 — 031 — 0295 —
034 - 0,32 ﬁ 0,305 0,29 74
0,335 - 0,315 -
033 +———— 0,31 0,3 - 0,285 +—————
0,325 +rrrrrrrm 0,305+ 0,295 0,28 +rrrrrrrm
o O O O O o O O O O o O O O O o O O O O
D = 0 N~ A = N N~ A = N N~ A = N N~
N = o Y = o N = o L B B |

)

(@

Fig. 4 Performance of the proposal, according to F1, for different
sizes k of the used neighborhood (the x axis). a Top 5 recommenda-
tions. b Top 10 recommendations. ¢ Top 15 recommendations. d Top

@ Springer

20 recommendations. e Top 25 recommendations. f Top 30 recommen-
dations. g Top 35 recommendations. h Top 40 recommendations

A Recommendation approach for programming online judges supported. . .

Fig. 5 Overlapping degree 1 .
between the neighborhoods |
generated for a simple random 0.8
sample of 100 users in the
dataset, according the matrix M, 0.6 il = —+H1— -
and the matrix M**

0.4

1 (LI

|

|. [1[]1] u| | |.1

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

same neighborhoods but according to the matrix M**
(nei ghbors)’(” ™). To this purpose, we define the over-
lapping degree between both sets of neighborhoods for
a user x (17), as the ratio between the cardinality of
its intersection, and the initial size of the neighbor-
hood (the k value, in this case k = 130). This ratio
would indicate a low or a high effect of the proposal in
Sections 3.1 and 3.2, in the formation of different and
possibly more precise neighborhoods.

| neighbors™ N neighbors™™ |
k

overlapping, =

a7

Figure 5 shows this overlapping degree for a random
sample of 100 users in the dataset (represented on the
horizontal axis), which varies from values close to 0, to
1. Taking into account the 1910 users in the dataset, the
average overlapping was 0.63 with a standard deviation
of 0.22. Therefore, these results prove that the pro-
cedures proposed in Sections 3.1 and 3.2, definitively
imply the formation of a different neighborhood in con-
trast to that associated with the original rating matrix
M. However, it is necessary to verify whether these
new neighborhoods introduce an accuracy improvement
in the recommendation generation. With this aim in
mind, we will compare our current proposal (Proposal,
in Table 4) with a similar procedure that uses only the
matrix M in the neighborhood formation step (Binary,
in Table 4).

To verify that the proposal outperforms related previous
works, across different sizes of the top-n recommenda-
tion list.

TV 1

Eventually, we compare it to related works presented
in [57] (UCF-0J, in Table 4), and at [61] (ICF-OJ, in
Table 4). The referred Table 4 shows these comparison
results, varying the size of the list with top-n recom-
mendations in the range [5, 40] with step 5. In all cases,
our proposal notably outperforms the other approaches.
Therefore, it proves that the dynamic matrix enrichment
and the natural noise management processes are use-
ful tools in order to outperform the recommendation
generation in the POJ scenario.

To evaluate the independent effect of the dynamic
matrix enrichment and the natural noise management
process

We develop a new experiment that evaluates the
proposal incorporating the matrix enrichment step
(Section 3.1), but without the natural noise management
(NNM) step (Section 3.2). Afterwards, we compare its
result with the baseline (Binary) and the final proposal
(Proposal), both previously evaluated. Table 5 presents
the results of this comparison, showing that the appli-
cation of the proposal without the NNM step (i.e. using
only the matrix M™*) introduces important improve-
ments in relation to the baseline (Binary, with matrix
M). However, the improvement is not similarly clear
at the comparison of the performance of the proposal
without the NNM step (M™*), and incorporating the
NNM step (final proposal, with matrix M**), the final
proposal being expected to have the best performance.

