
LCS Algorithm with Vector-markers

Levon Aslanyan
Institute for Informatics and Automation Problems

of the National Academy of Science of Armenia
Yerevan, Armenia

lasl@sci.am

Abstract—The Multiple Longest Common Subsequence
(MLCS) problem is aimed at constructing a maximum length
subsequence, common to a given set of sequences, defined on some
finite alphabet of symbols. The paper considers the particular case
of two input sequences (LCS), which is simply extendable to the
general MLCS problem. We consider the problem in an online
manner, where symbols arrive one-by-one and the next acquired
symbol is appending any one of the two input sequences. The
sought-for LCS algorithm acts by recursive handling of parts of
sequences arrived so far, constructing and updating specific
supportive structures of markers representing the interrelations
of the longest common subsequences of the two input sequences.
In paper we discuss a perfect online parallelization framework of
the algorithm for the “simple” memory model, so that the parallel
complexity becomes () for parallel threads. The general
outcome of paper is the use of vector markers instead of matrix
markers or graphs, which helps in minimization of the memory,
used by the algorithm.
Keywords— LCS, online algorithm, parallelization, iteration,

data structure

I. INTRODUCTION

This introductory section presents the required definitions
and preliminaries, and provides a short survey on LCS problem
area. The dynamic programming as well as the Dominant match
based models are considered.

A. Preliminries
Information of various application areas often can be

modelled as a set of finite alphanumeric sequences. Examples
are DNA or protein sequences in biology. Consider a finite
alphanumeric alphabet . A subsequence ° of a sequence
defined on alphabet is a sequence that can be derived from
by removing some of its items. Obviously, in the general case
the same subsequence can be obtained from the same sequence

by removing its different sets of items. The empty sequence
is said to be obtained from any sequence by removing all its
items, so it is a subsequence of each sequence. A sequence is
said to be a common subsequence of sequences and , if ,
in separate, can be obtained as subsequences of both sequences.
Note that the empty sequence is a zero length common
subsequence of and , thus, formally, the set of all common
subsequences of and is not empty. Some subsequences in
the pair and are deadlock (not extendable). Some of them
are of maximal length, and each of these sequences is called the

longest common subsequence or LCS. The LCS problem is to
construct algorithmically one or the entire longest common
subsequences to the given pair (or a larger set) of sequences.

Among the LCS of and it is to distinct those with
minimal maximal elements in , and/or in . This kind of
structures are identified in considered algorithm below for all
lengths less than the length of entire LCS. These collections of
subsequences define the specific structures of markers used in
online mining of LCS. These novel data structures and the
algorithm developed by the use of these structures will help in
solving new online applications of traditional LCS problems.

The well-recognized theoretical and applied value of the
LCS model may be introduced in terms of bioinformatics ([1]-
[4]), where sequences are the most basic mathematical model
of genomics, which can describe the primary structure of the
nucleic acid and protein molecules. Searching LCS in genomic
sequencing and alignment issues an important approach of
identifying the sequence similarities that can be further utilized
in gene identification, in construction of optimal haplotype
mechanisms, in mutation determination, in genotype-
phenotype similarity searches, classifications, etc. With the
successful implementation of the Human Genome Project, the
available number of, lengths and sizes of biological sequences
are growing explosively and exponentially. Mining the LCS
from these sequences is becoming more hardly computable and
important in theory and in applications.

B. Survey on the LCS problem
Consider two sequences = and =

defined on the same alphabet . If = for
some , 1 , and for some , 1 , then (,) is
called a match between and . A match (,) is said to be
preceding another match (,), if concurrently < and <

. The cross intersecting matches are complementary to the set
of matches of and and they are useless in constructing of
LCS. Note that a longest common subsequence (LCS) of and

is some sequence = of matches (,) ,0 , such that matches (,) between and , with
increase of , proceed each other, and is maximum length
among such sequences.

92

For each , 0 , we denote by the -th prefix of ,, , , and for each , 0 is the -th prefix
of , , , . In particular, and are the empty
sequences.

