
Efficient Computation of Longest Common

Subsequences with Multiple Substring

Inclusive Constraints

XIAODONG WANG,1 LEI WANG,2 and DAXIN ZHU3

ABSTRACT

In this article, we consider a generalized longest common subsequence (LCS) problem with
multiple substring inclusive constraints. For the two input sequences X and Y of lengths n
and m, and a set of d constraints P = fP1‚ � � � ‚ Pdg of total length r, the problem is to find a
common subsequence Z of X and Y including each of constraint string in P as a substring
and the length of Z is maximized. A new dynamic programming solution to this problem is
presented in this article. The correctness of the new algorithm is proved. The time com-
plexity of our algorithm is O(d2dnmr). In the case of the number of constraint strings is fixed,
our new algorithm for the generalized LCS problem with multiple substring inclusive
constraints requires O(nmr) time and space.

Keywords: dynamic programming, generalized longest common subsequence problem, longest

common subsequence, multiple substring inclusive constraints.

1. INTRODUCTION

The longest common subsequence (LCS) problem is a classic computer science problem, and has

applications in bioinformatics. It is further widely applied in diverse areas, such as file comparison, pattern

matching, and computational biology (Apostolico and Guerra, 1987; Chin et al., 2004; Ann et al., 2010). Given

two sequences X and Y, the LCS problem is to find a subsequence of X and Y whose length is the longest among

all common subsequences of the two given sequences. It differs from the problems of finding common sub-

strings: unlike substrings, subsequences are not required to occupy consecutive positions within the original

sequences. The most referred algorithm, proposed by Wagner and Fischer (1974), solves the LCS problem by

using a dynamic programming algorithm in quadratic time. Other advanced algorithms were proposed in the past

decades (Hirschberg, 1977; Apostolico and Guerra, 1987; Ann et al., 2008, 2010; Iliopoulos and Rahman, 2009).

If the number of input sequences is not fixed, the problem to find the LCS of multiple sequences has been proved

to be nondeterministic polynomial (NP)-hard. Some approximate and heuristic algorithms were proposed for

these problems (Blum et al., 2009).

For some biological applications, some constraints must be applied to the LCS problem. These kinds of variants

of the LCS problem are called the constrained longest common subsequence (CLCS) problem. One of the recent

1School of Information Science and Engineering, University of Technology, Fuzhou, China.
2Facebook, Inc., Menlo Park, California.
3School of Mathematics and Computer Science, Quanzhou Normal University, Quanzhou, China.

JOURNAL OF COMPUTATIONAL BIOLOGY

Volume 26, Number 9, 2019

Mary Ann Liebert, Inc.

Pp. 938–947

DOI: 10.1089/cmb.2019.0008

938

D
ow

nl
oa

de
d

by
 U

ni
ve

rs
ite

it
U

tr
ec

ht
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

3/
05

/2
0.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

variants of the LCS problem, the CLCS that was first addressed by Tsai (2003), has received much attention. It

generalizes the LCS measure by introducing of a third sequence, which allows to extort that the obtained CLCS has

some special properties. For two given input sequences X and Y of lengths m and n, respectively, and a constrained

sequence P of length r, the CLCS problem is to find the common subsequences Z of X and Y such that P is a

subsequence of Z and the length of Z is the maximum. The most referred algorithms were proposed independently

(Chin et al., 2004; Arslan and Egecioglu, 2005), which solve the CLCS problem in O(mnr) time and space by using

dynamic programming algorithms. Some improved algorithms have also been proposed (Iliopoulos and Rahman,

2008; Deorowicz and Obstoj, 2010; Wang et al., 2013). The LCS and CLCS problems on the indeterminate strings

were extended to that with weighted constraints, a more generalized problem (Peng et al., 2010).

Recently, a new variant of the CLCS problem, the restricted LCS problem, was proposed, which

excludes the given constraint as a subsequence of the answer. The restricted LCS problem becomes NP-

hard when the number of constraints is not fixed. Some more generalized forms of the CLCS problem, the

generalized constrained longest common subsequence (GC-LCS) problems, were addressed independently

by Chen and Chao (2011).