To clarify this issue we have applied a statistical test,
specifically the Wilcoxon non-parametric test, widely
used in pairwise comparison [15, 21]. In order to obtain
more representative samples, instead of using the data
in Table 5, we repeat the executions by modifying the

Table 4 Comparison between the final proposal and related works, according to F1 values with k = 130

5 10 15 20 25 30 35 40
Proposal 0.3875 0.3933 0.3784 0.3582 0.3397 0.3220 0.3055 0.2916
Binary 0.3614 0.3687 0.3540 0.3352 0.3189 0.3026 0.2895 0.2767
UCF-0J 0.3833 0.3899 0.3736 0.3543 0.3367 0.3194 0.3035 0.2890
ICF-0J 0.3602 0.3624 0.3494 0.3348 0.3191 0.3058 0.2932 0.2808

@ Springer

R. Yera, L. Martinez

Table S Comparison between the baseline, the proposal without NNM, and the final proposal according to F1 values with k = 130

5 10 15 20 25 30 35 40
Binary (M) 0.3614 0.3687 0.3540 0.3352 0.3189 0.3026 0.2895 0.2767
Proposal without NNM (M*) 0.3866 0.3936 0.3773 0.3573 0.3393 0.3219 0.3058 0.2915
Proposal (M**) 0.3875 0.3933 0.3784 0.3582 0.3397 0.3220 0.3055 0.2916
size n of the recommendation list in the range [1, 40] References

with step 1, in contrast to the previous ones done in the
range [5, 40] with step 5.

Once these executions were completed, the
Wilcoxon test was applied to the results associated
with the final proposal (obtained through M**), and the
proposal without NNM (obtained through M*). This
test shows as result that for 25 of the 40 comparisons,
the final proposal obtains the best performance, being a
statistically significant difference as p < 0.05. There-
fore, this experiment verifies that both the dynamic
matrix enrichment and the NNM approach play an
important role in the proposal, because in both cases
improvements are introduced in the recommendation
performance.

5 Conclusions and future works

This paper presents a recommendation approach to suggest
problems to solve in a POJ, supported by data preprocessing
techniques. Specifically, the proposal is composed by three
main steps: 1) the extended user-problem matrix building,
2) the extended user-problem matrix preprocessing for natu-
ral noise management, and 3) the problem recommendation.
The experimental results show that steps 1) and 2) guaran-
tee the formation of a more precise neighborhood, positively
impacting the recommendation accuracy in relation to the
related previous research. To the best of our knowledge this
research is pioneer in the investigation field related to rec-
ommender systems in the POJ domain, and also related
to the use of natural noise management techniques in an
e-learning recommendation scenario.

Our further research will be focused on the following
points: 1) proposing and evaluating more advanced similar-
ity metrics that incorporate contextual information in POJs,
such as time. 2) the use of fuzzy tools to introduce a better
user and problem characterization in the natural noise man-
agement step, following the ideas presented in [60], and 3)
the generalization of natural noise management process to
other e-learning recommendation scenarios.

Acknowledgments This research work was partially supported by
the Research Project TIN2015-66524-P.

@ Springer

10.

11.

12.

13.

14.

15.

16.

17.

. Adomavicius G, Tuzhilin AT (2005) Toward the next generation

of recommender systems: A survey of the state-of-the-art and
possible extensions. IEEE Trans Knowl Data Eng 17(6):734-749

. Ala-Mutka KM (2005) A survey of automated assessment

approaches for programming assignments. Comput Sci Educ
15(2):83-102

. Amatriain X, Pujol JM (2015) Data mining methods for recom-

mender systems. In: Recommender Systems Handbook. Springer,
pp 227-262

. Amatriain X, Pujol JM, Oliver N (2009a) I like it... i like it not:

Evaluating user ratings noise in recommender systems. In: User
modeling, adaptation, and personalization. Springer, pp 247-258

. Amatriain X, Pujol JM, Tintarev N (2009b) Rate it again: increas-

ing recommendation accuracy by user re-rating. In: Proceedings
of the third ACM conference on Recommender systems. ACM, pp
173-180

. Arefin AS (2006) Art of Programming Contest. Gyankosh

Prokashonia

. Caiza J, Del Amo J (2013) Programming assignments automatic

grading: Review of tools and implementations. In: Proceedings of
INTED, vol 2013, pp 5691-5700

. Campos PG, Diez F, Cantador I (2014) Time-aware recommender

systems: a comprehensive survey and analysis of existing evalua-
tion protocols. User Model User-Adap Inter 24(1-2):67-119

. Castro J, Yera Toledo R, Martinez L (2016) An empirical study

of natural noise management in group recommendation systems.
Decision Support Systems. doi:10.1016/j.dss.2016.09.020