In 1970, S. Needleman and C. Wunsch, being the first,
proposed a heuristic homology algorithm using the match-
mismatch, and insertion-deletion operations for sequence
alignment [5]. This is a global alignment algorithm that requires (,) calculation steps (and are the lengths of the two
sequences being aligned). The algorithm uses the iterative
calculation of a matrix for the purpose of modelling the global
alignment. In the following, D. Sankoff [6], A. Reichert et al.
[7], W. Beyer et al. [8] and others formulated alternative
heuristic algorithms for analyzing gene sequence similarities.
P. Sellers introduced a system for measuring sequence
distances [9]. In 1981, Smith and Waterman published a new
local alignment calculation algorithm. The Smith–Waterman
algorithm is to align two sequences of lengths m and n, and it
is rather time-consuming requiring () steps. O. Gotoh
[10] and S. Altschul [11] optimized this algorithm to ()
steps. The space complexity was optimized by W. Myers and
E. Miller [12] from () to () (linear), where is the
length of the shorter sequence.

In Big Data era, the lengths and sizes of alphanumeric
sequences of experiments are growing explosively, leading to
grand challenges for the classical NP-hard problem of searching
for the Longest Common Subsequences of the two or more
input sequences. The state-of-the-art LCS algorithms are hardly
applied to long and large-scale sequences alignments. To
overcome their drawbacks and tackle the longer or even big
sequences alignments, various strategies, e.g., parallel
hierarchical sorting, optimal labeling, reuse of intermediate
results, subsection calculation and overall integration into the
hybrid analytic systems is required ([13]-[17]). The target is to
achieve the real linear time and space complexity algorithm for
aligned sequences. This is very similar to the case of solving
the sparse linear algebraic systems. Initially being of
complexity () , current research tends to complete the
development of the large size linear-complexity sparse linear
solvers.

The widely known algorithm (D. Hirschberg [18]), and its
consecutive modifications solve the LCS problem by the
dynamic programming approach. We refer to this algorithm as
a “classical” algorithm. It is an incremental algorithm based on
a notion that the pair of last elements of sequences help to
shorten the considered portions of the sequences. Let

, = 0 if = 0 or = 0,max , , , if > 0 and > 0 and , + 1 if > 0 and > 0 and = (1)

where , denotes the length of the longest common
subsequence of and for 0 and 0 . Based
on this equation, for the given sequences and the
“classical” algorithm obtains an (+ 1) × (+ 1) matrix , , ,

of scores, and based on that matrix in a second stage

it obtains one or more longest common subsequences of and
. It runs () steps, though the Method of Four Russians

(the one used in Boolean matrix multiplication algorithms [19])
can be applied to that algorithm [20], reducing the complexity
to (log) (assuming). The “classical” algorithm
can be implemented in an online manner, but it can’t when the
Method of Four Russians is applied.

[21] examined the lower bound of LCS problems in a
decision tree model of computation, where the tree vertices
represent “equal – unequal” comparisons. It is shown that in
such model the lower bound is () (assuming , and
is the size of). Not all algorithms solving the LCS problem
necessarily fit in the “equal – unequal” comparison model, but
in particular the one using the Method of Four Russians doesn’t.
The complexity O(log) is asymptotically the best
among all known upper bounds when complexity is expressed
in terms of lengths of the input sequences and the size of the
input alphabet only [19]. For those, with the “equal – unequal”
comparisons model, O() is asymptotically the best
complexity. In either case there is a huge gap between the best
known upper and lower bounds. Due to this situation for an
algorithm solving LCS problem we see that the dependency of
its complexity only from , and poorly describes the
algorithm. For many known algorithms solving the LCS
problem their complexities essentially depend on other
nontraditional parameters describing the input pair of
sequences. The most common parameter of this kind is the LCS
length itself, denoted by ; the number of matches between the
input sequences, denoted by (this is related to the sparsity
measure); and the number of some special kind of matches
called dominant matches, denoted by [22]. Different
parameters are studied in a way they appear in this and other
discrete models [23]-[30].

