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Abstract

Background: The identification of human disease-related microRNAs (disease miRNAs) is important for further investigating
their involvement in the pathogenesis of diseases. More experimentally validated miRNA-disease associations have been
accumulated recently. On the basis of these associations, it is essential to predict disease miRNAs for various human
diseases. It is useful in providing reliable disease miRNA candidates for subsequent experimental studies.

Methodology/Principal Findings: It is known that miRNAs with similar functions are often associated with similar diseases
and vice versa. Therefore, the functional similarity of two miRNAs has been successfully estimated by measuring the
semantic similarity of their associated diseases. To effectively predict disease miRNAs, we calculated the functional similarity
by incorporating the information content of disease terms and phenotype similarity between diseases. Furthermore, the
members of miRNA family or cluster are assigned higher weight since they are more probably associated with similar
diseases. A new prediction method, HDMP, based on weighted k most similar neighbors is presented for predicting disease
miRNAs. Experiments validated that HDMP achieved significantly higher prediction performance than existing methods. In
addition, the case studies examining prostatic neoplasms, breast neoplasms, and lung neoplasms, showed that HDMP can
uncover potential disease miRNA candidates.

Conclusions: The superior performance of HDMP can be attributed to the accurate measurement of miRNA functional
similarity, the weight assignment based on miRNA family or cluster, and the effective prediction based on weighted k most
similar neighbors. The online prediction and analysis tool is freely available at http://nclab.hit.edu.cn/hdmpred.
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Introduction

MicroRNAs (miRNAs) are a set of short (21,24 nt) non-coding

RNAs that play important roles in gene regulation by targeting

mRNAs for cleavage or translational repression [1,2]. MiRNAs

are involved in many important biological processes including cell

differentiation, proliferation, and apoptosis [3]. Furthermore,

accumulating evidence indicates miRNAs are associated with

various human diseases [4–7].

Identifying the relationship between miRNAs and diseases by

experimental methods, such as microarray profiling and qRT-

PCR, has been proven successful. However, the false positive

microarray results can be caused by the different melting

temperatures of miRNAs [8–11]. Furthermore, the experimental

cost is greatly increased by the probe design [12–14]. Therefore,

development of computational methods that predict the reliable

disease-related miRNA candidates is a valuable complement to

experimental studies [15–22]. So far, little work is available in

predicting disease miRNAs.

First, it was shown that functionally related miRNAs tend to be

associated with phenotypically similar diseases [18]. Jiang et al.

constructed the miRNA network by establishing a functional

relationship of two miRNAs based on their target genes. Their

target genes are predicted by the target prediction programs PITA

[23] and TargetScan [24]. They integrated the miRNA network

with a phenome network to infer potential miRNA-disease

associations. In addition, Jiang et al. further improved the

calculation of concordance score between a miRNA and a given

disease [19]. However, the high false positive in miRNA target

predictions [25] restrains the efficacy of Jiang’s methods.

Second, it was reported that if miRNAs are associated with a

similar regulatory pattern in the same type of disease, their target
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genes may share common functional characteristics [20]. Based

on these results, Li et al. prioritized the miRNAs for a specific

disease by estimating the functional consistency score (FCS)

among their target genes and the known target genes associated

with the disease [21]. The target genes of these miRNAs are

predicted by the target prediction programs miRanda [26],

PicTar [27] and TargetScan. FCS method was applied to 11

human diseases including breast cancer, lung cancer and etc.

However, besides the high false positive in miRNA target

predictions, the limited known disease-related target genes also

restrain the method’s usage for the 11 diseases. For other

important human diseases, such as heart failure, the method is

unable to provide their prediction results.

Third, it is observed that miRNAs with similar functions are

often associated with similar diseases and vice versa

[8,20,28,29]. The functional similarity of two miRNAs is

successfully estimated by the semantic similarity of their

associated two groups of diseases [20]. On the basis of the

calculated similarities, RWRMDA constructed a miRNA

similarity network. The new miRNA-disease associations are

predicted based on random walking on the network [22].

However, the association information between the miRNAs

passed by a walker and a specific disease is overlooked.

Furthermore, RWRMDA does not consider the characteristics

of the members from miRNA family or cluster.

In this study, we improved the functional similarity estimation

method developed in [20] by further considering the information

content of disease terms and phenotype similarity between

diseases. Subsequently, the members of miRNA family or cluster

are assigned higher weight since they are more probably associated

with similar diseases. At last, we presented an effective prediction

algorithm based on weighted k most similar neighbors (HDMP).

HDMP’s prediction performance is evaluated by performing 5-

fold cross validation and another validation based on an updated

dataset. The results indicate HDMP achieves better performance

than the existing methods.

Materials and Methods

Disease miRNAs prediction based on weighted k most
similar neighbors

For a specific disease d, we refer to the experimentally

validated miRNAs associated with d as the labeled miRNAs. The

others which have no evidence to validate that they are

associated with d until now are referred to as the unlabeled

miRNAs. As the unlabeled miRNAs are probably associated with

d, our goal is to rank the unlabeled miRNAs according to their

possibilities of associating with d. To achieve this goal, we

correlate an unlabeled miRNA u with a relevance score Score(u).

A greater Score(u) means higher possibility that u is associated

with d. We then rank all the unlabeled miRNAs according to

their relevance scores and select the top ranked miRNAs as

potential d-related candidates.

The process of predicting d-related candidates includes four

steps, as shown in Figure 1. First, the functional similarity of any

two miRNAs is calculated by incorporating the semantic similarity

and the phenotype similarity between diseases, and then a

symmetric functional similarity matrix is constructed. Second,

the members of each miRNA family or cluster are assigned higher

weight according to the miRNA-disease association information in

the family or cluster. Third, the relevance score of each unlabeled

miRNA is estimated by considering the functional similarities of its

weighted k most similar neighbors and the distribution information

of the labeled miRNAs in these neighbors. Fourth, all the

unlabeled miRNAs are ranked by their relevance scores. The

miRNAs with higher ranks are potential d-related candidates. Our

proposed prediction method is referred to as HDMP.

MiRNA functional similarity measurement
The prediction performance of HDMP is highly dependent on

accurate miRNA functional similarity measurement. It is observed

that miRNAs with similar functions are often associated with

similar diseases and vice versa [8,20,28,29]. Therefore, Wang et al.

proposed to estimate functional similarity of two miRNAs by

measuring the semantic similarity of their associated diseases [20].