Chen LC, Kuo PJ, Liao IE (2015) Ontology-based library recom-
mender system using mapreduce. Clust Comput 18(1):113-121
Christensen I, Schiaffino S (2014) Social influence in group
recommender systems. Online Inf Rev 38(4):524-542

Dascalu MI, Bodea CN, Mihailescu MN, Tanase EA, Ordoiiez
de Pablos P (2016) Educational recommender systems and their
application in lifelong learning. Behav Inform Technol 35(4):290-
297

De Maio C, Fenza G, Gaeta M, Loia V, Orciuoli F, Senatore S
(2012) Rss-based e-learning recommendations exploiting fuzzy
fca for knowledge modeling. Appl Soft Comput 12(1):113-124
De Oliveira MG, Ciarelli PM, Oliveira E (2013) Recommenda-
tion of programming activities by multi-label classification for a
formative assessment of students. Expert Syst Appl 40(16):6641—
6651

Derrac J, Garcia S, Molina D, Herrera F (2011) A practical tuto-
rial on the use of nonparametric statistical tests as a methodology
for comparing evolutionary and swarm intelligence algorithms.
Swarm Evol Comput 1(1):3-18

Drachsler H, Verbert K, Santos OC, Manouselis N (2015)
Panorama of recommender systems to support learning. In: Rec-
ommender systems handbook. Springer, pp 421451

Fenza G, Orciuoli F (2016) Building pedagogical models by for-
mal concept analysis. In: International Conference on Intelligent
Tutoring Systems. Springer, pp 144—153

http://dx.doi.org/10.1016/j.dss.2016.09.020

A Recommendation approach for programming online judges supported. . .

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Gaeta M, Orciuoli F, Paolozzi S, Salerno S (2011) Ontology
extraction for knowledge reuse: The e-learning perspective. IEEE
Trans Syst Man Cybern Part A Syst Humans 41(4):798-809
Gruber TR (1995) Toward principles for the design of ontologies
used for knowledge sharing? Int J Hum Comput Stud 43(5):907—
928

Guarino N, Giaretta P (1995) Ontologies and knowledge bases
towards a terminological clarification. In: Towards very large
knowledge bases: knowledge building & knowledge sharing. 10S
Press, pp 25-32

Gunawardana A, Shani G (2009) A Survey of Accuracy Eval-
uation Metrics of Recommendation Tasks. J Mach Learn Res
10:2935-2962

Hsiao IH, Sosnovsky S, Brusilovsky P (2010) Guiding students to
the right questions: adaptive navigation support in an e-learning
system for java programming. J] Comput Assist Learn 26(4):270—
283

Huang Z, Zeng D, Chen H (2007) A comparison of collaborative-
filtering recommendation algorithms for e-commerce. IEEE Intell
Syst 5:68-78

Klasnja-Miliéevi¢ A, Vesin B, Ivanovi¢ M, Budimac Z (2011) E-
learning personalization based on hybrid recommendation strategy
and learning style identification. Comput Educ 56(3):885-899
Klasnja-Milicevi¢ A, Ivanovi¢ M, Nanopoulos A (2015) Recom-
mender systems in e-learning environments: a survey of the state-
of-the-art and possible extensions. Artif Intell Rev 44(4):571-604
Krishnan S, Patel J, Franklin MJ, Goldberg K (2014) A method-
ology for learning, analyzing, and mitigating social influence
bias in recommender systems. In: Proceedings of the 8th ACM
Conference on Recommender systems. ACM, pp 137-144
Kurnia A, Lim A, Cheang B (2001) Online judge. Comput Educ
36(4):299-315

Leal JP, Silva F (2003) Mooshak: a web-based multi-site pro-
gramming contest system. Software: Practice and Experience
33(6):567-581

Li B, Chen L, Zhu X, Zhang C (2013) Noisy but non-Malicious
user detection in social recommender systems. World Wide Web
16(5-6):677-699

Llana L, Martin-Martin E, Pareja-Flores C, Veldzquez-Iturbide JA
(2014) Flop: a user-friendly system for automated program assess-
ment. Journal of Universal Computer Science 20(9):1304-1326
Lops P, Gemmis M, Semeraro G (2011) Content-based recom-
mender systems: State of the art and trends. In: Recommender
systems handbook springer US, chap, vol 3, pp 73-105

