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We give an O(n log n)-time, O(n)-space algorithm for factoring a string into the minimum 
number of palindromic substrings. That is, given a string S[1..n], in O(n log n) time our 
algorithm returns the minimum number of palindromes S1, . . . , S� such that S = S1 · · · S�. 
We also show that the time complexity is O(n) on average and Ω(n log n) in the worst 
case. The last result is based on a characterization of the palindromic structure of Zimin 
words.

© 2014 Published by Elsevier B.V.

1. Introduction

Palindromic substrings are a well-studied topic in stringology and combinatorics on words. Since a single character is a 
palindrome, there are always between n and 

(n
2

)+n = Θ(n2) non-empty palindromic substrings in a string of length n. There 
are only 2n − 1 possible centers of those substrings, however – i.e., the n individual characters and the n − 1 gaps between 
them – so many algorithms involving palindromic substrings still run in subquadratic time. For example, Manacher [13]
gave a linear-time algorithm for listing all the palindromic prefixes of a string. Apostolico, Breslauer and Galil [3] observed 
that Manacher’s algorithm can be used to list in linear time all maximal palindromic substrings, which are those that 
cannot be extended without changing the position of the center. Other linear-time algorithms for this problem were given 
by Jeuring [10] and Gusfield [8]. Since any palindromic substring is contained within the maximal palindromic substring 
with the same center, the list of all maximal palindromic substrings can be viewed as a linear-space representation of all 
palindromic substrings. For more discussion of algorithms involving palindromes, we refer the reader to Jeuring’s recent 
survey [11].

Palindromes are a useful tool for investigating string complexity; see, e.g., [2]. A natural measure of the asymmetry of 
a string S is its palindromic length PL(S), which is the minimum number of palindromic substrings into which S can 
be factored. That is, PL(S) is the minimum number � such that there exist palindromes S1, . . . , S� whose concatenation 
S1 · · · S� = S . For example, PL(abaab) = 2 and PL(abaca) = 3. Notice that, since a single character is a palindrome, PL(S) is 
always well-defined and lies between 0 and |S|, or 1 and |S| if S is non-empty. In fact, PL(S[1..i]) − 1 ≤ PL(S[1..i + 1]) ≤
PL(S[1..i]) + 1 for i < |S|: first, if S1, . . . , S�−1, S[h..i + 1] is a factorization of S[1..i + 1] into � palindromic substrings, 
then S1, . . . , S�−1, S[h], S[h + 1..i] is a factorization of S[1..i] into � + 1 palindromic substrings; second, if S1, . . . , S� is a 
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Algorithm Palindromic-length(S[1..n])
1: PL[0] ← 0
2: P ← ∅
3: for j ← 1 to n do
4: P ′ ← ∅
5: foreach i ∈ P do
6: if i > 1 and S[i − 1] = S[ j] then
7: P ′ ← P ′ ∪ {i − 1}
8: if j > 1 and S[ j − 1] = S[ j] then
9: P ′ ← P ′ ∪ { j − 1}

10: P ← P ′ ∪ { j}
11: PL[ j] ← j
12: foreach i ∈ P do
13: PL[ j] ← min(PL[ j],PL[i − 1] + 1)

14: return PL[n]

Fig. 1. A simple quadratic-time algorithm for computing the palindromic length. Every iteration of the for loop in line 3 starts with P = P j−1 and ends 
with P = P j .

factorization of S[1..i] into � palindromic substrings, then S1, . . . , S�, S[i + 1] is a factorization of S[1..i + 1] into � + 1
palindromic substrings.

We became interested in palindromic length because of a recent conjecture by Frid, Puzynina and Zamboni [7]. Some 
infinite strings (e.g., the regular paperfolding sequence) are highly asymmetric in that they contain only a finite number of 
distinct palindromic substrings; see [6] for more discussion. For such strings, the palindromic length of any finite substring 
is proportional to that substring’s length. In contrast, for other infinite strings (e.g., the infinite power of any palindrome), 
the palindromic length of any finite substring is bounded. Frid et al. conjectured that all such infinite strings are (ultimately) 
periodic.

