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Abstract

Motivation: Benefiting from high-throughput experimental technologies, whole-genome analysis

of microRNAs (miRNAs) has been more and more common to uncover important regulatory roles

of miRNAs and identify miRNA biomarkers for disease diagnosis. As a complementary information

to the high-throughput experimental data, domain knowledge like the Gene Ontology and KEGG

pathway is usually used to guide gene function analysis. However, functional annotation for

miRNAs is scarce in the public databases. Till now, only a few methods have been proposed for

measuring the functional similarity between miRNAs based on public annotation data, and these

methods cover a very limited number of miRNAs, which are not applicable to large-scale miRNA

analysis.

Results: In this paper, we propose a new method to measure the functional similarity for miRNAs,

called miRGOFS, which has two notable features: (i) it adopts a new GO semantic similarity metric

which considers both common ancestors and descendants of GO terms; (i) it computes similarity

between GO sets in an asymmetric manner, and weights each GO term by its statistical signifi-

cance. The miRGOFS-based predictor achieves an F1 of 61.2% on a benchmark dataset of miRNA

localization, and AUC values of 87.7 and 81.1% on two benchmark sets of miRNA–disease associ-

ation, respectively. Compared with the existing functional similarity measurements of miRNAs,

miRGOFS has the advantages of higher accuracy and larger coverage of human miRNAs (over

1000 miRNAs).
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1 Introduction

MicroRNA (miRNA), as an important regulatory molecule, plays a

crucial role in many fundamental biological processes (He and

Hannon, 2004). Especially, numerous studies have demonstrated

that miRNAs can be promising biomarkers for various diseases

(Esquela-Kerscher and Slack, 2006; Lu et al., 2005). Therefore,

identifying the cellular functions of miRNAs and predicting their

associations with diseases have been important tasks in the field of

bioinformatics, and a lot of computational tools have been devel-

oped, e.g. for whole-genome expression analysis (Thomson et al.,

2004), target prediction (Agarwal et al., 2015; Fan and Kurgan,

2015; Peterson et al., 2014) and functional enrichment (Bleazard

et al., 2015; Gusev et al., 2007; Vlachos et al., 2012).

In gene function analysis, the domain knowledge, like gene

ontology (GO) (Ashburner et al., 2000) and KEGG pathway

(Kanehisa and Goto, 2000), is often utilized as complementary in-

formation to the high-throughput experimental data in various com-

putation tasks, such as gene clustering (Huang and Pan, 2006),

disease-related gene identification (Schlicker et al., 2010) and

protein–protein-interaction prediction (Mahdavi and Lin, 2007). In

order to quantitatively measure the functional similarity between

two genes, the annotation terms associated with the genes are

extracted and their semantic correlation is computed. However, due

to the lack of functional annotation of miRNAs in public database,

such analyses for miRNAs are relatively difficult. The measuring of

miRNA functional similarity is usually based on the shared targets

or associated diseases. For instance, Wang et al. (2010) inferred

miRNA similarity by their association with diseases and the seman-

tic correlation between diseases (diseases are organized hierarchical-

ly via MeSH descriptor), but the number of miRNAs having known

disease association is very limited. In order to use more available in-

formation source, Yu et al. (2011) proposed to convert GO informa-

tion from target genes into the functional similarity between

miRNAs. They provided a similarity matrix for 533 human

miRNAs, and performed clustering on the matrix. However, the

authors did not show how to apply the similarity scores to miRNA-

related prediction tasks and there was no large-scale experiment to

quantitatively evaluate the similarity scores. Besides, the coverage of

miRNAs is still low, considering the human genome may encode

over 1000 miRNAs (Bentwich et al., 2005; Griffiths-Jones et al.,

2006).

In this paper, we also propose a GO-based functional similarity

for miRNAs, called miRGOFS. Different from Yu et al. (2011)’s

method, miRGOFS is featured by a new GO semantic metric and a

new integration strategy for comparing the sets of GO terms. Using

miRGOFS, we compute pairwise similarities for a total of 1100

miRNAs, including all the human miRNAs which have predicted

targets in the microRNA.org target resource (Betel et al., 2007).

This is, as far as we know, the largest similarity matrix of human

miRNAs.

To verify the performance of miRGOFS, we apply it to two com-

putational tasks of miRNAs. One is the prediction of miRNA–dis-

ease associations, which has been a hot topic in miRNA research

(Chen and Zhang, 2013; Chen et al., 2016a,b, 2017a,b,c, 2018;

You et al., 2017; Zeng et al., 2016). The other is the identification

of miRNA subcellular locations, which has not been well studied in

computational biology. Similar to proteins, miRNAs should be

located in the right subcellular compartments to play their functions

(Lee et al., 2002; Leung and Sharp, 2006). Recent studies have

revealed the extremely abundant localization patterns of miRNAs:

the mature miRNAs can target to multiple cellular compartments in

cytoplasm, such as mitochondria, endoplasmic reticulum, RNA

granules, or be secreted out of cells via exosomes; and they can even

locate at nucleus and function in epigenetic regulation (Leung,

2015). Moreover, in the pharmaceutical industry, recent miRNA-

targeted therapeutics can not only interfere with the miRNA–target

interaction, but also modify the subcellular localization of miRNAs,

thus changing their roles in disease progression (Abba et al., 2017).

The localization information can provide important insights into

miRNAs functions. However, to our knowledge, there has been no

computational method for miRNA subcellular localization. It could

be due to the lack of information source. Most protein subcellular

localization methods utilize sequences and annotation data, like

gene ontology and function domain. By contrast, miRNAs have very

short sequences which have limited discriminative power, and their

functional annotation in public databases is also scarce. While the

prediction of protein subcellular localization benefits a lot from GO

information, whether the GO information of target genes provides a

hint for miRNA subcellular localization is unknown. In this study,

we assess the performance of GO-based functional similarity in the

prediction of miRNA subcellular localization. The proposed GO-

based similarity scores can serve as a basic feature in various predic-

tion tasks related to miRNA functions.