In this section we give a brief overview of Wang’s measurement. In

the next section, we pointed out its inadequacy and further

proposed the improved estimation strategy.

Assume that DTu and DTv represent a group of diseases

associated with the miRNA u and v, respectively, and, for example,

DTu = {liver neoplasms (LN), breast neoplasms (BN)} and DTv = {pan-

creatic neoplasms (PN), breast neoplasms (BN)}. The similarity between

DTu and DTv is calculated as the functional similarity between u

and v, denoted as Misim(u, v). As shown in Figure 2, Wang’s

measurement process contains three steps.

First, the semantic similarity of any two diseases du and dv

(duMDTu, dvMDTv) is calculated, such as SS(LN, PN). Two diseases

LN (liver neoplasms) and PN (pancreatic neoplasms) are represented by

directed acyclic graph (DAG), as shown in Figure 3. In the DAG of

LN, ‘liver neoplasms’ in the 0th layer is the most specific disease term

and therefore its contribution to its own semantic value is defined

as 1. Since ‘Digestive system neoplasms’ in the 1th layer is a more

general denomination, its contribution is multiplied by the

semantic contribution factor (D= 0.5). Wang et al. defined the

factor D to differentiate the semantic contribution values of disease

terms in different layers. ‘Neoplasms by site’ in the 2th layer is even

more general than ‘Digestive system neoplasms’ and its contribution is

further factored as 0.560.5. Thus, the semantic value of LN is

DV(LN) = 1.0 (1.0 is the semantic contribution value of ‘liver

neoplasms’)+0.5 (‘digestive system neoplasms’)+0.560.5 (‘neoplasms by

site’)+0.560.560.5 (‘neoplasms’)+0.5 (‘liver diseases’)+0.560.5 (‘digestive

system diseases’) = 2.625. In the same way, the semantic value of PN

is DV(PN) = 3.375. Suppose TLN is the set of all ancestor nodes of

‘liver neoplasms’ including node ‘liver neoplasms’ itself and t represents

a blue node shared by the two diseases and tMTLN>TPN. The sum

of semantic contributions of all the blue nodes in Figure 3A is

gD(LN, t) = 0.5 (‘digestive system neoplasms’)+0.560.5 (‘neoplasms by

site’)+0.560.560.5 (‘neoplasms’)+0.560.5 (‘digestive system diseas-

es’) = 1.125. Similarly, gD(PN, t) in Figure 3B is 1.125. The

semantic similarity of these two diseases, SS(LN, PN), is calculated

as

SS(LN,PN)

~

P
t[TLN\TPN

D(LN,t)z
P

t[TLN\TPN
D(PN,t)

DV (LN)zDV (PN)

~
1:125z1:125

2:625z3:375

~0:417

ð1Þ

Also, we have SS(LN, BN) = 0.357, SS(BN, PN) = 0.3125, and

SS(BN, BN) = 1.

Second, the similarity between one of diseases associated with

miRNA u, such as LN, and the group of diseases associated with

miRNA v, DTv = {PN, BN}, is denoted as S(LN, DTv) and

calculated as

Predicting Human Disease-Related microRNAs
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Figure 1. Process of predicting disease d-related candidates. Step 1: calculate the functional similarity of any two miRNAs and construct a
symmetric functional similarity matrix. Step 2: assign the members of miRNA family or cluster higher weight. Step 3: calculate the relevance score of
each unlabeled miRNA. Step 4: rank all the unlabeled miRNAs according to their scores and select the top ranked miRNAs as potential candidates.
doi:10.1371/journal.pone.0070204.g001
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S(LN,DTv)

~max(SS(LN,PN),SS(LN,BN))

~max(0:417,0:357)

~0:417

ð2Þ

Therefore, S(BN, DTv) = 1, S(PN, DTu) = 0.417, and S(BN, DTu) = 1.

Third, the similarity between two groups of diseases, DTu and

DTv, is calculated as the similarity of their associated two miRNAs,

i.e., the functional similarity of u and v. It is denoted as Misim(u, v)

and defined as follows.

Misim(u,v)

~

P

1ƒiƒ DTuj j
S(di,DTv)z

P

1ƒjƒ DTvj j
S(dj ,DTu)

DTuj jz DTvj j

~
S(LN,DTv)zS(BN,DTv)zS(PN,DTu)zS(BN,DTu)

2z2

~
0:417z1z0:417z1

4

~0:709

ð3Þ

Incorporating information content of disease terms and
disease phenotype similarity

Wang’s measurement has been proved successful in estimating

the functional similarity of two miRNAs. However, we found its

inadequacy. As shown in Figure 3, the farther a disease term is

from the 0th layer, the more general the disease term is and the

less semantic contribution it has. Wang et al. defined the semantic

contribution of a disease term in the kth layer as 0.5k. Thus, the

disease terms in the same layer (e.g., ‘digestive system neoplasms’ and

‘liver diseases’ in the 1th layer in Figure 3A) have the same semantic

contribution value (0.5).

However, we found that ‘digestive system neoplasms’ appears in 40

disease DAGs, such as DAG of esophageal neoplasms and DAG of liver

neoplasms. ‘liver diseases’ appears in 73 disease DAGs, such as DAG

of liver failure and DAG of liver cirrhosis. Obviously, the former is

more specific than the latter since the former appears in less

DAGs. The semantic contribution of the former should be higher

than the latter. Therefore, it is less accurate to assign the same

contribution value to the disease terms of the same layer in Wang’s

measurement.

Intuitively, the more specific a disease term is, the more

informative it is for calculating the functional similarity. Therefore,

we calculate the information content of per disease term as its

semantic contribution. In this way, a more specific disease term

has a greater semantic contribution value. Given that the

likelihood of a disease term t appearing in all the disease DAGs

is denoted as p(t), the information content of t, IC(t), can be

quantified as the negative log of the likelihood, and

IC(t) = 2log[p(t)]. The information content of all the 4577 disease

terms was calculated and available at our web site. Thus, the

semantic value of ‘liver neoplasms’, DV(LN), is updated as 10.160

(10.160 is the value of IC(liver neoplasms))+6.838 (IC(digestive system

neoplasms))+4.453 (IC(neoplasms by site))+2.785 (IC(neoplasms))+6.116

(IC(liver diseases))+3.961 (IC(digestive system diseases)) = 34.313. In the

same way, DV(PN) is 46.566. The semantic similarity SS(LN, PN) is

calculated as

SS(LN,PN)

~

P
t[TLN\TPN

ICLN (t)z
P

t[TLN\TPN
ICPN (t)

P
t[TLN|TPN

ICLN (t)z
P

t[TLN|TPN
ICPN (t)

~
18:037z18:037

34:313z46:566

~0:446

ð4Þ

Therefore, SS(LN, BN) = 0.215, SS(BN, PN) = 0.182, and SS(BN,

BN) = 1.