It is easy to compute PL(S) in quadratic time via dynamic programming. Alatabbi, Iliopoulos and Rahman [1] recently 
gave a linear-time algorithm for computing a minimum factorization of S into maximal palindromic substrings, when such 
a factorization exists; it does not exist for, e.g., abaca. Even when such a factorization exists, it may consist of more than 
PL(S) substrings; e.g., abbaabaabbba can be factored into abba, aba and abbba but cannot be factored into fewer than four 
maximal palindromic substrings.

In this paper, we give an O(n log n)-time and O(n)-space algorithm for factoring S into PL(S) palindromic substrings. 
The average case time complexity is in fact linear, but the worst case is Θ(n log n), which we show by an analysis of the 
palindromic structure of Zimin words [4, Chapter 5.4].

Independently of us, I, Sugimoto, Inenaga, Bannai and Takeda [9] discovered essentially the same algorithm. Also, 
Kosolobov, Rubinchik and Shur [12] have recently described an algorithm recognizing strings with a given palindromic 
length. Their result can be used for computing the palindromic length of a string S in O(|S| · PL(S)) time.1

2. A simple quadratic algorithm

We start by describing a simple algorithm for computing PL(S) in O(n2) time and O(n) space using the observation 
that, for 1 ≤ j ≤ n,

PL
(

S[1.. j]) = min
i

{
PL

(
S[1..i − 1]) + 1 : i ≤ j, S[i.. j] is a palindrome

}
.

We compute and store an array PL[0..n], where PL[0] = 0 and PL[i] = PL(S[1..i]) for i ≥ 1. At each step j, we compute 
the set P j of the starting positions of all palindromes ending at j from the set P j−1 using the observation that S[i.. j], 
i + 1 ≤ j − 1, is a palindrome if and only if S[i + 1.. j − 1] is a palindrome and S[i] = S[ j]. The algorithm is given in Fig. 1.

The space requirement is clearly O(n). During the jth step of the algorithm, we use time O(|P j | + |P j−1|), so for all the 
steps we use total time proportional to the number of palindromic substrings in S . For most strings the time is linear (see 
Theorem 11) but the worst case is quadratic, e.g., for S = an or S = (ab)n/2.

It is straightforward to modify the algorithm so that it produces an actual minimum palindromic factorization of S , 
without increasing the running time or space by more than a constant factor.

3. Faster computation of palindromes

In this section, we replace the representation P j of the palindromes ending at j with a more compact representation 
G j that needs only O(log j) space and can be computed in O(log j) time from G j−1. The representation is based on 
combinatorial properties of palindromes.

A string y is a border of a string x if y is both a prefix of x and a suffix of x, and a proper border if y 
= x. The following 
easy lemmas establish a connection between borders and palindromes.

1 Editors’ note: we are satisfied that the results of this paper, and those of [9] and [12], have all been achieved independently.
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Fig. 2. Setting in Lemma 4.

Fig. 3. Proof of Lemma 4(2): if |u| > |v| and |u| ≤ |z| then w is a palindromic proper suffix of x longer than y.

Lemma 1. (See [5].) Let y be a suffix of a palindrome x. Then y is a border of x iff y is a palindrome.

Lemma 2. (See [5].) Let x be a string with a border y such that |x| ≤ 2|y|. Then x is a palindrome iff y is a palindrome.

A positive integer p ≤ |x| is a period of a string x if there exists a string w of length p such that x is a factor of w∞ . It is 
well known that y is a proper border of x if and only if |x| − |y| is a period of x. This, together with Lemma 1, implies the 
following connection between periods and palindromes.

Lemma 3. Let y be a proper suffix of a palindrome x. Then |x| − |y| is a period of x iff y is a palindrome. In particular, |x| − |y| is the 
smallest period of x iff y is the longest palindromic proper suffix of x.

Now we are ready to state and prove the key combinatorial property of palindromic suffixes.

Lemma 4. Let x be a palindrome, y the longest palindromic proper suffix of x and z the longest palindromic proper suffix of y. Let u
and v be strings such that x = uy and y = vz. Then

(1) |u| ≥ |v|;
(2) if |u| > |v| then |u| > |z|;
(3) if |u| = |v| then u = v.