2 Related work

2.1 Semantic similarity between GO terms
GO describes gene attributes in standardized terms, and organizes

them in directed acyclic graphs (DAGs) including nodes (terms) and

relationships (edges). How to measure semantic correlations be-

tween terms has been a central problem in the information extrac-

tion of GO database (Couto et al., 2007; Lord et al., 2002; Xu et al.,

2013). In GO DAGs, the similarity of two GO terms relies not only

on the distance between them, i.e. length of the path connecting the

two nodes, but also on the location/depth of these two terms in the

DAG. With the same length of path from each other, a pair of GO

terms close to the root of the DAG would be less similar than a pair

of leaf nodes, because the lower level terms represent more specific

attributes, corresponding to higher information content (IC) (Resnik

et al., 1999), as defined in Eq. (1),

IC xð Þ ¼ �log p xð Þ ¼ �log
jGxj
jGrootj

� �
; (1)

where the probability of GO term x is computed according to a

gene–GO mapping file. Gx is the set of genes that are associated with

x, i.e. the genes annotated by x or the descendants of x, and Groot is

the set of genes that are associated with the root term, i.e. the total

number of genes that the DAG annotates. In GO DAGs, parent

nodes denote generalized concepts of their child nodes. Thus, for x,

the genes annotated by its descendants also associate with it. This is

the so-called ‘true path rule’. According to this rule, p(x) can be esti-

mated as,

p xð Þ ¼
X
t2Dx

p� tð Þ ¼
X
t2Dx

jG�t jP
t02N jG�t0j

; (2)

where Dx denotes the descendant set of x, p� xð Þ is the probability of

x annotating a gene or gene product. G�x is the set of genes that are

directly annotated by x (G�x � Gx), and N is the full set of nodes in

the DAG. For two query nodes, Resnik et al. (1999) selected the

maximum value among the ICs of lowest common ancestors (LCAs)

as the similarity of the query pair. Considering that the lengths of

paths from the two query nodes to their LCAs may differ,

3548 Y.Yang et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/34/20/3547/4989872 by N
ational Sun Yat-sen U

niversity library user on 11 D
ecem

ber 2019

Deleted Text: ; Esquelakerscher and Slack, 2006
Deleted Text: ,
Deleted Text: 4
Deleted Text: ; Agarwal <italic>et<?A3B2 show $146#?>al.</italic>, 2015
Deleted Text: ,
Deleted Text: ; Bleazard <italic>et<?A3B2 show $146#?>al.</italic>, 2015
Deleted Text: -
Deleted Text: 0b
Deleted Text: ; Bentwich <italic>et<?A3B2 show $146#?>al.</italic>, 2005
Deleted Text: 0b
Deleted Text: 8
Deleted Text: miRNA-disease
Deleted Text: ; You <italic>et<?A3B2 show $146#?>al.</italic>, 2017; Chen <italic>et<?A3B2 show $146#?>al.</italic>, 2017b, a, 2016b, 2017c, 2018, 2016a
Deleted Text: -
Deleted Text: are 
Deleted Text: Couto <italic>et<?A3B2 show $146#?>al.</italic>, 2007; 
Deleted Text: ,
Deleted Text: -
Deleted Text: ,
Deleted Text: ,


Lin (1998) proposed to divide the IC of LCA by the averaged IC of

the two query nodes.

Early studies on semantic metric between GO terms are mostly

based on information content, where an external data source record-

ing all the gene–GO associations is required. Most of the methods

treat GO DAGs as trees or consider only one LCA (with the max-

imum IC value) (Jiang and Conrath, 1997; Lin, 1998; Resnik et al.,

1999). Later, the structure-based methods have emerged (Wang

et al., 2007; Wu et al., 2005), which rely on structural information,

e.g. edges, of the DAGs. These methods addressed the multi-LCA

issue, but very few of them utilized the common descendant infor-

mation (Yang et al., 2012). In this study, we propose a new IC-

based method, which takes both common ancestors and descendants

into consideration.

2.2 GO-based similarity for miRNAs
As a gene product is generally annotated by multiple GO terms, the

functional similarity between two genes can be inferred by integrat-

ing GO term similarities from their GO sets (Pesquita et al., 2008;

Teng et al., 2013). Several methods have been proposed, such as

MAX, AVG, RCMAX and BMA (Supplementary Equations (S1))

(Yu et al., 2010). The BMA, i.e. best match average, is widely

accepted because of its excellent performance (Azuaje et al., 2005;

Schlicker et al., 2006).

Since miRNAs mainly play their functions via their target genes,

the functional similarity of miRNAs can be estimated by computing

the similarity between the two gene sets corresponding to the two

miRNAs. Especially, Yu et al. (2011) proposed to compute GO-

based similarity for miRNAs via two steps: (i) integrating GO se-

mantic similarities into the similarities between two target genes, (ii)

integrating target similarities into miRNA similarities, where both

steps adopted the BMA rule, and they suggested to use the GO se-

mantic similarity proposed by Wang et al. (2007), i.e. G-SESAME.

In this study, we also infer the functional similarity for miRNAs

based on the GO annotation of their target genes. However, our

method is more straightforward. By combining the GO sets of the

target genes into a whole set, each miRNA is associated with a GO

set with redundant terms. Then, we compute the similarity for each

pair of miRNAs by evaluating the similarity between their corre-

sponding GO sets. Especially, we assign a weight for each GO term

based on its statistical significance in the set, and also develop a new

integration rule of the GO semantic similarities.