A match (,) is called dominant, if , = , =, = , 1 (recall that , is the LCS length of -th prefix
of and -th prefix of), and , is called the rank of the
dominant match (,). Note that in the worst case = (),= () and it can be shown that = () . A more
detail survey on the complexities of the algorithms solving the
LCS problem is provided in [31]. Depending on interrelations
between values , , , , , , as well as depending on other
issues of particular applications, some of the LCS algorithms
may become preferable than the other ones.

93

Fig. 1. Online update of sequence A, dominant matches, and markers.

II. THE ALGORITHM

As it is mentioned above, our target is to investigate the
LCS problem in an online performance manner, where the next
symbol arrival is an action that appends the element to one of
the two input sequences. The algorithm iteratively processes
that arrivals, updating the maintained structures, representing
the LCS of sequences arrived so far. Let and be the already
registered sequences and let a new symbol is appending
to , thus resulting a new sequence with =

. Starting from the next point we will describe the current
iteration step in an online LCS algorithm which is based on
analysis of the new data arrival, constructing the special
algorithmic work-time vector data, corresponding to sequences

and . These structures provide an LCS of and , and
algorithm may simply update these data to correspond them to
the sequences and .

A. Markers and their update
As before, let = , 1 , and =

, 1, be sequences defined on some symbol
alphabet , and let be the LCS length of and . Denote by

, 1 , the minimum among all -indices of the last
elements of -length common subsequences of and , and
denote by , 1 , the minimum among all -indices of
the last elements of -length common subsequences of and

, so that min (,) = , 1; 1 < < ; 1 < <
,

(2)

min (,) = , 1; 1 < < ; 1 < <
.

(3)

We call the -th mark of in and we call the
-th mark of in .

Lemma 1: Marker sequences () and () are strictly
increasing.

Indeed, let for some , 2, be a -length common
subsequences of and ending at in . Removing the last
element from we will get a (1) -length common
subsequence of and ending in at an index not greater
than 1, and as is the minimum among such indices,
then we will get that < . Similarly it can be checked that () is also strictly increasing. Note, that the subsequences
of induced by -s and the subsequences of induced by -
s are not necessarily common subsequences of and . Also
the (,)-s are not necessarily matches between and .

Now recall that = , where = , and
denote by the LCS length of and . Obviously equals
either or + 1. Then let , 1 , denote the -th mark
of in and , 1 , denote the -th mark of in .
Next we show how to obtain () and () based on () and () .

Lemma 2: For , , it holds = .

Lemma 3: It holds = + 1 if and only if has symbol
after index , and in that case it holds = + 1.

Corollary 1: If has symbol after index , then it holds =+ 1 and is the index of first after in .

Thus Lemma 2 and Lemma 3 show how to obtain the
marks of in . Next we show how to obtain the marks of
in .

Lemma 4: For , 1 , it holds < .

Lemma 5: For , 1 , if there is between indexes
and in , then is the index of the first of them, otherwise = .

Thus the Lemma 4 and Lemma 5 show how to obtain the
marks of in , and previously we have shown how to obtain

94

the marks of in . Thus we have shown how to update the
marks of and to marks of and . For the usability
purposes we combine this claim into the final postulations (see
Fig. 1).

Theorem 1: For , 1 , it holds = ; if there is
between indexes and in , then is the index of the
first of them, and otherwise it holds = ; it holds = + 1
if and only if has symbol after index , and in that case it
holds = + 1 and is the index of first after in .

Theorem 2: For some , 1 , the match (+ 1,) is
dominant if and only if for some , 1 , it holds = <

or = + 1 and = .

Thus the Theorem 1 shows how to update the marks
of and to the marks of and , and Theorem 2 shows
how to enumerate all dominant matches of and with index + 1 in during that update. Recall, that in order to provide
an online algorithm solving the LCS problem it is sufficient to
provide an online algorithm which enumerates the dominant
matches of the input sequences.