Proof. See Fig. 2 for an illustration.
(1) By Lemma 3, |u| = |x| − |y| is the smallest period of x, and |v| = |y| − |z| is the smallest period of y. Since y is a 

factor of x, either |u| > |y| > |v| or |u| is a period of y too, and thus it cannot be smaller than |v|.
(2) By Lemma 1, y is a border of x and thus v is a prefix of x. Let w be a string such that x = v w . Then z is a border 

of w and |w| = |zu|, see Fig. 3. Since we assume |u| > |v|, we must have |w| > |y|. Suppose to the contrary that |u| ≤ |z|. 
Then |w| = |zu| ≤ 2|z|, and by Lemma 2, w is a palindrome. But this contradicts y being the longest palindromic proper 
suffix of x.

(3) In the proof of (2) we saw that v is a prefix of x, and so is u by definition. Thus u = v if |u| = |v|. �
We will use the above lemma to establish the properties of the set P j . Let P j = {p1, p2, . . . , pm} with p1 < p2 < . . . < pm . 

By gap we mean the difference pi − pi−1 of two consecutive values in P j . The following result has been proven in [14] but 
we provide a proof for completeness.

Lemma 5. The sequence of gaps in P j is non-increasing and there are at most O(log j) distinct gaps.

Proof. For any i ∈ [2..m − 1], if we let x = S[pi−1.. j], y = S[pi .. j] and z = S[pi+1.. j], we have the situation of Lemma 4
with gaps of |u| and |v|. The sequence of gaps is non-increasing by Lemma 4(1). If we have a change of gap, i.e., |u| > |v|, 
we must have |x| > |u| + |z| > 2|z| by Lemma 4(2), i.e., the length of the palindromic suffix is halved in two steps. This 
cannot happen more than O(log j) times. �

We will partition the set P j by the gaps into O(log j) consecutive subsets, each of which can be represented in constant 
space since it forms an arithmetic progression. For any positive integer Δ, we define P j,Δ = {pi : 1 < i ≤ m, pi − pi−1 = Δ}, 
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Fig. 4. (a) The palindromic suffixes of S[1.. j − 1] for j = 17 start at positions P j−1 = {2, 6, 10, 14, 15, 16} and the compact representation is G j−1 =
((2, ∞, 1), (6, 4, 3), (15, 1, 2)). The shaded symbols will be compared with the next symbol appended to the text. (b) The palindromic suffixes after ap-
pending S[ j]. The sequence G ′

j is obtained by taking each triple (i, Δ, k) ∈ G j−1 and either removing it or replacing it with (i − 1, Δ, k). The resulting 
sequence G ′

j = ((5, 4, 3)), however, is no longer a valid gap partitioning because the gap of the first element encoded by triple (5, 4, 3) is ∞. This is fixed 
by separating this element into its own triple. At this point we also add the palindromes of length at most 2 to obtain G ′′

j = ((5, ∞, 1), (9, 4, 2), (17, 4, 1)). 
Finally, we merge neighboring triples with the same Δ to obtain G j = ((5, ∞, 1), (9, 4, 3)).

and P j,∞ = {p1}. Each non-empty P j,Δ is represented by the triple (min P j,Δ, Δ, |P j,Δ|). Let G j be the list of such triples 
in decreasing order of Δ.

The list G j is a full representation of P j of size O(log j). We will show that G j can be computed from G j−1 in O(|G j−1|)
time. In the quadratic-time algorithm, each element i of P j−1 was either eliminated or replaced by i −1 in P j . The following 
lemma shows that the decision to eliminate or replace can be made simultaneously for all elements of a partition P j−1,Δ . 
See Fig. 4a for an example.

Lemma 6. Let pi and pi+1 be two consecutive elements of P j−1,Δ . Then pi − 1 ∈ P j iff pi+1 − 1 ∈ P j .

Proof. By definition, pi+1 − pi = Δ, and the predecessor of pi in P j is pi−1 = pi − Δ. Using the definitions from the proof 
of Lemma 5, we have the situation of Lemma 4(3), which implies that S[pi − 1] = S[pi+1 − 1] = c. Thus, pi − 1 ∈ P j iff 
S[ j] = c iff pi+1 − 1 ∈ P j . �

Thus, when computing G j , each triple (i, Δ, k) ∈ G j−1 will be either eliminated or replaced by (i − 1, Δ, k). The resulting 
sequence of triples is

G ′
j = {

(i − 1,Δ,k) : (i,Δ,k) ∈ G j−1, i > 1, and S[i − 1] = S[ j]},
which is a full representation of all palindromes longer than two in P j .