3 Materials and methods

3.1 Datasets
3.1.1 MiRNAs and their target genes

A lot of public databases provide target information for miRNAs,

such as TarBase (Vlachos et al., 2015), TargetScan (Lewis et al.,

2003), PicTar (Krek et al., 2005), miRanda (John et al., 2004),

DIANA-microT-v4 (Reczko et al., 2012) and mirDB (Wong and

Wang, 2015). TarBase houses the experimentally validated miRNA-

gene interactions, while the others provide computational tools for

miRNA target prediction. In order to enable the analysis for large-

scale miRNA dataset, we download miRNA target information

from two databases, i.e. microRNA.org and mirDB, which adopt

miRanda and MirTarget V3 as the prediction tool, respectively. The

microRNA.org (released August, 2010) provides computationally

predicted targets with good mirSVR scores for both conserved and

non-conserved human miRNAs from www.microrna.org, including

1100 miRNAs (here the ‘good mirSVR score’ means the mirSVR

value is less than –0.1); while mirDB (Version 5.0 released August,

2014) covers even more miRNAs (2588 human miRNAs). Note that

these two databases have different settings of stringency for the pre-

dicted targets. Specifically, the average numbers of targets per

miRNA in microRNA.org and mirDB are 717 and 4016, respective-

ly, indicating that microRNA.org has a much looser confidence

threshold for the identification of targets.

3.1.2 The construction of benchmark set for miRNA subcellular

localization

We extract the subcellular locations of miRNAs from a comprehen-

sive RNA database, RNAlocate (Zhang et al., 2016), which covers

localization information of mRNAs, miRNAs, lncRNAs, etc. (http://

www.rna-society.org/rnalocate). It houses more than 37 700 manu-

ally curated RNA-associated subcellular localization entries with ex-

perimental evidence. In this study, we focus on the human miRNAs

due to their important roles in the development of complex diseases.

The construction of the benchmark dataset consists of three steps:

1. Download all 7449 human miRNA entries with curated subcel-

lular localization from the RNAlocate database, and merge

them into 1048 unique miRNAs, as multi-locational miRNAs

have multiples records in the database (We check aliases in

miRBase.org);

2. Remove miRNAs that are not covered in microRNA.org and

get 813 miRNAs, including 266 mono-locational ones and 547

multi-locational ones;

3. Further remove three locations, i.e. endoplasmic reticulum,

extracellular vesicle and nucleolus, because they have too few

samples.

Finally, we obtain a benchmark dataset of 813 miRNAs, covering 6

subcellular compartments, as shown in Table 1.

3.1.3 Benchmark datasets of miRNA–disease association

During the last decade, a lot of computational methods for the pre-

diction of miRNA–disease associations have been developed and

various public databases and benchmark datasets have merged, such

as HMDD (Li et al., 2013) and miR2Disease (Jiang et al., 2009),

which house the miRNA–disease associations reported in the exist-

ing literatures. In order to compare the proposed functional similar-

ity metric with other metrics, we select two widely used benchmark

sets, and name them as Data1 and Data2 as follows.

Data1 contains all the records in HMDD database (released on

September 2009) created by Wang et al. (2010), including 1616

miRNA–disease associations. In order to generate the MISIM

(miRNA similarity) scores, Wang et al. (2010) merged the

records with the same mature miRNAs (such as hsa-mir-376a-1

Table 1. Data distribution of the benchmark set of miRNA subcellu-

lar localization

Location # miRNA

Cytoplasm 206

Microvesicle 329

Mitochondrion 294

Nucleus 319

Circulating 419

Exosome 712

Total label # 2279

Total miRNA# 813

MiRGOFS 3549
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and hsa-mir-376a-2), then the set includes 1395 associations,

covering 271 miRNAs and 137 diseases. In this set, 267 miRNAs

have target information in microRNA.org. Thus, the final data-

set used in our experiment includes 1388 associations, 267

miRNAs and 137 diseases.

Data2 was initially collected from HMDD and miR2Disease by

Jiang et al. (2010), and contains 270 experimentally verified

microRNA–disease associations. Then, Chen and Zhang (2013)

used this dataset to validate their proposed methods, PBSI, MBSI

and NetCBI, which also rely on MISIM, and they removed 19

miRNAs that are not covered in MISIM, thus remaining 242

miRNA–disease associations, including 99 miRNAs and 51 dis-

eases. In order to compare our result with these three methods,

we adopt the reduced set (242 associations) in our experiments,

where all the miRNAs are covered in miRGOFS.

3.2 Methods
3.2.1 GO term similarity

As stated in Section 2.1, for IC-based methods, the closeness of a

pair of GO terms is normally measured by the IC of their lowest

common ancestors (LCAs). In this study, we take not only LCAs but

also HCDs (highest common descendants) into consideration, which

were often neglected in previous studies. The importance of descend-

ant information is illustrated in Figure 1. For the two pairs, (A1, A2)

and (B1, B2), the LCAs are their adjacent ancestor, E, but the local

structure below the two pairs are very different. Apparently, A1 and

A2 are more similar than B1 and B2.

According to the definition of LCA (Bender et al., 2005), if a

node is a common ancestor of x and y, and it is not an ancestor of

any other common ancestor of x and y, then the node belongs to the

LCA set. The HCD set can be defined analogously. For example, in

Supplementary Figure S1, GO: 0006119 is an HCD of GO:

0006091 and GO: 0016310, and GO: 000977 is also an HCD of

them although it is lower than GO: 0006119 in the DAG.