For the two input sequences X and Y of lengths n and m, respectively, and a constraint string P of length

r, the GC-LCS problem is a set of four problems that are to find the LCS of X and Y including/excluding P

as a subsequence/substring, respectively. The four GC-LCS problems (Chen and Chao, 2011) can be

summarized in Table 1.

For the four problems given in Table 1, O(mnr) time algorithms were proposed (Chen and Chao, 2011). For

all four variants in Table 1, O(r(m + n) + (m + n) log (m + n)) time algorithms were proposed by using the finite

automata. Recently, a quadratic algorithm to the STR-IC-LCS problem was proposed (Deorowicz, 2012).

The four GC-LCS problems can be generalized further to the cases of multiple constraints. In these

generalized cases, the single constrained pattern P will be generalized to a set of d constraints

P = fP1‚ � � � ‚ Pdg of total length r, as shown in Table 2.

The problem M-SEQ-EC-LCS has also been proved to be NP-hard in Tseng and Yang (2013). In

addition, the problems M-STR-IC-LCS and M-STR-EC-LCS were also declared to be NP-hard in Chen and

Chao (2011), but without a proof.

We discuss the problem M-STR-IC-LCS in this article. The failure functions in the Knuth–Morris–Pratt

(KMP) algorithm (Knuth et al., 1977) for solving the string matching problem have been proved very helpful for

solving the STR-IC-LCS problem. It has been found by Aho and Corasick (1975) that the failure functions can be

generalized to the case of keyword tree to speed up the exact string matching of multiple patterns. This idea can be

very helpful in our dynamic programming algorithm. This is the principle idea of our new algorithm, and it

enables us to design a very efficient algorithm for the M-STR-IC-LCS problem with time complexity O(d2dnmr),

where n and m are the lengths of the two given input strings and r is the total length of d constraint strings.

In the special case of d = 1, our solution is cubic. Some solutions are quadratic in the literature, for example, the

quadratic algorithms for the STR-IC-LCS problem in Alam and Rahman (2012) and Deorowicz (2012). In the

algorithm of Deorowicz (2012), the LCS-computation procedure is used as a component of the algorithm. Two

dynamic programming (DP) matrices are computed in the algorithm: the forward matrix and the reverse matrix.

The recurrence is exactly as for the LCS computation. In the final stage, the result is established according to the two

DP matrices. In the section of improvements and extensions in Deorowicz (2012), the author claimed that the

generalization of the LCS problem for many sequences is direct, but the time complexity of the exact algorithm

computing the multidimensional DP matrix is O(2dnd), where d is the number of sequences of length O(n) each.

The STR-IC-LCS problem generalizes in the same way and the worst-case time complexity is also O(2dnd). It is not

clear how the quadratic algorithm of Deorowicz (2012) can be generalized to solve the M-STR-IC-LCS problem.

Alam and Rahman (2012) claimed to provide a slightly better quadratic algorithm for the STR-IC-LCS

problem independently and also a general solution wherein the set of constraint patterns can be handled. The

Table 1. The Generalized Constrained Longest Common Subsequence Problems

Problem Input Output

SEQ-IC-LCS X, Y, and P The LCS of X and Y including P as a subsequence

STR-IC-LCS X, Y, and P The LCS of X and Y including P as a substring

SEQ-EC-LCS X, Y, and P The LCS of X and Y excluding P as a subsequence

STR-EC-LCS X, Y, and P The LCS of X and Y excluding P as a substring

LCS, longest common subsequence.

LCS WITH MULTIPLE SUBSTRING INCLUSIVE CONSTRAINTS 939

D
ow

nl
oa

de
d

by
 U

ni
ve

rs
ite

it
U

tr
ec

ht
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

3/
05

/2
0.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

basic idea of their first quadratic algorithm for the STR-IC-LCS problem is the same as the algorithm of

Deorowicz (2012). The forward and the reverse DP matrices are computed first. Then result is established

according to the two DP matrices. The only difference between the two algorithms is that while computing

each of the occurrences of the string, the unique position is kept in Alam and Rahman (2012) while multiple

positions are kept in Deorowicz (2012). Based on the first algorithm, the authors present a dynamic pro-

gramming formula to directly compute the STR-IC-LCS problem. Moreover, the algorithm can be gener-

alized to solve a restrict M-STR-IC-LCS problem, where an ordered list of d constrained strings is given and

the goal is to find an LCS containing each of them as a substring in the order they appear in the list.