However, the triples in G ′
j may no longer perfectly correspond to the partitions P j,Δ because the gaps may have changed. 

Specifically, if the smallest element pi in P j−1,Δ is replaced by pi −1 but its predecessor pi−1 = pi −Δ in P j−1 is eliminated, 
then pi − 1 is not in P j,Δ but it is, at this point, represented by the triple (pi − 1, Δ, k). Note that only the smallest element 
of each partition can be affected by this. In such cases, we separate the first element into its own triple, i.e., we replace 
(pi − 1, Δ, k) with (pi − 1, Δ′, 1) and (if k > 1) (pi − 1 + Δ, Δ, k − 1), where Δ′ is the new gap preceding pi − 1 in P j . 
We will also add separate triples to represent palindromes of lengths one and (possibly) two.

Let G ′′
j be the sequence of triples obtained from G ′

j by the above process (see lines 8–21 in Fig. 8). It represents exactly 
the palindromes in P j and the Δ-values are now correct, but there may be multiple triples with the same Δ. Thus we 
obtain the final sequence G j from G ′′

j by merging triples with the same Δ.
The full procedure for computing G j from G j−1 is shown on lines 4–30 in Fig. 8 and the example of computation is 

given in Fig. 4b. Each triple is processed in constant time and the number of triples never exceeds O(|G j−1|).

Lemma 7. G j can be computed from G j−1 in O(|G j−1|) =O(log j) time.
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Fig. 5. Proof of Lemma 8. (a) � ∈ P j iff � − Δ ∈ P j−Δ for all � ∈ [i.. j]. (b) If i − 2Δ ∈ P j−Δ then S[i − 2Δ.. j] is a palindrome.

4. Faster factorization

In this section, we will show how to compute PL[ j] from PL[0.. j − 1] and G j in O(|G j |) time. The key to fast compu-
tation of G j was the close relation between P j,Δ and P j−1,Δ . Now we will rely on the relation between P j,Δ and P j−Δ,Δ

captured by the following result.

Lemma 8. If (i, Δ, k) ∈ G j for k ≥ 2, then (i, Δ, k − 1) ∈ G j−Δ .

Proof. By definition, (i, Δ, k) ∈ G j is equivalent to saying that P j,Δ = {i, i + Δ, . . . , i + (k − 1)Δ}, and we need to show that 
P j−Δ,Δ = {i, i + Δ, . . . , i + (k − 2)Δ}. We will show first that P j−Δ,Δ ∩ [i − Δ + 1.. j − Δ] = {i, i + Δ, . . . , i + (k − 2)Δ} and 
then that P j−Δ,Δ ∩ [1..i − Δ] = ∅.

Since y = S[i.. j] and x = S[i −Δ.. j] are palindromes and y is the longest proper border of x, S[i −Δ.. j −Δ] = y = S[i.. j]. 
Thus for all � ∈ [i.. j], � ∈ P j iff � − Δ ∈ P j−Δ (see Fig. 5a). In particular, the gaps in both cases are the same and for all 
� ∈ [i + 1.. j], � ∈ P j,Δ iff � − Δ ∈ P j−Δ,Δ . Thus P j−Δ,Δ ∩ [i − Δ + 1.. j − Δ] = {i, i + Δ, . . . , i + (k − 2)Δ}.

We still need to show that P j−Δ,Δ ∩ [1..i − Δ] = ∅, which is true if and only if i − 2Δ /∈ P j−Δ . Suppose to the contrary 
that S[i − 2Δ.. j − Δ] is a palindrome and let w = S[i − 2Δ..i − Δ − 1]. Then S[ j − 2Δ + 1.. j − Δ] = w R , the reverse of w . 
Since z = S[i − Δ.. j − Δ] and S[i − Δ.. j] are palindromes too, we have that S[i − Δ..i − 1] = w and S[ j − Δ + 1.. j] = w R . 
Finally, since z is a palindrome, S[i − 2Δ.. j] = wzw R is a palindrome (see Fig. 5b). This implies that i − 2Δ ∈ P j and thus 
i − Δ ∈ P j,Δ , which is a contradiction. �

By the above lemma, P j,Δ = P j−Δ,Δ ∪{max P j,Δ} whenever |P j,Δ| ≥ 2. Thus we can compute PL j,Δ = min{PL[i − 1] + 1 :
i ∈ P j,Δ} from PL j−Δ,Δ in constant time. We will store the value PL j,Δ in an array GPL[1..n] at the position 
m = min P j,Δ − Δ. Note that m is the predecessor of min P j,Δ in P j and the position is shared by PL j−Δ,Δ (when 
|P j,Δ| ≥ 2). The following lemma shows that the position is not overwritten by another value between the rounds j − Δ

and j. See Fig. 6 for an example.

Lemma 9. Let m = min P j,Δ − Δ. For all � ∈ [ j − Δ + 1.. j − 1], m /∈ P� .

Proof. Suppose to the contrary that m ∈ P� for some � ∈ [ j −Δ + 1.. j − 1], i.e., S[m..�] is a palindrome. Then S[m +h..� −h]
for h = � − j +Δ is a palindrome too (see Fig. 7). Since � −h = j −Δ and m < m +h < m +Δ = min P j−Δ,Δ , this contradicts 
m being the predecessor of min P j−Δ,Δ in P j−Δ . �

The full algorithm is given in Fig. 8. The running time of round j is O(|G j−1| + |G j |). Since |G j | = O(log j) for all j, 
we obtain the following result.

Theorem 10. The palindromic length of a string of length n can be computed in O(n log n) time and O(n) space.

As with the quadratic-time algorithm, the algorithm can be modified to produce an actual minimum palindromic fac-
torization without an asymptotic increase in time or space complexities: we need only store with each palindromic length 
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Fig. 6. Example usage of the GPL array for j = 16. The value of PL j,4 computed in iteration j depends on shaded elements from PL array. Rather than 
scanning them all, we apply Lemma 8. Since |P j,4| ≥ 2 we get P j,4 = P j−4,4 ∪ {14}. Therefore we can compute PL j,4 as min{PL j−4,4, PL[13] + 1}. The value 
of PL j−4,4 was computed during iteration j − 4 and stored at position min P j−4,4 − 4 = min P j,4 − 4 = 2 in the GPL array, and by Lemma 9 it was not 
overwritten between iterations j − 4 and j. Thus we compute PL j,4 in constant time as min{GPL[2], PL[13] + 1} and update GPL[2] with the new value.

Fig. 7. Proof of Lemma 9: if m ∈ P� then m + h ∈ P�−h = P j−Δ .

in PL and GPL, the length of the last palindrome in the corresponding minimum factorization. The algorithm is also on-
line in the sense that the string is processed from left to right and, for each j, the character S[ j] is processed in O(log j)
time, after which we can report the palindromic length PL(S[1.. j]) in constant time and the corresponding factorization in 
O(PL(S[1.. j])) time.

5. Average and worst case

In this section, we show that the average case time complexity of the algorithm is linear, but that the worst case is 
indeed Θ(n log n).
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Algorithm Palindromic-length(S[1..n])
1: PL[0] ← 0
2: G ← ()

3: for j ← 1 to n do
4: G ′ ← ()

5: foreach (i,Δ,k) ∈ G do
6: if i > 1 and S[i − 1] = S[ j] then
7: G ′.pushback((i − 1,Δ,k)) // appends the given triple
8: G ′′ ← ()

9: r ← − j // makes i − r big enough to act as ∞
10: foreach (i,Δ,k) ∈ G ′ do
11: if i − r 
= Δ then
12: G ′′.pushback((i, i − r,1))

13: if k > 1 then
14: G ′′.pushback((i + Δ,Δ,k − 1))

15: else
16: G ′′.pushback((i,Δ,k))

17: r ← i + (k − 1)Δ

18: if j > 1 and S[ j − 1] = S[ j] then
19: G ′′.pushback(( j − 1, j − 1 − r,1))

20: r ← j − 1
21: G ′′.pushback(( j, j − r,1))

22: G ← ()