III. CONCLUSION

The LCS (Longest Common Subsequence) problem is
intensively applied and broadly investigated. A very basic role
plays the dynamic programming style algorithm of its solution
that have today many interpretations. Besides the classical
postulation of the problem it is attractive to consider its online
version due to network based applications. And in both cases
static and online it is required to split the task into the parallel
computational threads. The online parallel algorithm
introduced in this paper presents another interpretation of the
mentioned de-facto standard algorithm of the domain that
provides additional structures that is able to accompany the
algorithmic iterations, providing it the same way perfect
parallelization for arbitrary number of processors.

The designed online parallel algorithm is given for the
“simple” case of the basic algorithm when ordinary sequential
data structure to store and update are used. The specific case
when tree like structures are used to reduce the complexity is
still waiting for its elaboration.

In general comparison dynamic programming [1], dominant
match based [15], and the current vector marker algorithms
differ in creation and use of the run time data of the algorithms.
Dynamic programming algorithm is the most interpretable one
because of it creates the complete matrix of the complementary
score data. For short sequences this is the preferable way of
LCS computation. More economical is the algorithm of
dominant matches, which constructs the part of scores matrices
corresponding to these matches in an optimized manner. The
technique is based on creation and analysis of networks and/or
directed origin-sink graphs, but there is no theoretical estimate
about the size of those graphs. The vector marker algorithm of

this paper is based on construction and analysis of two vectors
of indexes with a total length not exceeding 2 .

It is to mention that the other known parallel algorithms in
the domain are developed on base of the classical algorithm so
that they can’t be online. They also depend critically on the
lengths of input sequences and the number of processors.

REFERENCES

[1] M. S Waterman, T. F Smith, and W. A Beyer, “Some biological
sequence metrics”, Advances in Mathematics, vol. 20, pp. 367–387,
1976.

[2] R. Durbin, S. Eddy, A. Krogh, G. Mitchison, Biological Sequence
Analysis: Probabilistic Models of Proteins and Nucleic Acids, eleventh
edition, Cambridge University Press, 2006.

[3] Yu. I. Zhuravlev, L. A. Aslanyan, and V. V. Ryazanov, “Analysis of a
training sample and classification in one recognition model”, Pattern
recognition and image analysis, vol. 24, no. 3, pp. 347-352, 2014.

[4] A. Arakelyan, L. Aslanyan, A. Boyajyan, “On Knowledge-based gene
expression data analysis”, Selected Revised Papers of 9th Computer
Science and Information Technologies conference, IEEE Xplore, pp.
105-109, 2013.

[5] S. B. Needleman and C. D. Wunsch, “A general method applicable to
the search for similarities in the amino acid sequence of two proteins”,
Journal of Molecular Biology, vol. 48, pp. 443–453, 1970.

[6] D. Sankoff, “Matching sequences under deletion/insertion constraints”,
Proceedings of the National Academy of Sciences of the United States of
America, vol. 69, no. 1, pp. 4-6, 1972.

[7] T. A. Reichert, D. N. Cohen and A. K. C. Wong, “An application of
information theory to genetic mutations and the matching of polypeptide
sequences”, Journal of Theoretical Biology, vol. 42, pp. 245–261, 1973.

[8] W. A. Beyer, M. L. Stein, T. F. Smith, and S. M. Ulam, A molecular
sequence metric and evolutionary trees, Mathematical Biosciences. 19:
9–25, 1974.

[9] P. H. Sellers, “On the Theory and computation of evolutionary
distances”, Journal of Applied Mathematics, vol. 26, pp. 787–793, 1974.

[10] O. Gotoh, “An improved algorithm for matching biological sequences,
Journal of molecular biology”, vol. 162, pp. 705–708, 1982.

[11] S. F. Altschul and B. W. Erickson, “Optimal sequence alignment using
affine gap costs”, Bulletin of Mathematical Biology, vol. 48, pp. 603–
616, 1986.

[12] W. Miller and E. Myers, “Optimal alignments in linear space”,
Computer applications in the biosciences, vol. 4, pp. 11–17, 1988.
doi:10.1093/bioinformatics/4.1.11.

[13] J. Yang, Y. Xu, and Y. Shang, An Efficient Parallel Algorithm for
Longest Common Subsequence Problem on GPUs, Proceedings of the
World Congress on Engineering 2010 Vol I WCE 2010, June 30 - July
2, 2010, London, U.K, 6p.