A similar dynamic programming formula is given to solve this restrict M-STR-IC-LCS problem, with a

computing time O(nmd), where n and m are the lengths of the two given input strings and d is the number of

ordered constrained strings. The order of the d constrained strings plays an important role in the generalized

algorithm. The quadratic algorithm for the STR-IC-LCS problem can be applied successively to the d

constrained strings with their order. For the more general M-STR-IC-LCS problem, if we know the order of

the p constrained strings in the solution in advance, we can use the algorithm in Tseng and Yang (2013) to

find a solution in O(nmd). But, it is difficult to see how the dynamic programming formula for solving the

restrict M-STR-IC-LCS problem can be generalized to the M-STR-IC-LCS problem without an order

restriction.

The exponential-time algorithms for solving these two problems were also presented in Chen and Chao

(2011). In their article, Chen and Chao (2011) present a property of a solution for the STR-IC-LCS problem with

two constrained patterns. Based on this property, they can solve the STR-IC-LCS problem with two constrained

patterns in O(mnq1q2) time and O(mn �maxfq1q2g) space, where q1 and q2 are the lengths of the two

constrained patterns, respectively. It is difficult to see how this property can be extended to the cases of more than

two constrained patterns. Even though the property can be extended to the cases of more than two constrained

patterns, the time cost of the extended algorithm would be O(mn
Qd

k = 1 qk), where qk, 1 � k � d, are the lengths

of the d constrained patterns, respectively. Compared with the time complexity of the algorithm presented in this

article, the factor
Qd

k = 1 qk will be reduced to d2d
Pd

k = 1 qk. The big difference between the product and the sum

of d positive integers is evident, especially in the case of d, the number of constrained patterns, being a constant.

The organization of the article is as follows.

In the following four sections, we describe our presented dynamic programming algorithm for the M-

STR-IC-LCS problem.

In Section 2, preliminary knowledge for presenting our algorithm for the M-STR-IC-LCS problem is

discussed. In Section 3, we give a new dynamic programming solution for the M-STR-IC-LCS problem

with time complexity O(d2dnmr), where n and m are the lengths of the two given input strings, and r is the

total length of d constraint strings. In Section 4, we discuss the issues to implement the algorithm effi-

ciently. Some concluding remarks are provided in Section 5.

2. PRELIMINARIES

A sequence is a string of characters over an alphabet
P

. A subsequence of a sequence X is obtained by

deleting zero or more characters from X (not necessarily contiguous). A substring of a sequence X is a

subsequence of successive characters within X.

Table 2. The Multiple-Generalized Constrained Longest Common Subsequence Problems

Problem Input Output

M-SEQ-IC-LCS X, Y, and a set of constraints P = fP1‚ � � � ‚ Pdg The LCS of X and Y including each

of constraint Pi 2 P as a subsequence

M-STR-IC-LCS X, Y, and a set of constraints P = fP1‚ � � � ‚ Pdg The LCS of X and Y including each

of constraint Pi 2 P as a substring

M-SEQ-EC-LCS X, Y, and a set of constraints P = fP1‚ � � � ‚ Pdg The LCS of X and Y excluding each

of constraint Pi 2 P as a subsequence

M-STR-EC-LCS X, Y, and a set of constraints P = fP1‚ � � � ‚ Pdg The LCS of X and Y excluding each

of constraint Pi 2 P as a substring

940 WANG ET AL.

D
ow

nl
oa

de
d

by
 U

ni
ve

rs
ite

it
U

tr
ec

ht
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

3/
05

/2
0.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

For a given sequence X = x1x2 � � � xn of length n, the ith character of X is denoted as xi 2
P

for any

i = 1‚ � � � ‚ n. A substring of X from positions i to j can be denoted as X[i : j] = xixi + 1 � � � xj. If i 6¼ 1 or j 6¼ n,

then the substring X[i : j] = xixi + 1 � � � xj is called a proper substring of X. A substring X[i : j] = xixi + 1 � � � xj is

called a prefix or a suffix of X if i = 1 or j = n, respectively.