Obviously, a greater semantic similarity revealed that two

diseases are more likely similar with each other. In addition, the

similarity of two diseases is closely related to their phenotypes. We

obtained the similarity between any two of 5080 disease

phenotypes from the literature [30]. The phenotype similarity

between two diseases, such as A and B, is denoted as PS(A, B). In

order to incorporate the semantic similarity and the phenotype

similarity, the similarity between A and B is defined as DS(A, B).

DS(A,B)~
SS(A,B)zPS(A,B)

2
ð5Þ

Figure 2. Measuring the functional similarity between miRNA u and v.
doi:10.1371/journal.pone.0070204.g002
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Thus, DS(LN, PN) is calculated as follows.

DS(LN,PN)

~
SS(LN,PN)zPS(LN,PN)

2

~
0:446z0:191

2

~0:319

ð6Þ

Therefore, DS(LN, BN) = 0.295, DS(BN, PN) = 0.287, and DS(BN,

BN) = 1.

Next, the similarity between LN and DTv, S(LN, DTv), is updated

as

S(LN,DTv)

~max(DS(LN,PN),DS(LN,BN))

~max(0:319,0:295)

~0:319

ð7Þ

Also, we have S(BN, DTv) = 1, S(PN, DTu) = 0.319, and S(BN,

DTu) = 1. Thus, the similarity between miRNA u and v is denoted

as MS(u,v) and calculated as follows.

Figure 3. The disease DAGs of liver neoplasms and pancreatic neoplasms. (a) DAG of liver neoplasms. (b) DAG of pancreatic neoplasms. The
nodes in blue are the disease terms shared by the two DAGs.
doi:10.1371/journal.pone.0070204.g003

Figure 4. Assigning weight for the members of a miRNA family according to their associations with a group of diseases.
doi:10.1371/journal.pone.0070204.g004
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MS(u,v)

~

P

1ƒiƒ DTuj j
S(di,DTv)z

P

1ƒjƒ DTvj j
S(dj ,DTu)

DTuj jz DTvj j

~
S(LN,DTv)zS(BN,DTv)zS(PN,DTu)zS(BN,DTu)

2z2

~
0:319z1z0:319z1

4

~0:660

ð8Þ

Assignment of weight based on miRNA families or
clusters

It was reported that the members of miRNA family or cluster

are more likely to associate with the similar diseases [8,20,31].

Therefore, these miRNAs are assigned higher weight and the

assignment strategy is described as follows.

Assignment of weight based on miRNA families. The

homologous miRNAs are gathered into the same miRNA family

by RFam [32]. The seed regions (normally 2–8th nucleotide from

the 59 end of miRNA) of miRNA sequences of the same family are

almost identical. Since the seed of a miRNA is commonly required

to be perfectly complementary to the target mRNAs for cleavage

or translational repression, the members of the same family likely

regulate a common set of mRNA targets. Hence, it is more likely

that they are associated with the similar diseases [20,31]. Assume u

is an unlabeled miRNA and v is one of its k most similar neighbors.

Also, assume v is associated with disease d. Furthermore, u and v

belong to a same family. As far as v is concerned, u is more possibly

associated with d. At this time, v is assigned higher weight. In the

future, the weight will be multiplied by the functional similarity

between u and v as the subscore of v, detailed in section

‘Calculation of the relevance scores of miRNA candidates’.

We download the information of miRNA families from the

latest miRNA database miRBase 19. The 474 miRNAs involved in

the 4379 miRNA-disease associations cover 52 families. For the ith

(1#i#52) family, the rate of d-related miRNAs accounting for its

size is defined as

rfi(d)~
number of d-related miRNAs

size of the ith family
ð9Þ

For instance, assume there are 10 miRNAs in the ith miRNA

family. 6 of 10 miRNAs are associated with d. Thus, we have

rfi(d) = 6/10 = 0.6. The greater rfi(d) means that most of miRNAs in

the family have been associated with d. The remaining miRNAs

are more likely to associate with d.

Assume two miRNAs do not belong to the same family. The

weight of these two miRNAs with respect to d is viewed as 1.

Assume another two miRNAs belong to the ith family and some

miRNAs of the family are associated with d. The weight of the

miRNAs in the ith family with respect to d should be greater than

1 and it is defined as

wfi(d)~1z
rfi(d)

a
ð10Þ

where a is a factor for adjusting the weight. To find a suitable a
value, the different a values from 1 to 10 are tested by performing

5-fold cross validation. Figure S1A shows HDMP achieved better

prediction performance when a = 4 than other values. Therefore,

we set a as 4 in this study.

For each family, we calculate the weight of its members for each

disease involved in the family. The calculation process is illustrated

by miRNA family 1. As shown in Figure 4, assume there are p

families and family 1 is composed of 5 miRNAs, including miRNA

1, 2, 3, 4, and 5. Assigning weight for family 1 includes the

following 3 steps.

1. All the diseases that are associated with the members of family

1 are collected to form the disease set S1 = {d1,d2,d3,d4,d5}.

2. We collect the miRNAs associated with disease di (1#i#5),

respectively. For instance, d1 is associated with miRNA 1 and 3.

d2 is associated with miRNA 1, 2, 4, and 5. d3 is associated with

miRNA 2, 3, and 4. d4 is associated with miRNA 2 and 3. d5 is

associated with miRNA 3 and 5.

3. The weight of the miRNAs in family 1 with respect to disease di

(1#i#5) is calculated. For instance, d2 is associated with

miRNA 1, 2, 4, and 5. Family 1 is composed of 5 miRNAs.

Thus, d2-related miRNAs account for four fifth of family 1 and

rf1(d2) = 4/5. The weight about d2 is wf1(d2) = 1+rf1(d2)/a = 1+(4/

5)/a = 1+(4/5)/4 = 1.2.