In order to utilize HCD information, we propose a new IC-based

metric as shown in Eq. (3). It has three terms, denoting the relative

distance from LCA to x, y and HCD, respectively,

Sim x; yð Þ ¼
IC Lx;y

� �
IC xð Þ þ

IC Lx;y

� �
IC yð Þ þ

IC Lx;y

� �
IC Hx;y

� � ; (3)

where Lx;y and Hx;y represent the LCA set and HCD set of (x, y), re-

spectively. Considering that GO terms are organized in DAGs in-

stead of trees, i.e. two terms may have more than one common

ancestors and descendants, here we consider all LCAs and HCDs.

Eq. (3) suggests that high IC(LCA) and low IC(HCD) lead to a high

pairwise similarity. This is consistent with the intuition that in order

to get a high similarity, the LCAs should be located as low as pos-

sible and HCDs should be located as high as possible to be close to

the query terms.

In order to use the new metric, we need to estimate the ICs first.

Although Section 2.1 gives the definition of IC, it is only applicable

to single nodes. The ICs for the sets of LCAs and HCDs should be

defined specifically. Instead of using common operations for set

computation, e.g. max, min, average, we introduce two special

rules, namely intersection (\) and union ([), to compute the proba-

bilities for the LCA set and HCD set, i.e.

p Lx;y

� �
¼ p

\
l2Lx;y

Dl

0
@

1
A ¼ X

t2CDLx;y

p� tð Þ; (4)

where Dl is the descendant set of l, and CDLx;y
denotes the set of

common descendants for the nodes in Lx;y,

p Hx;y

� �
¼ p

[
h2Hx;y

Dh

0
@

1
A ¼ X

t2DHx;y

p� tð Þ ¼
X

h2Hx;y

p hð Þ; (5)

where Dh is the descendant set of h. In Eq. (4), the intersection oper-

ation takes the common descendants of all LCAs; while in Eq. (5),

the union operation merges all the descendants of HCDs. Then the

probability of LCA/HCD set is converted to IC values by a negative

logarithm transformation.

It is straightforward to justify these two rules. Generally, for a

pair of GO terms, the more LCAs/HCDs they share, the more simi-

lar they are. According to the intersection rule, more LCAs will lead

to a smaller set with higher information content; while by using the

union rule, more HCDs lead to a larger set with lower information

content. And, high IC of LCAs and low IC of HCDs result in large

similarity score, as shown in Eq. (3).

To illustrate these two set operations, we extract a partial GO

DAG from GO database as shown in Supplementary Figure S1.

Take the pair of GO: 0006091 and GO: 0016310 as an example,

they are the LCAs for GO: 0042773 and GO: 0009777. The inter-

section set of their descendants includes GO: 0006119, GO:

0009777, descendants of GO: 0006119 and descendants of GO:

0009777, while the union set of their descendants consists of all

descendants of GO: 0006091 and GO: 0016310. Obviously, the inter-

section set of LCAs would never be empty, which at least contains the

query pair of nodes. However, two GO terms may have no HCD at all.

In such case, Eq. (3) will degenerate to the sum of the first two terms.

In addition, Eq. (3) only reflects the relative distances from LCAs

to the query nodes and from LCAs to HCDs. We should also con-

sider the depth of the query nodes. Thus the complete equation for

measuring GO semantic similarity is defined in Eq. (6),

Sim0 x; yð Þ ¼
IC Lx;y

� �
IC xð Þ þ

IC Lx;y

� �
IC yð Þ þ

IC Lx;y

� �
IC Hx;y

� �
 !

� IC xð Þ þ IC yð Þð Þ;

(6)

where Sim0 x; yð Þ denotes the final similarity score for (x, y).

3.2.2 Similarity between miRNAs

In order to compute functional similarities between miRNAs, we

need to find the target genes of miRNAs, and then map these target

genes into sets of GO terms. We directly merge all the GO terms of

target genes, and get a redundant GO set for each miRNA, i.e. some

GO terms may have multiple copies in the set. The common integra-

tion strategies described in Section 2.2 can certainly be applied to

such redundant set, by treating each copy of the GO terms as an in-

dividual member of the set. However, this simple treatment may

lose important statistical information. In order to reflect the statis-

tical significance of GO terms in the set, we define a weight for each

Fig. 1. An example of two pairs of nodes with the same ancestor but different

local structure of descendants
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GO term based on the cumulative hypergeometric distribution.

Specifically, suppose that there are N genes annotated by some GO

in the database, and M genes are annotated by the term x, while the

miRNA has n target genes, and k of them are annotated by x, i.e.

the term x occurs k times in the GO set corresponding to the

miRNA, then the weight of x, wx, is defined as,

wx ¼ �log p X � kð Þ ¼ �log 1�
Xk�1

i¼0

Ci
M � Cn�i

N�M

Cn
N

 !
; (7)

where Cn
N is the number of combinations of N items taken n at a

time.

Besides, in order to predict function-related properties for a

query gene, the biggest issue is to find the closest genes to it. Thus,

we only need to know the functional similarity scores between the

query gene and other known genes. Therefore, instead of generating

a symmetric similarity matrix, we develop a method based on

Euclidean distance to calculate the similarity scores between a query

miRNA and other miRNAs. By incorporating the aforedescribed

weights into the Euclidean distance equation, the similarity between

the query miRNA mq and a training miRNA mt is defined as,

Simmq ;mt
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

Sim ai;Bð Þ �wai
Þ2;

�s
(8)

where n is the number of non-redundant GO terms of mq, B is the

GO set of mt. We call the new integration rule WED, i.e. weighted

Euclidean distance.