For the two input sequences X = x1x2 � � � xn and Y = y1y2 � � � ym of lengths n and m, respectively, and a set

of d constraints P = fP1‚ � � � ‚ Pdg of total length r, the problem M-STR-IC-LCS is to find an LCS of X and

Y including each of constraint Pi 2 P as a substring.

Keyword tree (Aho–Corasick automaton; Aho and Corasick, 1975) is a main data structure in our

dynamic programming algorithm to process the constraint set P of the M-STR-IC-LCS problem.

Definition 1. The keyword tree for set P is a rooted directed tree T satisfying three conditions: (1)

each edge is labeled with exactly one character; (2) any two edges out of the same node have distinct

labels; and (3) every string Pi in P maps to some node v of T such that the characters on the path from the

root of T to v exactly spell out Pi, and every leaf of T is mapped to some string in P.

To identify the nodes of T, we assign numbers 0‚ 1‚ � � � ‚ t - 1 to all t nodes of T in their preorder numbering.

Then, each node will be assigned an integer i‚ 0 � i < t, as shown in Figure 1. For each node numbered i of a

keyword tree T, the concatenation of characters on the path from the root to the node i spells out a string denoted

as L(i). The string L(i) is also called the label of the node i in the keyword tree T. For example, Figure 1 shows

the keyword tree T for the constraint set P = faab‚ aba‚ bag, where P1 = aab‚ P2 = aba‚ P3 = ba, and d = 3‚ r = 8.

Clearly, every node in the keyword tree corresponds to a prefix of one of the strings in set P, and every prefix of a

string Pi in P maps to a distinct node in the keyword tree T. The keyword tree for set P of total length r of all

strings can be easily constructed in O(r) time for a constant alphabet size.

The keyword tree can be extended into an automaton, Aho–Corasick automaton, which consists of three

functions, a goto function, an output function, and a failure function. The goto function is represented as the

solid edges of the keyword tree and the output function indicates when the matches occur and which strings

are output. For each node i, its output function is denoted as Oi, a set of indices that indicates when the node

i is reached, then for each index j 2 Oi, the string Pj is matched. For example, the output sets of nodes 3, 5,

and 7 are O3 = f1g, O5 = f2‚ 3g, and O7 = f3g, which means that the outputs of nodes 3, 5, and 7 are

fP1 = aabg, fP2 = aba‚ P3 = bag, and fP3 = bag, respectively.

The failure function indicates which node to go if there is no character to be further matched. It is a

generalization of the failure functions in the KMP algorithm for solving the string matching problem. It is

represented by the dashed edges in Figure 1.

For any node i of T, define lp(i) to be the length of the longest proper suffix of string L(i) that is a prefix of

some string in T. For each node i of T, if A is a suffix of string L(i) in length lp(i), then there must be a node

pre(i) in T such that L(pre(i)) = A. If lp(i) = 0 then pre(i) = 0 is the root of T.

The ordered pair (i‚ pre(i)) is called a failure link. The failure link is a direct generalization of the failure

functions in the KMP algorithm. For example, in Figure 1, failure links are shown as pointers from every node i

to node pre(i) where lp(i) > 0. The other failure links point to the root and are not shown. The failure links of T

define actually a failure function pre for the constraint set P. As stated in Aho and Corasick (1975), for a

constant alphabet size, in the worst case, the failure function pre can be computed in O(r) time.

FIG. 1. Keyword trees.

LCS WITH MULTIPLE SUBSTRING INCLUSIVE CONSTRAINTS 941

D
ow

nl
oa

de
d

by
 U

ni
ve

rs
ite

it
U

tr
ec

ht
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

3/
05

/2
0.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

The failure list of a given node is the ordered list of the nodes that locate on the path to the root through

dashed edges. For example, for the nodes i = 1‚ 2‚ 3‚ 4‚ 5‚ 6‚ 7, the corresponding values of failure function

are pre(i) = 0‚ 1‚ 4‚ 6‚ 7‚ 0‚ 1. The failure list of node 5 is f7! 1! 0g, and the failure list of node 6 is f0g,
as shown in Figure 1.