Repeating above 3 steps, the weight can be calculated for family

2, …, and family p, respectively.

Assignment of weight based on miRNA clusters. It has

been reported that miRNAs are often found in genomic clusters

[33]. The clustered miRNAs are usually transcribed together and

more likely associated with the similar diseases [8,20]. Therefore, if

the unlabeled miRNA u and one of its neighbor v belong to a same

cluster, v is assigned higher weight.

We download the chromosomal coordinates of human miRNAs

from miRBase 19. Wang et al. confirm that the clustered miRNAs

located within 20 kb of genomic location are more likely to

associate with the similar diseases [20]. Therefore, we merge the

miRNAs whose distances are within 20 kb into a same cluster.

The 474 miRNAs involved in the 4379 miRNA-disease associa-

tions cover 58 clusters. For the ith (1#i#58) cluster, the rate of

disease d-related miRNAs accounting for its size is defined as

rgi(d)~
number of d-related miRNAs

size of the ith cluster
ð11Þ

The greater rgi(d) means that most of miRNAs in the ith cluster

have been associated with d. The remaining miRNAs are more

possibly associated with d. The weight of two miRNAs not

belonging to the same cluster is viewed as 1. Assume there are

another two miRNAs belonging to the ith cluster and some

miRNAs of the cluster are associated with d. The weight of the

miRNAs in the ith cluster with respect to d should be greater than

1 and it is defined as

wgi(d)~1z
rgi(d)

b
ð12Þ

where b is a factor for adjusting the weight. The different b values

from 1 to 10 were investigated by the experiments. HDMP

achieved the highest prediction performance when b is 4 (Figure

S1B).

Calculation of the relevance scores of miRNA candidates
For a specific disease d, to reliably estimate the relevance score

of an unlabeled miRNA u, its k most similar neighboring miRNAs

Predicting Human Disease-Related microRNAs
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are observed. Assume miRNA v is one of the k neighbors and it is

associated with d. Since u and its neighbor v have higher functional

similarity, they are more possibly associated with a group of similar

diseases. Thus, as far as v is concerned, u is also possibly associated

with d. The greater the functional similarity between u and v, the

higher the possibility that u is associated with d. Therefore, the

functional similarity is considered when estimating the relevance

score of u.

We correlate each of k neighbors with a subscore. The subscores

of k neighbors are accumulated as the relevance score of u. The 3

combinations of u and v are listed as following.

1. MiRNA u and its neighbor v are not in the same miRNA

family or cluster. Also, v is associated with d. For instance, as

shown in the 3th part of Figure 1, miRNA 1 is an unlabeled

miRNA. Since its neighbor 5 is associated with d, 1 is

possibly associated with d. The greater functional similarity

between 1 and 5, MS(1, 5), means that 1 is more likely to

associate with d. Thus, with respect to 1, the subscore of 5 is

assigned to MS(1, 5) = 0.6.

2. MiRNA u and its neighbor v belong to the same miRNA family

or cluster. Also, v is associated with d. In Figure 1, since the

neighbor 20 is associated with d, 1 is possibly associated with d.

Furthermore, as both 1 and 20 are in the ith family, they are

more likely to associate with d. Therefore, to assign the

subscore of 20, we consider the functional similarity between 1

and 20. At the same time, the weight of these two miRNAs in

this family is considered. The subscore of 20 is MS(1,

20)6wfi(d) = 0.661.15 = 0.69. In addition, if two miRNAs not

only belong to a family but also belong to a cluster, both the

weight based on this family and that based on this cluster are

multiplied by their functional similarity as the subscore.

3. The neighbor v has no evidence to validate that it is associated

with d. For instance, miRNA 2 is a neighbor of 1 and 2 is not

associated with d. As far as 2 is concerned, it is very little

possibility that 1 is associated with d. At this time, the subscore

of 2 is assigned to 0.

The sum of subscores of k neighbors is calculated as the

relevance score of u. As shown in Figure 1, 3 miRNAs (5, 10, and

20) are associated with disease d in the 6 most similar neighbors of

1. The functional similarities between 1 and 5, 10, 20 are 0.6, 0.7,

and 0.6 respectively. Furthermore, 1 and 20 are in the ith family

and the weight wfi(d) is 1.15. At this time, the subscores of 5 and 10

are 0.6 and 0.7 respectively. The subscore of 20 is 0.6*1.15 = 0.69.

Since 2, 8, 16 are not associated with d, all of their subscores are 0.

Thus, the relevance score of 1 is denoted as

Score(1) = 0.6+0.7+0.69 = 1.99. In this way, we calculate the

relevance scores for all the unlabeled miRNAs.

For a specific disease d, assume the labeled miRNA set is

Q = {q1,q2,…,qm}. The unlabeled miRNA set is U = {u1,u2,…,un}.

To determine the association possibility of an unlabeled miRNA u

(uMU) with d, the sum of subscores of weighted k neighbors most

similar to u is calculated as its relevance score. The higher score

means a more possible association between u and d. The algorithm

of predicting d-related miRNA candidates is described in Figure 5.

The relevance score accumulation between an unlabeled

miRNA and its neighbors is dependent on the parameter k. If k

is too great, the noise data will be included, which will not

contribute to improving the prediction performance. If k is too

small, there is no sufficient data to accurately estimate the

relevance scores. The different k values from 1 to 50 were

investigated by the experiments. Figure S1C shows HDMP

achieved the highest prediction performance when k is 20.

Results and Discussion

Data preparation
The human miRNA-disease associations were downloaded

from the human miRNA-disease database HMDD [29]. Two

versions (November-2010 Version and September-2012 Version)

of HMDD associations were used in the experiments. Invalid

miRNA-disease associations with incorrect disease names or

miRNA names are filtered out. The correct disease names were

downloaded from the National Library of Medicine (http://www.

nlm.nih.gov/). The correct miRNA names were obtained from the

latest miRNA database miRBase 19 [34]. After filtering,

November-2010 Version contains 2076 associations between 338

miRNAs and 199 diseases, and September-2012 Version contains

4379 miRNA-disease associations between 474 miRNAs and 268

diseases. The similarity between any two of 5080 OMIM disease

phenotypes was obtained from the literature [30]. Since the

disease names of OMIM are named differently from those of

MeSH, their mapping information was downloaded from the

comparative toxicogenomics database [35].