The miRGOFS method is implemented in C# with the task paral-

lel library (TPL), which enables multiple threads to run in parallel.

And the source code is available at https://github.com/yangy09/

MiRGOFS.

3.2.3 Inference rule

For a query miRNA, its association with the labels, like diseases or

subcellular locations, can be inferred based on its similarities with

the miRNAs in the training set. Here, we adopt Eq. (9) (Zhou et al.,

2017) to infer the correlation between the query miRNA q and the

label d,

Corq;d ¼
P

j2INd
simq;j þ numd

numP
i2IN

simq;i þ 1
; (9)

where IN is the index set of all the nearest neighbors of the query

miRNA, INa
is the index set of the nearest neighbors which are asso-

ciated with d, numd is the number of miRNAs associated with d,

and num is the total number of miRNAs in the training set. This is a

modified version of commonly used correlation model, e.g. the

microRNA-based similarity inference (MBSI) model (Chen and

Zhang, 2013). We use only the training samples within the neigh-

borhood of the query miRNA, and add a Bayesian prior, which is

equal to the proportion of miRNAs associated with d in the whole

training set, because there may be no neighbor associated with d.

Given the correlation values, we use them to draw ROC curve

for performance evaluation in the prediction of miRNA–disease as-

sociation, which has a large number of labels (diseases); while for

miRNA subcellular localization, we treat it as a multi-label classifi-

cation problem, and convert the correlation values into feature vec-

tors as suggested in Zhou et al. (2017). Suppose there are a total of

k locations, we generate a k-Dim vector for each miRNA, where the

elements of the vector are the correlation values to the k locations

respectively. Since the three GO categories, BP, MF and CC, yield

different similarities for miRNAs, which may be complementary

with each other, we generate a k-Dim vector for each GO category

and combine them as a 3� kð Þ-Dim vector.

4 Experimental results

4.1 Performance of the new GO semantic metric
Since miRGOFS is featured by a new IC-based GO semantic metric,

we first evaluate the performance of the GO metric. Here, we

use a golden-standard dataset including 25 pairs of GO terms

(Supplementary Table S1). Their similarities were given by domain

experts (Li et al., 2006), i.e. averaged scores from ten biologists.

Note that the GO database updates constantly and some GO terms

in this set have been obsolete. For a fair comparison, we run our

method on the GO database and gene–GO mapping files released on

2005 as used in Li et al. (2006), and also implement Wang’s method

(Wang et al., 2007) on the same version. The similarity scores are

shown in Supplementary Table S1. The experts’ scores range from 0

(not similar) to 10 (synonymous). We compute Pearson’s correlation

coefficients (PCCs) between the experts’ scores and the computed

scores from the new metric and five other methods, as shown in

Table 2. Our method has the highest PCC among the six methods,

indicating that its scores are most consistent with the experts’

ratings. Compared with other IC-based methods, e.g. Resnik’s

and Lin’s, the new method has a significant improvement, which

demonstrates the effectiveness of the structural information from

descendants.

4.2 MiRNA subcellular localization
4.2.1 Experimental procedure and settings

The experimental procedure consists of the following steps:

1. Correlation scores calculation: using the miRNA pairwise

similarity and the labels from the training samples according to

Eq. (9);

2. Feature encoding: each miRNA is represented by an 18-D fea-

ture vector combining the correlation scores obtained from BP,

CC and MF DAGs;

3. 10-fold cross-validation: the classifiers are support vector

machines (SVMs) with RBF kernel.

Specifically, in order to search the parameters (C and c) for

SVMs, we perform a nested 5-fold cross-validation. We also repeat

the 10-fold cross-validation for 10 times, and get the averaged accu-

racies of the 100 tests.

4.2.2 Comparison of different strategies to generate miRNA

functional similarity

To our knowledge, there has been no predictor specialized for

miRNA localization. Moreover, the other methods for measuring

miRNA similarity cover a small proportion of the miRNAs in the

benchmark set, e.g. over 50% miRNAs are not covered in Yu’s

method. Therefore, here we compare 3 methods implemented by

Table 2. The Pearson’s correlation coefficients between expert’s

scores and computed scoresa

Method ZZL Resnik Lin COMBINE Wang New Metric

PCC 0.7144 0.8241 0.8496 0.8638 0.8257 0.8763

Note: The bold value is the maximum value of the row.
aPCCs of Resnik’s, Lin’s, ZZL’s and COMBINE methods were extracted

from Li et al. (2006). PCC of Wang’s method was computed in our experiments.
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ourselves, which adopt different GO similarity metric or combin-

ation rules. Details are given below.

• G-SESAME (BMA): the G-SESAME method for calculating GO

semantic similarity (Wang et al., 2007) with the best match aver-

age rule to combine the GO similarities.
• MiRGOFS (BMA): the proposed new GO semantic similarity

metric with the best match average rule to combine the GO

similarities.
• MiRGOFS (WED): the proposed new GO semantic similarity

metric with the weighted Euclidean distance rule to combine the

GO similarities.

All of these three methods utilize the same target genes and GO

annotation information, where the target genes are downloaded

from microrna.org and mirdb.org, and the GO annotation for

the target genes are from the NCBI gene2go database (released July,

2017) downloaded from ftp.ncbi.nlm.nih.gov.

Figure 2 shows the F1 scores of the three methods on each of the

6 subcellular locations. As can be seen, miRGOFS(WED) performs

the best and miRGOFS(BMA) ranks the second on all 6 locations.

Especially, for cytoplasm and mitochondrion, which have the fewest

training samples, miRGOFS(WED) improves the F1 over 5% com-

pared with G-SESAME(BMA). Apparently, using the same combin-

ation rule, the proposed GO semantic is superior to the G-SESAME

method with an increase of 1.5–5% on F1; while using the same GO

semantic similarity, the proposed weighted Euclidean distance

(WED), is better than the best match average (BMA), and generally

increases F1 by over 1%.