The failure function pre is used to speed up the search for all occurrences in a text Z of strings from P. For each

node i of T, and a character c 2
P

, if no edges out of the node i is labeled c, then the failure link of node i directs

the search to the node pre(i). It is equivalent to add the edge (i‚ pre(i)) labeled c to the node i. This set matching

method generalized the next function in KMP algorithm to the Aho–Corasick-next function as follows.

Definition 2. Given a keyword tree T and its failure function, for each node i of T and each character

c 2
P

, Aho–Corasick-next function d(i‚ c) denotes the destination of the first node in i’s failure list that has

an edge labeled c. If there exists no such node in the failure list, the function returns the root.

Table 3 shows the Aho–Corasick-next function d corresponding to the example in Figure 1.

We take node 4 as an example. It can be seen from Figure 1 that d(4‚ a) = 5 and d(4‚ b) = 0. It is easy to

see that each element of Aho–Corasick-next function can be computed in constant time.

The symbol � is also used to denote the string concatenation. For example, if S1 = aaa and S2 = bbb, then

it is readily seen that S1 � S2 = aaabbb.

3. OUR MAIN RESULT: A DYNAMIC PROGRAMMING ALGORITHM

Let T be a keyword tree for the given constraint set P, and Z[1 : l] = z1‚ z2‚ � � � ‚ zl be any common

subsequence of X and Y. If we search the set matching of Z from the root of T in the direction of the Aho–

Corasick-next function 4 d of T, then the search will stop in a node i of T. All such common subsequences

of X and Y can be classified into a group i, 0 � i < t. These t groups are still not sufficient to distinguish the

different states in our dynamic programming algorithm, since the common subsequence of X and Y in the

same group may contain different subsets of P. Therefore, we must divide each group into 2d new states by

attaching d flags to denote the combinations that constraints have been kept. The d flags can be recorded by

a d bits vector s. If the string Pj 2 P is kept, then the bit j of s is set to 1, otherwise 0. There are total 2d

different such bit vectors, denoted as s0‚ s1‚ � � � ‚ s2d - 1 as follows.

Definition 3.

� Let 0 � j< 2d and j =
Pd

i = 1 bi2
i - 1. Then the set sj is defined as sj = fijbi = 1‚ 1 � i � dg.

Inversely, let s = fk1‚ k2‚ � � � ‚ kpg, where 1 � k1 < k2 < � � � < kp � d. Then, the set s can be mapped

into an integer j = g(s) =
Pp

i = 1 2ki - 1, and s = sj.

� If a subset of strings q = fPk1
‚ Pk2

‚ � � � ‚ Pkh
g � P must be added to the set sj, then the set sj becomes sk,

where k = j_
Ph

i = 1 2ki - 1, and the operation _ is a bitwise or operation of two integers. In this case we

denote sk = sj

S
q.

� For a sequence z with state (a‚ b) in a given keyword tree T, and a character c 2
P

, we now consider

the state of the sequence �z = z � c in T. From the node a, the search for �z will go to node �a = d(a‚ c). If

O�a, the output set of the node �a is not empty, then the strings of O�a must be included in the sequence �z,

and thus the set sb will be changed to sb
S

O�a. In this case, the set sb
S

O�a can be mapped into an

integer �b = g(sb
S

O�a). We denote this integer as �b = c(a‚ b‚ c). In other words, the state of the �z = z � c

in T becomes (d(a‚ c)‚ c(a‚ b‚ c)).

For example, in the example of Figure 1, we have d = 3, and s1 = f1g, s6 = f2‚ 3g, s7 = f1‚ 2‚ 3g, and

s7 = s1

S
s6

.

Table 3. Aho–Corasick-Next Function

d 0 1 2 3 4 5 6 7

a 1 2 1 4 5 1 7 1

b 6 4 3 0 0 1 0 1

942 WANG ET AL.

D
ow

nl
oa

de
d

by
 U

ni
ve

rs
ite

it
U

tr
ec

ht
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

3/
05

/2
0.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

Finally we have t2d different states in our dynamic programming algorithm. For each pair (a‚ b),

0 � a < t‚ 0 � b< 2d, the state (a‚ b) represents the set of common subsequence of X and Y in group i and

the subset of P contained in the subsequence is recorded by bit vector sb.