Prediction performance evaluation
To evaluate HDMP’s ability of predicting disease miRNAs, 5-

fold cross validation was performed firstly. For a specific disease d, the

labeled miRNAs of September-2012 Version are randomly

divided into 5 subsets, 4 of which are used as known information

to predict candidates, while the left out subset is used for testing.

The d-related miRNA candidate pool consisted of all the unlabeled

miRNAs and the labeled miRNAs used for testing. The relevance

score of each unlabeled miRNA and that of each labeled miRNA

in the pool are calculated. All these miRNAs are ranked by their

relevance scores. The higher the labeled miRNAs are ranked, the

better the prediction performance is.

If a labeled miRNA has higher rank than a given threshold,

HDMP is considered to successfully predict it. By varying the

threshold, the true positive rate (sensitivity) and the false positive

rate (1-specificity) were calculated to obtain the receiver operating

characteristic (ROC) curves. Sensitivity is the proportion of the

labeled miRNAs successfully predicted accounting for all the

labeled miRNAs in the pool. Specificity is the proportion of the

unlabeled miRNAs which have lower ranks than the threshold

accounting for all the unlabeled miRNAs. The area under the

ROC curve (AUC) was calculated to demonstrate the prediction

performance of HDMP. To obtain reliable evaluation result, we

tested the 18 human diseases which are associated with at least 60

miRNAs respectively. As shown in Table 1, HDMP achieved the

highest AUC with pancreatic neoplasms, and the lowest AUC with

lupus vulgaris. The average AUC value for the 18 diseases is 0.825.

In addition, the associations of November-2010 Version were

used to construct HDMP. HDMP was applied to predict the set of

associations added into HMDD between November-2010 and

September-2012. The set of associations formed the updated

dataset. The validation based on the dataset is called updated dataset

validation. There are 9 diseases each of which is associated with at

least 60 miRNAs in November-2010. The 9 diseases were tested to

further evaluate the prediction performance of HDMP. As shown

in Table 2, the highest AUC was obtained with pancreatic neoplasms,

and the lowest AUC was obtained with hepatocellular carcinoma. The

average AUC for the 9 diseases is 0.726.

Importance for improving miRNA similarity measurement
and incorporating miRNA family or cluster

To validate the importance for improving miRNA functional

similarity measurement, two HDMP’s instances were constructed

Predicting Human Disease-Related microRNAs
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based on our measurement and Wang’s measurement respectively.

The 5-fold cross validation was performed to evaluate the

performance of these two instances. The former achieved higher

AUC values for all the 18 human diseases (Table S1). The

minimum AUC increase is 1.6% for adenoviridae infections and the

maximum one is 3.7% for medulloblastoma. For the 18 diseases, the

AUC is increased by 2.2% on average. It demonstrates our

measurement is effective for improving the prediction perfor-

mance. In addition, the prediction instance based on Wang’s

measurement achieves decent performance. It further confirms the

prediction method based on weighted k neighbors is sufficient to

ensure the prediction accuracy.

In addition, we constructed three prediction instances and listed

their prediction results in Table S2. The first instance was

constructed only based on k most similar neighbors without

considering miRNA family and cluster. The others further

incorporated miRNA family and cluster respectively. For the 18

diseases, the average AUC of the second instance is 2.9% greater

than the first one. The third instance is also increased by 2.8% on

average. It shows the importance of incorporating miRNA family

and cluster during construction of the efficient prediction instance.

Comparison with FCS method, Jiang’s method, and
RWRMDA

We first compared HDMP with FCS method proposed in [21].

FCS method ranked the miRNA candidates based on the

functional consistency between miRNA target genes and disease-

related genes. While FCS method ranked disease miRNA

Figure 5. Algorithm of predicting the miRNA candidates associated with disease d.
doi:10.1371/journal.pone.0070204.g005
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candidates for 11 diseases, our HDMP method ranked for 18

diseases. The 5-fold cross validation was performed on their 8

common diseases. In addition, there are 4 common diseases for the

updated dataset validation. The ranked miRNAs by FCS method

were downloaded from the web site (http://bioinfo.hrbmu.edu.

cn/CMP). The results over 5-fold cross validation (Table 1) and

those over updated dataset validation (Table 2) show that HDMP

is more accurate than FCS method. The average AUC value for 8

common diseases is increased by 19.5% and that for 4 common

diseases is increased by 13.5%. We measured the statistical

significance of the difference in their AUCs by paired t-test. The p-

values are reported in Table 3. Clearly, HDMP performs

significantly better than FCS method at the significance level 0.05.

As mentioned before, FCS method is dependent on the

predicted miRNA target genes. However, it is difficult to obtain

highly accurate target genes although FCS method integrated the

results of 3 target prediction programs to minimize the false

positive. HDMP is based on the accurate measurement of miRNA

Table 1. Prediction results of HDMP and other methods for 5-fold cross validation.

No. of associated
miRNAs AUC

Disease name HDMP FCS method Jiang’s method RWRMDA

Acute myeloid leukemia 60 0.822 0.575 0.526 0.635

Adenoviridae infections 68 0.686 0.605

Breast neoplasms 196 0.819 0.671 0.598 0.695

Colorectal neoplasms 128 0.785 0.612 0.603 0.688

Glioblastoma 86 0.887 0.638

Heart failure 118 0.797 0.642

Hepatocellular carcinoma 206 0.785 0.515 0.626

Lung neoplasms 119 0.899 0.718 0.667 0.697

Lupus vulgaris 60 0.681 0.603

Medulloblastoma 60 0.799 0.516 0.638

Melanoma 132 0.842 0.698 0.634 0.708

Ovarian neoplasms 107 0.836 0.531 0.673

Pancreatic neoplasms 95 0.922 0.664 0.609 0.712

Prostatic neoplasms 96 0.884 0.656 0.596 0.754

Renal cell carcinoma 88 0.828 0.649

Squamous cell carcinoma 67 0.812 0.682

Stomach neoplasms 77 0.866 0.577 0.691

Urinary bladder neoplasms 66 0.895 0.715 0.635 0.759

There are 8, 12, and 18 common diseases between HDMP and FCS method, Jiang’s method, and RWRMDA, respectively. ‘No. of associated miRNAs’ indicates the
number of miRNAs associated with a specific disease in September-2012 Version of HMDD.
doi:10.1371/journal.pone.0070204.t001

Table 2. Prediction results of HDMP and other methods for updated dataset validation.