As an overall evaluation, Table 3 shows the averaged ACC, F1

and AUC for 10 times of 10-fold cross-validation (Results for each

10-fold cross-validation are shown in Supplementary Fig. S2), where

the ACC and F1 are customized for multi-label classification

(Briesemeister et al., 2010), as the prediction task is a typical multi-

label classification problem (see Supplementary Equations S4–S8).

We can observe that:

i. Both the two miRGOFS methods have obvious advantages over

G-SESAME(BMA), based on either target source. Driven by the

new GO metric, miRGOFS(BMA) increases AUC by 3.4%

compared against G-SESAME(BMA) using the targets from

microRNA.org;

ii. Compared to the commonly used BMA integration rule, the

WED strategy can further improve the performance. Generally,

the ACC and AUC increase by around 1%, while the increase

for F1 is not significant;

iii. The mirDB target source leads to better performance for all the

methods compared to microRNA.org/miRanda. Especially, the

graph-based method benefits a lot from the high-quality targets.

In order to further investigate the significance of the achieved pre-

dictive performance, we design two randomized predictors, using dif-

ferent label shuffling strategies. Let L be an (m� 6)-D label matrix,

where m is the number of training miRNAs and 6 is the total number

of different subcellular compartments. Li;j is a boolean value, indicating

whether or not the ith miRNA has the jth label. In the first randomized

predictor, we shuffle the order of rows, i.e. the correspondence between

miRNAs and their label sets is shuffled; while in the second randomized

predictor, we shuffle the elements respectively for each column.

Apparently, in either case, the numbers of labels and label distributions

are the same as the original dataset. With the same feature vectors gen-

erated by miRGOFS (WED), the accuracies obtained by randomized

predictors are 6–12% lower than the predictor using right labels. The

first randomized predictor is slightly better than the second one, be-

cause the original combinations of labels remain unchanged in the first

one but are totally changed in the second one. The great gap between

original predictor and randomized predictors demonstrates the strong

association between GO information and miRNA subcellular localiza-

tion. Note that the performance of randomized predictors is actually

not too bad, because many miRNAs have overlapped labels, and there

are hidden correlations between the subcellular compartments.

These experimental results demonstrate the potential of predict-

ing miRNA subcellular locations by using GO information from tar-

get genes, and the effectiveness of miRGOFS-driven features in

designing computational predictors.

4.3 Prediction of miRNA–disease associations
For the past decade, a lot of computational methods for identifying

miRNA–disease association have been proposed, we compare the

performance of miRGOFS against 9 state-of-the-art methods using

two datasets, Data1 and Data2, as described in Section 3.1.3. Most

of the current predictors for miRNA–disease association rely on

both miRNA–miRNA functional similarity and disease-disease se-

mantic similarity, while we only use the miRNA–miRNA functional

similarity and treat each disease as a separate label, as we mainly

focus on developing new functional similarity metric for miRNAs.

For Yu’s method, we download its similarity matrix (Yu et al.,

2011) and use the same inference procedure as in miRGOFS. There

are three major differences between these two methods:

1. Yu et al. adopted the algorithm of PITA (Probability of Interaction

by Target Accessibility) (Kertesz et al., 2007) to predict target

genes, while miRGOFS uses the miRanda algorithm from the

microRNA.org resource (Betel et al., 2007; John et al., 2004);

2. Yu et al. adopted BMA twice for integrating GO similarity

scores, while miRGOFS uses the combined GO set and WED

method described in Section 3.2.2;

3. Yu et al. used the GO similarity metric proposed by Wang et al.

(2007), while miRGOFS used the new IC-based metric.

Note that Yu’s similarity matrix misses 37 and 11 miRNAs in Data1

and Data2, respectively, thus here we only compare with Yu’s

method on Data2. The AUC values of ROC curves are used as the

evaluation criterion, as shown in Table 4.

Table 4 shows not only the AUC values, but also the prior know-

ledge that is used to infer the functional similarities of miRNAs.

Most of the methods utilize MISIM and obtain fairly well prediction

results. MISIM was generated by Wang et al. (2010) based on

HMDD V1, which covers 1395 miRNA–disease associations, i.e.

Fig. 2. F1 scores of different types of miRNA functional similarity on 6

locations
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the Data1. It contains pairwise functional similarities for 271

miRNAs according to the miRNA–disease associations and semantic

correlation of diseases, and has been used as a standard similarity

metric and basic information source in many miRNA–disease asso-

ciation studies. By contrast, Jiang’s, Yu’s and miRGOFS use prior

knowledge which is completely independent with the miRNA–dis-

ease relationship. Jiang et al. (2010) constructed a functionally

related miRNA network based on the predicted targets by PITA

(Kertesz et al., 2007) and TargetScan (Lewis et al., 2003), where a

pair of miRNAs are connected if they share a significant number of

targets. Yu’s method and miRGOFS use the target information and

target’s GO annotation, which are easy to access. Interestingly, the

GO-based methods achieve competitive and even better results than

the MISIM-based methods. Especially, on Data1, miRGOFS’s AUC

value is 1.5% higher than the best AUC of other methods; while on

Data2, miRGOFS is slightly better than NetCBI, which uses both

miRNA–miRNA functional similarity network and disease-disease

semantic similarity network. PBSI only uses the semantic similarity

scores between disease phenotypes, and gets the worst accuracy.