Definition 4. Let Z(i‚ j‚ (a‚ b)) denote the set of all LCSs of X[1 : i] and Y[1 : j] with state (a‚ b), where

1 � i � n‚ 1 � j � m, and 0 � a < t‚ 0 � b< 2d. The length of an LCS in Z(i‚ j‚ (a‚ b)) is denoted as

f (i‚ j‚ (a‚ b)).

If we can compute f (i‚ j‚ (a‚ b)) for any 1 � i � n‚ 1 � j � m, and 0 � a < t‚ 0 � b< 2d efficiently, then

the length of an LCS of X and Y including P must be max
0�i<t

f (n‚ m‚ (i‚ 2d - 1))
� �

.

By using the keyword tree data structure described in the last section, we can give a recursive formula for

computing f (i‚ j‚ (a‚ b)) by the following Theorem.

Theorem 1. For the two input sequences X = x1x2 � � � xn and Y = y1y2 � � � ym of lengths n and m, re-

spectively, and a set of d constraints P = fP1‚ � � � ‚ Pdg of total length r, let Z(i‚ j‚ (a‚ b)) and f (i‚ j‚ (a‚ b)) be

defined as in Definition 4. Suppose a keyword tree T for the constraint set P has been built, and the t nodes

of T are numbered in their preorder numbering. The label of the node numbered k(0 � k < t) is denoted as

L(k). Then, for any 1 � i � n‚ 1 � j � m, and 0 � a < t‚ 0 � b< 2d, f (i‚ j‚ (a‚ b)) can be computed by the

following recursive Equation (1).

f (i‚ j‚ (a‚ b)) =
max f (i - 1‚ j‚ (a‚ b))‚ f (i‚ j - 1‚ (a‚ b))f g if xi 6¼ yj‚

max f (i - 1‚ j - 1‚ (a‚ b))‚ 1 + max
(�a‚ �b)2S(a‚ b‚ xi)

f (i - 1‚ j - 1‚ (�a‚ �b))
� �� �

if xi = yj:

8<
: (1)

where

S(a‚ b‚ xi) = f(�a‚ �b)j0 � �a < t‚ 0 � �b< 2d‚ d(�a‚ xi) = a‚ c(�a‚ �b‚ xi) = bg (2)

The boundary conditions of this recursive formula are f (i‚ 0‚ (0‚ 0)) = f (0‚ j‚ (0‚ 0)) = 0 for any

0 � i � n‚ 0 � j � m.

Proof.

For any 0 � i � n‚ 0 � j � m and 0 � a < t‚ 0 � b< 2d, suppose f (i‚ j‚ (a‚ b)) = l and z = z1 � � � zl 2
Z(i‚ j‚ (a‚ b)).

First of all, we notice that for each pair (i0‚ j0)‚ 1 � i0 � n‚ 1 � j0 � m, such that i0 � i and j0 � j, we have

f (i0‚ j0‚ (a‚ b)) � f (i‚ j‚ (a‚ b)), since a common subsequence z of X[1 : i0] and Y[1 : j0] with state (a‚ b) is

also a common subsequence of X[1 : i] and Y[1 : j] with state (a‚ b).

(1) In the case of xi 6¼ yj, we have xi 6¼ zl or yj 6¼ zl.

(1.1) If xi 6¼ zl, then z = z1 � � � zl is a common subsequence of X[1 : i - 1] and Y[1 : j] with state (a‚ b),

and so f (i - 1‚ j‚ (a‚ b)) � l. In contrast, f (i - 1‚ j‚ (a‚ b)) � f (i‚ j‚ (a‚ b)) = l. Therefore, in this case we

have f (i‚ j‚ (a‚ b)) = f (i - 1‚ j‚ (a‚ b)).

(1.2) If yj 6¼ zl, then we can prove similarly that in this case, f (i‚ j‚ (a‚ b)) = f (i‚ j - 1‚ (a‚ b)).