No. of associated
miRNAs

No. of new
added miRNAs AUC

Disease name HDMP FCS method Jiang’s method RWRMDA

Breast neoplasms 101 66 0.671 0.602 0.538 0.628

Hepatocellular carcinoma 65 119 0.649 0.609 0.612

Colonic neoplasms 64 13 0.651 0.601

Heart failure 101 16 0.751 0.631

Lung neoplasms 92 27 0.754 0.612 0.565 0.655

Melanoma 105 21 0.791 0.648 0.535 0.609

Ovarian neoplasms 74 30 0.727 0.519 0.611

Pancreatic neoplasms 60 38 0.797 0.609 0.554 0.735

Stomach neoplasms 65 19 0.741 0.576 0.622

There are 4, 7, and 9 common diseases between HDMP and FCS method, Jiang’s method, and RWRMDA, respectively. ‘No. of associated miRNAs’ indicates the number
of miRNAs associated with a specific disease in November-2010 Version of HMDD. ‘No. of new added miRNAs’ indicates the number of miRNAs associated with a specific
disease which are added into HMDD between November-2010 and September-2012.
doi:10.1371/journal.pone.0070204.t002
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functional similarity and effective prediction process by observing

weighted k most similar neighbors. Thus, HDMP achieves better

prediction performance.

Second, we compared HDMP with Jiang’s method presented in

[18], where the potential miRNA-disease associations were

inferred based on the human phenome-miRNAnome network.

Jiang’s another method presented in [19] can not be compared

since its source code and web service are unavailable. The disease

description in Jiang’s method comes from the Online Mendelian

Inheritance in Man (OMIM) database [36]. Due to the slight

differences between the disease names of OMIM and those of

MeSH, there are no exact correspondences for 6 of the 18 diseases

for 5-fold cross validation. Also, there are no corresponding disease

names for 2 of the 9 diseases for updated dataset validation.

Consequently, we compared the results of HDMP and those of

Jiang’s method for their common diseases (Table 1 and Table 2).

The p-values by paired t-test are listed in Table 3. It is clear that

the prediction performance of HDMP is significantly better than

that of Jiang’s method. The average AUC value for 12 common

diseases is increased by 24.9% and that for 7 common diseases is

increased by 17.6%. Jiang et al. constructed the miRNAnome

network based on the predicted miRNA targets. These targets

were obtained by simply merging the results of 2 target prediction

programs. Thus, the high false positive in the merged targets has a

great effect on the performance of Jiang’s method.

Third, RWRMDA was originally constructed by using the 1395

miRNA-disease associations in the earlier version of HMDD

(September, 2009). Unfortunately, the source code of RWRMDA

provided by its web site is not available currently. To compare with

RWRMDA, we implement RWRMDA based on 5-fold cross

validation and updated dataset validation, respectively. The restart

probability r of RWRMDA is set to 0.9 suggested by the experiments

in [22]. The p-values by paired t-test are listed in Table 3. It indicates

that HDMP performed significantly better than RWRMDA. The

average AUC value for 18 diseases over 5-fold cross validation is

increased by 15.3% and that for 9 diseases over updated dataset

validation is increased by 9.2%. As mentioned before, RWRMDA

predicted the disease miRNAs by random walking on the miRNA

similarity network. However, when a walker moving from a miRNA

to one of its neighbors, RWRMDA overlooked whether the miRNA

is associated with d or not. It is not good for more specifically

predicting d-related miRNAs. HDMP considers the k most similar

neighbors and the distribution information of the known d-related

miRNAs in these neighbors. Furthermore, HDMP incorporates the

weight information of miRNA family or cluster. Therefore, HDMP

achieved better performance.

The ROC curves for 5-fold cross validation and those for

updated dataset validation are demonstrated in Figure 6 and 7

respectively. RWRMDA performed better than FCS method and

Jiang’s method for most of diseases. HDMP outperformed all the

previous methods. It indicates that HDMP can successfully recover

the known disease miRNAs. In addition, for all the prediction

methods, their overall performance over 5-fold cross validation is

better than that over updated dataset validation. The primary

reason is that the number of labeled miRNAs in the training

dataset for the former is greater than that for the latter.

Case studies: prostatic neoplasms, breast neoplasms, and
lung neoplasms

To further demonstrate the ability of HDMP to uncover

potential disease-related miRNA candidates, we present the case

studies of prostatic neoplasms, breast neoplasms, and lung

neoplasms. Many researchers have shown that miRNAs play

critical role in the three diseases. Due to space limitations, we only

provide a comprehensive analysis of the prostatic neoplasms-

related candidates.

HDMP predict the candidates by using the miRNA-disease

associations in the earlier version of HMDD (1 January 2012). The

newly reported prostatic neoplasms-related miRNAs after January

1 2012 are used to validate the predicted candidates. Furthermore,

the miRNA-disease relevant databases ‘‘miR2Disease’’ [37] and

‘‘dbDEMC’’ [38] are also used to confirm the candidates.

The top 50 candidates in the ranked list are illustrated in

Table 4, and detailed in Table S3. First, during the period from

January 2012 to September 2012, HMDD has been updated three

times. There are 24 newly reported prostatic neoplasms-related

miRNAs. 9 of 50 miRNAs are supported by the newly reported

miRNAs. It indicates that HDMP can discover potentially

important prostatic neoplasms-related miRNAs.

Second, miR2Disease is a manually curated database which

provides a comprehensive resource of miRNA deregulation in

various human diseases [37]. The current version of miR2Disease

contains 3273 curated associations between 349 human miRNAs

and 163 diseases. 17 of 50 miRNAs are included in miR2Disease.

It indicates these miRNAs are deregulated in prostatic neoplasms,

which confirms that they are really associated with prostatic

neoplasms.

Third, several literatures confirm the 6 of 7 miRNAs are

significantly upregulated or downregulated in human prostatic

neoplasms versus normal prostatic tissue [39–43]. The remaining

1 miRNA is found to be up-regulated or down-regulated in the

metastatic prostate cancer xenografts, relative to their non-

metastatic counterparts [44]. HDMP successfully found these

miRNAs due to their higher ranks.