The reasons for the advantage of miRGOFS over MISIM-based

methods are manifold. First, the GO annotation of target genes can

well represent miRNAs’ functional features, and serve as a good

knowledge source for predicting miRNA–disease associations.

Second, although MISIM is built on a known miRNA–disease net-

work, this network contains a lot of missing and error edges, which

may influence the calculation of miRNA similarity. Third, our infer-

ence rule also contributes to the performance enhancement.

Especially, in order to assess the impact of neighbors and the prior

term in Eq. (9), we record the AUC values obtained with 5, 10, 15,

20, 25, 30, 35, 40, 45 and 50 neighbors, respectively, and compare

the three methods introduced in Section 4.2.2, i.e. G-SESAME

(BMA), MiRGOFS (BMA), MiRGOFS (WED). The results

(Supplementary Fig. S3) show that MiRGOFS (WED) performs the

best no matter how many nearest neighbors are considered.

Furthermore, the smoothing technique plays a crucial role when the

number of neighbors is small, and its contribution to AUC value

becomes stable as the number of neighbors increases. Generally, the

smoothing technique brings 1–3% improvement on the two datasets.

The results are as expected, i.e. the adjustment by using Bayesian prior

is much more necessary when the sample set is sparse. As for the pre-

diction of miRNA–disease association, the label set is large compared

with the sample size, thus the data is very sparse, especially in a small

neighborhood. By contrast, in the prediction of protein subcellular lo-

calization, we only have 6 labels and the data distribution is relatively

balanced, thus the effect of smoothing technique is trivial.

4.4 Comparison with other GO-based miRNA

similarities
The comparison with other GO-based miRNA similarities could be

either conducted on the existing miRNA similarity matrices, or the

generated miRNA similarity by integrating GO similarities provided

by other studies. However, there are two major obstacles for the

comparison:

1. The existing miRNA similarity matrices generally have a small

coverage of miRNAs. For instance, Yu et al. (2011)’s study cov-

ers 533 human miRNAs, and Lan et al. (2016)’s study covers

289 miRNAs. Thus, as for the subcellular localization dataset,

none of the released miRNA similarity scores could be compared

due to the large missing ratio.

2. The current tools for computing GO semantic similarity [e.g. the

GOSemSim package (Yu et al., 2010)], as designed for handling

Table 3. Comparison of different types of miRNA functional similaritya,b

Metric Target source Method comparison Shuffled label

G-SESAME(BMA) miRGOFS(BMA) miRGOFS(WED) miRGOFS_Rand1 miRGOFS_Rand2

ACC miRanda 0.44260.029 � 0.46160.032� 0.47160.028 0.41560.034� 0.39960.027�
mirDB 0.46460.030 � 0.47260.037� 0.48160.036 0.40360.027� 0.39960.027�

F1 miRanda 0.56860.035 � 0.59360.035� 0.59760.033 0.53660.036� 0.52960.027�
mirDB 0.61260.033 � 0.61260.040� 0.61260.041 0.52660.028� 0.53260.027�

AUC miRanda 0.55760.035 � 0.59160.038� 0.60260.039 0.49660.024� 0.49660.032�
mirDB 0.60060.035 � 0.60560.039� 0.62260.035 0.50160.032� 0.50360.032�

Note: The significance of bold is the maximum value of each row.
a�/� indicates the performance difference between the method and miRGOFS (WED) is/is not statistically significant according to pairwise t-test at 95% signifi-

cance level.
bmiRGOFS_Rand1 and miRGOFS_Rand2 denote the first randomized predictor (shuffling rows in the label matrix) and the second randomized predictor

(shuffling elements of each column in the label matrix) using the feature vectors generated by miRGOFS(WED), respectively.

Table 4. Comparison of disease-related miRNA prediction

methodsa,b

Data Method Prior Knowledge AUC

Data1 RWRMDA MISIM 0.862

RLSMDA MISIM, MeSHc 0.845

HDd MISIM 0.778

miRGOFS Target, GO 0.877

Data2 Yu’s Target, GO 0.762

Jiang’s Target 0.758

NetCBI MISIM, MimMinere 0.807

MBSI MISIM 0.748

PBSI MimMinere 0.542

MiRGOFS Target, GO 0.811

Note: The two bold numbers are the maximum values of the last column

for Data1 and Data2, respectively.
aAUCs of RWRMDA and HD are from Chen et al. (2012), AUC of

RLSMDA is from RLSMDA (Chen and Yan, 2015), AUC of Jiang’s method

is from Jiang et al. (2010) and AUCs of NetCBI, MBSI and PBSI are from

Chen and Zhang (2013).
bAll of the AUC values are evaluated via the leave-one-out cross-validation,

where Jiang’s method and PBSI take each association as the test sample while

other methods take a miRNA as the test sample.
cThe relationship between diseases are from MeSH database.
dHD: a hypergeometric distribution-based method (Jiang et al., 2010), and

Chen et al. (2012) implemented this method by using MISIM in their paper.
eThe disease phenotype similarity scores are from MimMiner (Van Driel

et al., 2006).
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single GO pairs or two small GO sets, work inefficiently for

computing the pairwise similarities between miRNAs which

often correspond to very large GO sets.

Here we compare miRGOFS with the miRNA similarities

yielded by the R package GOSemSim using various IC-based and

graph-based algorithms for the prediction of miRNA–disease associ-

ation (this task has small datasets, thus allows the comparison with

other tools). The results are shown in Table 5. For Data I,

miRGOFS has the highest AUC, and the graph-based method

(Wang’s) is better than the IC-based methods in GOSemSim; while

for Data II, all the methods obtain very close performance. The

most significant advantage of the new method is the computation ef-

ficiency. For each pair of miRNAs, miRGOFS is thousands of times

faster than the methods implemented in GOSemSim.