[14] W. Liu, L. Chen, and L. Zou, A Parallel LCS Algorithm for
Biosequences Alignment, Conference: Proceedings of the 2nf
International Conference on Scalable Information Systems, Infoscale
2007, Suzhou, China, June 6-8, 2007.

[15] E. David and G.Zvi, “Parallel algorithmic techniques for combinatorial
computation”, Annual Review of Computer Science, vol. 3, pp. 233–283,
1988.

[16] L. Aslanyan, J. Castellanos, F. Mingo, H. Sahakyan, and V. Ryazanov,
“Algorithms for data flows”, International Journal Information Theories
and Applications, vol. 10, no. 3, pp. 279-282, 2003.

[17] L. Aslanyan and V. Minasyan, “LCS Algorithm for Big Data Flows”,
CSIT Conference 2017, Yerevan, Armenia, Sept. 25-29, 2017, pp. 183-
186.

[18] D. S. Hirschberg, “A linear space algorithm for computing maximal
common subsequences’, Communications of the ACM, vol. 18, no. 6, pp.
341–343, 1975.

[19] A. Aho, J. Hopcroft, J. Ullman, Data Structures and Algorithms,
Addison-Wesley, 1983.

[20] T. H. Cormen, C. E. Leiserson, R. L. Rivest, Clifford Stein, Introduction
to Algorithms, 3rd edition, MIT Press, 2009.

95

[21] A. Aho, D. Hirschberg, J. Ullman, “Bounds on the complexity of the
Longest common subsequence problem”, Journal of the Association for
Computing Machinery, vol 23, no. l, pp 1-12, January 1976.

[22] Y. Li , H. Li , T. Duan , S. Wang , Z. Wang, Y. Cheng, “A real linear
and parallel multiple longest common subsequences (MLCS) algorithm”,
Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, August 13-17, San Francisco,
California, USA 2016, 10 p.

[23] V. Minasyan, “On the structure of maximum independent sets in
bipartite graphs”, International Journal Information Theories and
Applications (IJITA), vol. 17, no. 2, pp. 177-188, 2010.

[24] L. Aslanyan and H. Sahakyan, “Numerical characterization of n-cube
subset partitioning”, Electronic Notes in Discrete Mathematics, Elsevier
B. V., ODSA 2006 - Conference on Optimal Discrete Structures and
algorithms, vol. 27, pp.3-4, October 2006.

[25] H. Sahakyan, “Numerical characterization of n-cube subset partitioning,
discrete applied mathematics”, vol. 157, no. 9, pp. 2191-2197, 2009.

[26] H. Sahakyan, “(0,1)-matrices with different rows”, CSIT 2013 - 9th
International Conference on Computer Science and Information
Technologies, Revised Selected Papers, 7 pages, 2013.

[27] L. Aslanyan, H.-D. Gronau, H. Sahakyan, and P. Wagner, “Constraint
satisfaction problems on specific subsets of the n-dimensional unit cube,”
CSIT 2015 – 10th International Conference on Computer Science and
Information Technologies, Revised Selected Papers,” 2015, pp. 47-52.

[28] L. Aslanyan and H. Danoyan, “On the optimality of the Hash-Coding
type nearest neighbour search algorithm,” CSIT 2013 - 9th International
Conference on Computer Science and Information Technologies,
Revised Selected Papers, 7 pages, 2013.

[29] L. Aslanyan, H. Danoyan, “Complexity of hash-coding type search
algorithms with perfect codes”, J. Next Gener. Inf. Technol., vol. 5 (4)
pp. 26–35, 2014.

[30] H. Sahakyan, “Essential points of n-cube subsets partitioning
characterization,” Discrete Applied Mathematics, vol. 163, no. 2, pp.
205-213, 2014.

[31] L. Bergroth, H. Hakonen, and T. Raita, “A survey of longest common
subsequence algorithms”, Technical report, Dept. of Computer Science,
University of Turku, Finland, 2000.

96

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