Fourth, the database of differentially expressed miRNAs in

human cancers, dbDEMC [38], is constructed to provide potential

cancer-related miRNAs by in silco computing. The current version

of dbDEMC contains 607 miRNAs which potentially have

differential expression in 14 types of cancer, including prostatic

cancer (malignant prostatic neoplasms). 33 of 50 miRNAs are

contained in dbDEMC. These miRNAs are identified to be

potentially upregulated or downregulated in prostatic cancer by

using the significance analysis of the microarrays. It shows that the

33 miRNAs are more likely to participate in the prostatic cancer-

related biological process.

Last but not least, 7 miRNAs have higher ranks in the ranked

list of FCS method, Jiang’s method and RWRMDA. Hsa-mir-429

is ranked No. 1 and No. 2 by Jiang’s method and RWRMDA

Table 3. p-values obtained by paired t-testing the AUCs of HDMP and those of another prediction method.

Validating over different dataset FCS method Jiang’s method RWRMDA

HDMP over 5-fold cross validation 2.337e-06 1.155e-10 2.592e-11

HDMP over updated dataset validation 0.006 0.0004 0.0002

doi:10.1371/journal.pone.0070204.t003
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Figure 6. ROC curves of HDMP and other methods for 5-fold cross validation. Each value in bracket is the area under HDMP’s ROC curve.
doi:10.1371/journal.pone.0070204.g006
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respectively. Hsa-mir-142, hsa-mir-18a, and hsa-mir-20b have

greater functional consistency score (FCS) among their target

genes and the known target genes associated with prostate

neoplasms. Hsa-mir-18a, hsa-mir-18b, hsa-mir-499, and hsa-mir-

542 are ranked No. 15, 45, 42, 25 by RWRMDA respectively. It

indirectly confirms that the 7 miRNAs are more probably

associated with prostatic neoplasms. All above analysis indicates

the 50 miRNAs in Table 4 are potential prostatic neoplasms-

related candidates.

In addition, the top 50 breast neoplasms-related candidates are

demonstrated in Table S4. 19 of 50 miRNAs are confirmed to be

associated with breast neoplasms by the newly reported miRNAs

in HMDD. 8 miRNAs are validated by the database miR2disease.

3 miRNAs are supported to have deregulation in breast cancer by

literatures [45–47]. The dbDEMC identified 39 miRNAs as

potential miRNAs upregulated or downregulated in breast cancer

(malignant breast neoplasms). The genes-to-systems breast cancer

database, G2SBC [48], is usually used for assistant studying the

breast cancer. For 2 miRNAs, at least 16 of top 100 their predicted

target genes are breast cancer-related genes. It indicates that the 2

miRNAs are more probably associated with breast cancer. In

addition, 2 miRNAs have higher ranks in the ranked list of FCS

method and that of RWRMDA, which indirectly confirms they

are potential breast neoplasms-related candidates.

The top 50 lung neoplasms-related candidates are listed in table

S5. 6 of 50 miRNAs are confirmed to be associated with lung

neoplasms by HMDD. 12 miRNAs are validated by the database

miR2disease. 8 miRNAs are supported to be upregulated or

downregulated in lung cancer by literatures [49–53]. The

dbDEMC identified 31 miRNAs as potential deregulated miRNAs

in lung cancer. 2 miRNAs are ranked higher by FCS method and

RWRMDA. We have not found the evidence for only 2 miRNAs

to confirm they are potentially associated with lung neoplasms. All

above results demonstrate that HDMP is powerful in predicting

potential disease-related miRNA candidates.

Conclusions

A new prediction method based on weighted k most similar

neighbors, HDMP, was developed for predicting disease miRNAs.

We demonstrated the importance of accurately measuring miRNA

functional similarity, incorporating weight information based on

miRNA family or cluster, and considering the distribution

information of a specific disease in achieving effective prediction

Figure 7. ROC curves of HDMP and other methods for updated dataset validation. Each value in bracket is the area under HDMP’s ROC
curve.
doi:10.1371/journal.pone.0070204.g007
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result. A measurement strategy incorporating the information

content of disease terms and phenotype similarity between diseases

was proposed to accurately estimate the functional similarity of

two miRNAs. The members of miRNA family or cluster are

assigned higher weight according to their associations with a group

of diseases. The functional similarity information and the

distribution information of the disease d-related miRNAs in the k

neighbors are incorporated to explore the possibility that a

miRNA is associated with d.

HDMP has been compared with the existing prediction

methods, including FCS method, Jiang’s method, and

RWRMDA. Both the results of 5-fold cross validation and those

of the updated dataset validation demonstrated that HDMP has

significantly higher accuracy in recovering the known disease

miRNAs. The case studies of prostatic neoplasms, breast

neoplasms, and lung neoplasms, further proved the ability of

HDMP to uncover potential disease-related candidates. HDMP

can provide reliable disease-related miRNA candidates for

experimental research, which facilitates future studies of miRNA

involvement in the pathogenesis of diseases.

Supporting Information

Figure S1 Prediction performance affected by a value, b
value, and k value.

(DOC)

Table S1 Prediction results of HDMP with different
functional similarity measurements.

(DOC)

Table S2 Prediction results for incorporating miRNA
family and cluster respectively.

(DOC)

Table S3 The top 50 prostatic neoplasms-related
miRNA candidates in the ranked list. (1) ‘literature’ means

that there is a literature to support that the miRNA is upregulated

or downregulated in human prostatic neoplasm, as compared with

normal prostatic tissue. (2) With analysis of the microarray data

sets, a miRNA is considered to potentially have different express

levels in prostatic cancer when compared to normal tissues. This

kind of miRNAs is labeled by ‘dbDEMC’. (3) ‘HMDD’ means that

Table 4. The top 50 prostatic neoplasms-related miRNA candidates.