Lu J, Wu D, Mao M, Wang W, Zhang G (2015) Recommender
system application developments: a survey. Decis Support Syst
74:12-32

Martinez L, Pérez LG, Barranco M (2007) A multigranular lin-
guistic content-based recommendation model. Int J Intell Syst
22(5):419-434

Martinez L, Barranco MJ, Pérez LG, Espinilla M (2008) A knowl-
edge based recommender system with multigranular linguistic
information. International Journal of Computational Intelligence
Systems 1(3):225-236

Miranda S, Orciuoli F, Sampson DG (2016) A skos-based frame-
work for subject ontologies to improve learning experiences.
Comput Hum Behav 61:609-621

Murray T (1999) Authoring intelligent tutoring systems: an anal-
ysis of the state of the art. Int J Artif Intell Educ 10:98-129
Nadolski RJ, Van den Berg B, Berlanga AJ, Drachsler H, Hum-
mel HG, Koper R, Sloep PB (2009) Simulating light-weight
personalised recommender systems in learning networks: a case
for pedagogy-oriented and rating-based hybrid recommendation
strategies. Journal of Artificial Societies and Social Simulation
12(1):4

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51

52.

53.

54.

55.

56.

57.

Ning X, Desrosiers C, Karypis G (2015) A comprehensive survey
of neighborhood-based recommendation methods. In: Recom-
mender Systems Handbook. Springer, pp 37-76

Noguera J, Barranco M, Segura R, Martinez L (2012) A mobile
3d-gis hybrid recommender system for tourism. Inf Sci 215:37—
52

O’Mahony MP, Hurley NJ, Silvestre G (2006) Detecting noise
in recommender system databases. In: Proceedings of the 11th
international conference on Intelligent user interfaces. ACM, pp
109-115

Petit J, Giménez O, Roura S (2012) Jutge. org: an educational
programming judge. In: Proceedings of the 43rd ACM techni-
cal symposium on Computer Science Education. ACM, pp 445-
450

Pham HX, Jung JJ (2013) Preference-based user rating correction
process for interactive recommendation systems. Multimedia tools
and applications 65(1):119-132

Piramuthu S, Kapoor G, Zhou W, Mauw S (2012) Input online
review data and related bias in recommender systems. Decis
Support Syst 53(3):418-424

Polson MC, Richardson JJ (2013) Foundations of intelligent tutor-
ing systems. Psychology Press

Regueras LM, Verdu E, Munioz MF, Pérez MA, De Castro JP,
Verdid MJ (2009) Effects of competitive e-learning tools on higher
education students: a case study. IEEE Trans Educ 52(2):279-285
Ricci F (2015) Recommender systems handbook. Springer,
Shapira B

Ruiz-Iniesta A, Jimenez-Diaz G, Gomez-Albarran M (2014) A
semantically enriched context-aware oer recommendation strat-
egy and its application to a computer science oer repository. IEEE
Trans Educ 57(4):255-260

Said A, Jain BJ, Narr S, Plumbaum T (2012) Users and noise:
The magic barrier of recommender systems. In: User modeling,
Adaptation, and Personalization. Springer, pp 237-248

Skiena SS (2006) Revilla MA. The programming contest train-
ing manual. Springer Science & Business Media, Programming
challenges

Sleeman D, Brown JS (1982) Intelligent tutoring systems. Aca-
demic Press, London

Thai-Nghe N, Drumond L, Horvath T, Nanopoulos A, Schmidt-
Thieme L (2011) Matrix and tensor factorization for predicting
student performance. In: Proceedings of the 3rd International Con-
ference on Computer Supported Education (CSEDU), pp 69-78
Verdi E, Regueras LM, Verdd MJ, Leal JP, de Castro JP, Queirds
R (2012) A distributed system for learning programming on-line.
Comput Educ 58(1):1-10

Vesin B, Klasnja-Milicevi¢ A, Ivanovi¢c M, Budimac Z (2013)
Applying recommender systems and adaptive hypermedia for e-
learning personalization. Computing and Informatics 32(3):629—
659

Wang GP, Chen SY, Yang X, Feng R (2016) Ojpot: online judge
& practice oriented teaching idea in programming courses. Eur J
Eng Educ 41(3):304-319