23: (i′,Δ′,k′) ← G ′′.popfront() // removes and returns the first triple
24: foreach (i,Δ,k) ∈ G ′′ do
25: if Δ′ = Δ then
26: k′ = k′ + k
27: else
28: G.pushback((i′,Δ′,k′))
29: (i′,Δ′,k′) ← (i,Δ,k)

30: G.pushback((i′,Δ′,k′))
31: PL[ j] ← j
32: foreach (i,Δ,k) ∈ G do
33: r ← i + (k − 1)Δ

34: m ← PL[r − 1] + 1
35: if k > 1 then
36: m ← min(m,GPL[i − Δ])
37: if Δ ≤ i then
38: GPL[i − Δ] ← m
39: PL[ j] ← min(PL[ j],m)

40: return PL[n]

Fig. 8. Algorithm for computing the palindromic length in O(n log n) time.

Theorem 11. The average case time complexity of the algorithms in Fig. 1 and in Fig. 8 is O(n).

Proof. Consider the set Σn of the σ n strings of length n over an alphabet Σ of size σ > 1. All of them have a palindromic 
suffix of length one, σ n−1 of them have a palindromic suffix of length two, and the same number have a palindromic suffix 
of length three (assuming n ≥ 3). More generally, for 1 ≤ k ≤ n, the number of strings with a palindromic suffix of length k
is σ n−k/2 when k is even and σ n−(k−1)/2 when k is odd. Then the total number of palindromic suffixes in Σn is

n/2�∑

i=1

σ n−i +
�n/2�∑

i=1

σ n−i+1 < σ n/(σ − 1) + σ n+1/(σ − 1) = σ + 1

σ − 1
σ n ≤ 3σ n.

Therefore the average number of palindromes ending at any position is less than three, and both algorithms spend a con-
stant time on average for processing each position. �

We show the worst case complexity of the algorithm by constructing a family of strings based on the Zimin 
words [4, Chapter 5.4]. Let Z0 = ε, and Zi = Zi−1i Zi−1 for i > 0. The limit of this sequence is the infinite Zimin word
Z = 1213121412131215 . . . . For a non-negative integer n, let B(n) be the number of 1-bits in the binary representation 
of n. For example, B(0) = 0, B(1) = 1, B(7) = 3 and B(8) = 1.

Lemma 12. The prefix Z [1..n] of the infinite Zimin word Z has exactly B(n) suffix palindromes.

Proof. From the definition, it is easy to see that the prefix Z [1..n] has a unique factorization of the form

Z [1..n] = Zi (ik + 1) · Zi (ik−1 + 1) · · · Zi (i2 + 1) · Zi (i1 + 1)
k k−1 2 1
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where 0 ≤ i1 < i2 < . . . < ik−1 < ik . For example, Z [1..10] = Z34Z12. Since the length of a factor Zi(i + 1) is 2i , we must 
have that 

∑k
j=1 2i j = n. Thus i1, . . . , ik are the positions of 1-bits in the binary representation of n, and k = B(n).

Let n j = 2i j for j ∈ [1..k]. Clearly, Z [2nk − n..n] is a palindrome of length 2(n − nk) + 1 centered at Z [nk] = (ik + 1). For 
example, Z [6..10] = 21412 is a palindrome centered at Z [8] = 4. Since Z [nk] is the only occurrence of (ik + 1) in Z [1..n], 
there can be no other suffix palindromes with a starting position in Z [1..nk]. By a similar argument, there is exactly one 
suffix palindrome with a starting position in Z [nk + 1..nk + nk−1], the one centered at Z [nk + nk−1] = (ik−1 + 1), and so on. 
In total, Z [1..n] has exactly k suffix palindromes. �
Theorem 13. The running time of the algorithm in Fig. 8 for input Z [1..n] is Θ(n log n).

Proof. By Lemma 12, Z [1.. j] has exactly B( j) suffix palindromes, i.e., |P j | = B( j). From the proof it is easy to see that each 
of the suffix palindromes is at least twice as long as the next shorter suffix palindrome. Thus there are no two identical 
gaps in P j and |G j| = |P j | = B( j). Since the algorithm spends Θ(|G j−1| + |G j |) time in round j, the total time complexity 
is Θ(

∑n
j=1 B( j)), which is Θ(n log n) [15]. �
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