Rank MiRNA name Description Rank MiRNA name Description

1 hsa-mir-429 higher RWRMDA (No. 2), higher
Jiang (No. 1)

26 hsa-mir-24 dbDEMC, miR2Disease

2 hsa-mir-9 dbDEMC, literature 27 hsa-mir-29c dbDEMC

3 hsa-mir-142 higher FCS (No. 48) 28 hsa-mir-30b dbDEMC, miR2Disease

4 hsa-let-7i dbDEMC 29 hsa-mir-125a dbDEMC, miR2Disease

5 hsa-mir-155 dbDEMC 30 hsa-mir-18b higher RWRMDA (No. 45)

6 hsa-mir-34b dbDEMC 31 hsa-mir-20b Higher FCS (No. 5)

7 hsa-mir-19a dbDEMC 32 hsa-mir-30d dbDEMC

8 hsa-mir-92a HMDD, miR2Disease 33 hsa-mir-451 literature

9 hsa-mir-210 miR2Disease 34 hsa-mir-152 dbDEMC

10 hsa-mir-19b dbDEMC, miR2Disease 35 hsa-mir-215 dbDEMC

11 hsa-mir-224 dbDEMC, miR2Disease 36 hsa-mir-130a dbDEMC, HMDD

12 hsa-let-7f dbDEMC, miR2Disease 37 hsa-mir-499 higher RWRMDA (No. 42)

13 hsa-mir-199b dbDEMC, HMDD, miR2Disease 38 hsa-mir-206 dbDEMC

14 hsa-mir-181a dbDEMC, miR2Disease 39 hsa-mir-192 dbDEMC

15 hsa-mir-29a dbDEMC, HMDD, miR2Disease 40 hsa-mir-335 literature

16 hsa-let-7e dbDEMC 41 hsa-mir-365 literature

17 hsa-mir-107 HMDD 42 hsa-mir-30a miR2Disease

18 hsa-mir-18a higher RWRMDA (No. 15), higher
FCS (No. 92)

43 hsa-mir-302a dbDEMC

19 hsa-let-7g dbDEMC, miR2Disease 44 hsa-mir-212 literature

20 hsa-let-7b dbDEMC, HMDD, miR2Disease 45 hsa-mir-372 dbDEMC

21 hsa-mir-150 dbDEMC, literature 46 hsa-mir-197 dbDEMC

22 hsa-mir-338 dbDEMC 47 hsa-mir-124 literature

23 hsa-mir-103 dbDEMC, miR2Disease 48 hsa-mir-378 HMDD

24 hsa-mir-15b dbDEMC, HMDD 49 hsa-mir-26b dbDEMC, miR2Disease

25 hsa-mir-31 dbDEMC, HMDD, miR2Disease 50 hsa-mir-542 higher RWRMDA (No. 25)

(1) ‘literature’ means that there is a literature to support that the miRNA is upregulated or downregulated in human prostatic neoplasm, as compared with normal
prostatic tissue. (2) With analysis of the microarray data sets, a miRNA is considered to potentially have different express levels in prostatic cancer when compared to
normal tissues. This kind of miRNAs is labeled by ‘dbDEMC’. (3) ‘HMDD’ means that a miRNA is a newly reported prostatic neoplasms-related miRNA which is collected
by the latest version of HMDD. (4) ‘miR2Disease’ means that a miRNA is included in the manually curated miRNA-disease association database, miR2Disease. (5) ‘higher
RWRMDA’ means a miRNA has higher rank in the ranked list of RWRMDA. (6) ‘higher FCS’ means a miRNA has greater functional consistency score (FCS) among their
target genes and the known target genes associated with prostatic neoplasms. (7) ‘higher Jiang’ means a miRNA has higher rank in the ranked list of Jiang’s method.
doi:10.1371/journal.pone.0070204.t004
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a miRNA is a newly reported prostatic neoplasms-related miRNA

which is collected by the latest version of human miRNA-disease

database HMDD. (4) ‘miR2Disease’ means that a miRNA is

included in the manually curated miRNA-disease association

database, miR2Disease. (5) ‘higher RWRMDA’ means a miRNA

has higher rank in the ranked list of RWRMDA. (6) ‘higher FCS’

means a miRNA has greater functional consistency score (FCS)

among their target genes and the known target genes associated

with prostatic neoplasms. (7) ‘higher Jiang’ means a miRNA has

higher rank in the ranked list of Jiang’s method.

(DOC)

Table S4 The top 50 breast neoplasms-related miRNA
candidates in the ranked list. (1) ‘literature’ means that there

is a literature to support that the miRNA is upregulated or

downregulated in human breast neoplasm, as compared with

normal breast tissue. (2) With analysis of the microarray data sets,

a miRNA is considered to potentially have different express levels

in breast cancer when compared to normal tissues. This kind of

miRNAs is labeled by ‘dbDEMC’. (3) ‘HMDD’ means that a

miRNA is a newly reported breast neoplasms-related miRNA

which is collected by the latest version of human miRNA-disease

database HMDD. (4) ‘miR2Disease’ means that a miRNA is

included in the manually curated miRNA-disease association

database, miR2Disease. (5) G2SBC is a genes-to-systems breast

cancer database, which is usually used for assistant studying the

breast cancer. ‘G2SBC’ means some of the top predicted target

mRNAs of a miRNA are breast cancer-related genes. (6) ‘higher

RWRMDA’ means a miRNA has higher rank in the ranked list of

RWRMDA. (7) ‘higher FCS’ means a miRNA has greater

functional consistency score (FCS) among their target genes and

the known target genes associated with breast neoplasms.

(DOC)

Table S5 The top 50 lung neoplasms-related miRNA
candidates in the ranked list. (1) ‘literature’ means that there

is a literature to support that the miRNA is upregulated or

downregulated in human lung neoplasm, as compared with

normal lung tissue. (2) With analysis of the microarray data sets, a

miRNA is considered to potentially have different express levels in

lung cancer when compared to normal tissues. This kind of

miRNAs is labeled by ‘dbDEMC’. (3) ‘HMDD’ means that a

miRNA is a newly reported lung neoplasms-related miRNA which

is collected by the latest version of human miRNA-disease

database HMDD. (4) ‘miR2Disease’ means that a miRNA is

included in the manually curated miRNA-disease association

database, miR2Disease. (5) ‘higher RWRMDA’ means a miRNA

has higher rank in the ranked list of RWRMDA. (6) ‘higher FCS’

means a miRNA has greater functional consistency score (FCS)

among their target genes and the known target genes associated

with lung neoplasms. (7) ‘higher Jiang’ means a miRNA has higher

rank in the ranked list of Jiang’s method. (8) ‘unconfirmed’ means

there is no evidence to confirm that a miRNA is potentially

associated with lung neoplasms.

(DOC)
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