5 Discussion

5.1 The data source of GO
In this paper, we infer functional similarity between miRNAs based

on GO features. The gene ontology database consists of three separ-

ate hierarchies, BP, MF and CC, which yield different functional

similarities for each pair of miRNAs. Especially, the Cellular

Component (CC) terms directly represent the subcellular localiza-

tion of genes, thus they contribute most in the protein subcellular

localization. For miRNA subcellular localization, in previous experi-

ments, we report the results using the combined feature vectors, i.e.

the 18-D feature vectors. We also assess the prediction performance

using the 6-D feature vectors generated from BP, CC and MF, re-

spectively (shown in Supplementary Table S2). We find that combin-

ing the features extracted from the three DAGs successfully improve

the accuracies. BP and MF have close performance, while CC has no

superiority over other two categories in the prediction of miRNA

subcellular localization. It may be due to two reasons: (i) the CC

terms represent the cellular localization of target genes rather than

that of miRNAs; (ii) the size of CC DAG is smaller and the CC an-

notation is relatively sparse compared with BP and MF. Thus, it is

not capable to provide sufficient information in the prediction. In

the prediction of miRNA–disease associations, since the computed

miRNA–disease correlation scores directly yield the AUC value, the

similarities obtained by three DAGs are not combined. BP and MF

also have close performance, and CC performs the worst.

Furthermore, we investigate the enriched GO terms in the associ-

ated GO sets of miRNAs. As mentioned in Section 2.2, for each

miRNA, we combine the GO sets of all its target genes and get a re-

dundant GO set associated with miRNA. Apparently, the combined

GO set has a large size. On the one hand, as the GO database keeps

expanding, both the coverage of annotated genes and the numbers

of GO terms increase rapidly; on the other hand, each miRNA has a

lot of target genes as we use the computationally predicted targets.

Specifically, in this study, the gene ontology database (go-basic.obo,

release 08/20/2016) contains 45 217 GO terms, the miRNAs have

over 2000 target genes and over 7000 non-redundant GO terms on

average, which leads to a high computational cost in the computa-

tion of miRNA pair-wise similarities. Actually, many of the com-

puted targets are not real targets of the miRNAs and most of the

GO terms in the collection may be useless. Therefore, we only use

significant GO terms (P-value < 0.05) in the experiments, but we

also compare against the performance of using all GO terms. Take

the MF DAG as an example, the enriched GO terms account for

	30% on average of all the GO terms (456/1545), while their accu-

racies are very close. Therefore, the screening of GO terms improves

the computation efficiency significantly.

5.2 The data source of targets
In Section 3.1.1, we introduce the two target sources used in this

study, i.e. microRNA.org and mirDB. Different settings on the strin-

gency lead to different target genes. A loose setting may result in too

many false positive targets, while a stringent criterion may lead to the

lack of GO annotations and low coverage of miRNAs.

MicroRNA.org set a quite loose threshold of the evidence value for

target prediction, thus all the 1100 miRNAs have corresponding GO

terms. Despite the large number of target genes and numerous GO

terms, we only focus on the statistically significant GO terms, so the

false targets have a small impact on the calculation of similarity. By

contrast, mirDB adopts a relatively stringent setting for predicted tar-

gets. According to the experimental results (Table 3), mirDB leads to

an enhanced performance. However, the much reduced number of

target genes may result in sparse GO annotations for miRNAs. For in-

stance, in the similarity matrix generated by using mirDB, hsa-miR-

126-3p and hsa-miR-1307-3p have no GO term from the MF cat-

egory, and hsa-miR-1469 has no GO term from the BP category.

6 Conclusion

Domain knowledge-based functional similarities of miRNAs can

help improve the analysis quality of miRNA high-throughput ex-

pression data, and predict unknown functional properties of

miRNAs as well as miRNA–disease associations. However, due to

the lack of functional annotation of miRNAs in public databases, it

is not straightforward to utilize current knowledge sources, like

gene ontology, to infer miRNA functional similarity. In this paper,

we propose a new method, called miRGOFS to convert GO infor-

mation annotated for the target genes of miRNAs, to infer miRNA

functional similarity. The new method consists of two major compo-

nents, the calculation of GO semantic similarity and the integration

of GO set similarity. Each of them is implemented with a newly pro-

posed algorithm, namely the IC-based semantic metric and the

weighted Euclidean distance based integration rule (WED). The ad-

vantage of the new GO metric lies in a comprehensive utilization of

all common ancestors and descendants of GO terms, while the WED

algorithm assigns weights to GO terms and computes the similarity

between GO sets in an asymmetric manner, which allows us to focus

on the similarities between the query miRNA and other known

miRNAs. Supported by these two new algorithms, miRGOFS has

Table 5. Comparison of different types of miRNA functional

similaritya

Method AUC CPU time/pair

(seconds)b

Data I Data II

Resnik 0.860 0.805 7.3

Lin 0.859 0.800 7.4

Jiang 0.860 0.807 7.3

Rel 0.858 0.812 8.9

Wang 0.868 0.804 47.4

miRGOFS 0.877 0.811 0.005

Note: The significance of bold is the maximum value of each column.
aFor all the methods, the targets are from mirDB, and the GO semantic

similarities are computed based on MF terms.
bThe average CPU time (seconds) for computing the similarity for a pair of

miRNAs.
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shown promising performance for the prediction of miRNA subcel-

lular localization and miRNA–disease associations. Featured by suf-

ficient coverage of human miRNAs and ease of getting the

supporting knowledge source (target genes can be computationally

identified and their GO terms are available on GO database),

miRGOFS would have wide applicability in miRNA functional

analysis.
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