Wang PY, Yang HC (2012) Using collaborative filtering to support
college students’ use of online forum for english learning. Comput
Educ 59(2):628-637

Winoto P, Tang TY, McCalla GI (2012) Contexts in a paper
recommendation system with collaborative filtering. The Inter-
national Review of Research in Open and Distributed Learning
13(5):56-75

Yera Toledo R, Caballero Mota Y (2014) An e-learning collabo-
rative filtering approach to suggest problems to solve in program-
ming online judges. International Journal of Distance Education
Technologies 12(2):51-65

@ Springer

R. Yera, L. Martinez

58. Yera Toledo R, Caballero Mota Y, Garcia Borroto M
(2013) A regularity-based preprocessing method for collab-
orative recommender systems. J Inf Process Syst 9(3):435-
460

59. Yera Toledo R, Caballero Mota Y, Martinez L (2015) Correct-
ing noisy ratings in collaborative recommender systems. Knowl-
Based Syst 76:96-108

60. Yera Toledo R, Castro J, Martinez L (2016) A fuzzy model
for managing natural noise in recommender systems. Appl Soft
Comput 40:187-198

61. Yu R, Cai Z, Du X, He M, Wang Z, Yang B, Chang P (2015)
The research of the recommendation algorithm in online learning.
International Journal of Multimedia and Ubiquitous Engineering
10(4):71-80

Raciel Yera Toledo received
the BSc. in Informatics Sci-
ences from the University of
Informatics Sciences, Cuba in
2010, his MSc degree in 2012
from the University of Ciego
de Avila, Cuba, and his PhD
degree in 2015 from Las Vil-
las Central University, Cuba.
At present, he is a professor
of Computer Science at Uni-
versity of Ciego de Avila. He
obtained three Annual Provin-
cial Awards of the Cuban
Academy of Sciences in 2013
for his research results related
to recommender systems. Recently, he has been awarded as the Best
Young Researcher at University of Ciego de Avila in the year 2016.
His current interests are focused on the improvement of recom-
mender systems performance through the application of computational
intelligence techniques.

@ Springer

Luis Martinez (M’10)
received the M.Sc. and Ph.D.
degrees in Computer Sciences,
both from the University of
Granada, Spain, in 1993 and
1999, respectively. Currently,
he is Full Professor of Com-
puter Science Department and
Head of ICT Research Centre
at the University of Jaén. His
current research interests are
linguistic preference model-
ing, decision making, fuzzy
logic based systems, computer
aided learning, sensory eval-
uation, recommender systems
and electronic commerce. He co-edited nine journal special issues
on fuzzy preference modelling, soft computing, linguistic decision
making and fuzzy sets theory and published more than 75 papers in
journals indexed by the SCI as well as 30 book chapters and more than
120 contributions in International Conferences related to his areas.
In 2015, he authored a monograph. The 2-tuple Linguistic Model:
Computing with Words in Decision Making (Springer).

Dr. Martinez is member of the European Society for Fuzzy Logic
and Technology and IEEE, Co-Editor in Chief of the of the Interna-
tional Journal of Computational Intelligence Systems and an Associate
Editor of the journals IEEE TRANSACTIONS ON FUZZY SYSTEMS,
Information Fusion, the International Journal of Fuzzy Systems, Jour-
nal of Intelligent & Fuzzy Systems, the Scientific World Journal,
Journal of Fuzzy Mathematics and serves as member of the jour-
nal Editorial Board of the Journal of Universal Computer Sciences.
He received twice the IEEE TRANSACTIONS ON Fuzzy Sys-
TEMS Outstanding Paper Award 2008 and 2012 (bestowed in 2011
and 2015 respectively). He is also Visiting Professor in University
of Technology Sydney, Guest Professor in the Southwest Jiaotong
University and honourable professor in Xihua University both in
Chengdu (China).

	A Recommendation approach for programming online judges supported. . .
	Abstract
	Introduction
	Background
	Programming online judges
	Collaborative filtering
	Recommender systems in e-learning
	Natural noise management in recommender systems

	A recommendation approach for programming online judges
	Extended user-problem matrix building
	Preprocessing natural noise in the extended user-problem matrix
	Recommendation of Problems

	Experimental study
	Conclusions and future works
	Acknowledgments
	References