Combining the two subcases we conclude that in the case of xi 6¼ yj, we have

f (i‚ j‚ (a‚ b)) = max f (i - 1‚ j‚ (a‚ b))‚ f (i‚ j - 1‚ (a‚ b))f g:

(2) In the case of xi = yj, there are also two cases to be distinguished.

(2.1) If xi = yj 6¼ zl, then z = z1 � � � zl is also a common subsequence of X[1 : i - 1] and Y[1 : j - 1] with

state (a‚ b), and so f (i - 1‚ j - 1‚ (a‚ b)) � l. In contrast, f (i - 1‚ j - 1‚ (a‚ b)) � f (i‚ j‚ (a‚ b)) = l.

Therefore, in this case we have f (i‚ j‚ (a‚ b)) = f (i - 1‚ j - 1‚ (a‚ b)).

(2.2) If xi = yj = zl, then f (i‚ j‚ (a‚ b)) = l > 0 and z = z1 � � � zl is an LCS of X[1 : i] and Y[1 : j] with state

(a‚ b).

Let the state of (z1‚ � � � ‚ zl - 1) be (�a‚ �b), then we have (�a‚ �b) 2 S(a‚ b‚ xi), since zl = xi. It follows that

z1 � � � zl - 1 is a common subsequence of X[1 : i - 1] and Y[1 : j - 1] with state (�a‚ �b). Therefore, we have

f (i - 1‚ j - 1‚ (�a‚ �b)) � l - 1:

LCS WITH MULTIPLE SUBSTRING INCLUSIVE CONSTRAINTS 943

D
ow

nl
oa

de
d

by
 U

ni
ve

rs
ite

it
U

tr
ec

ht
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

3/
05

/2
0.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

Furthermore, we have

max
(�a‚ �b)2S(a‚ b‚ xi)

f (i - 1‚ j - 1‚ (�a‚ �b))
� �

� l - 1:

In other words,

f (i‚ j‚ (a‚ b)) � 1 + max
(�a‚ �b)2S(a‚ b‚ xi)

f (i - 1‚ j - 1‚ (�a‚ �b))
� �

: (3)

In contrast, for any (�a‚ �b) 2 S(a‚ b‚ xi), and v = v1 � � � vh 2 Z(i - 1‚ j - 1‚ (�a‚ �b)), v� xi is a common sub-

sequence of X[1 : i] and Y[1 : j] with state (a‚ b). Therefore, f (i‚ j‚ (a‚ b)) = l � 1 + h = 1 + f (i - 1‚

j - 1‚ (�a‚ �b)), and so we conclude that

f (i‚ j‚ (a‚ b)) � 1 + max
(�a‚ �b)2S(a‚ b‚ xi)

f (i - 1‚ j - 1‚ (�a‚ �b))
� �

: (4)

Combining (3) and (4) we have, in this case,

f (i‚ j‚ (a‚ b)) = 1 + max
(�a‚ �b)2S(a‚ b‚ xi)

f (i - 1‚ j - 1‚ (�a‚ �b))
� �

: (5)

Combining the two subcases in the case of xi = yj, we conclude that the recursive Equation (1) is correct

for the case xi = yj.

The proof is complete. -

4. IMPLEMENTATION OF THE ALGORITHM

According to Theorem 1, our algorithm for computing f (i‚ j‚ (a‚ b)) is a standard three-dimensional

dynamic programming algorithm. By the recursive Equation (1), the dynamic programming algorithm for

computing f (i‚ j‚ (a‚ b)) can be implemented as the following Algorithm 1.

Algorithm 1: M-STR-IC-LCS

1 Input: Strings X = x1 � � � xn, Y = y1 � � � ym of lengths n and m, respectively, and a set of d constraints P = fP1‚ � � � ‚ Pdg
of total length r

2 Output: The length of an LCS of X and Y including P

1: Build a keyword tree T for P

2: for all i‚ j, 0 � i � n‚ 0 � j � m do

3: f (i‚ 0‚ (0‚ 0)))0‚ f (0‚ j‚ (0‚ 0)))0 {boundary condition}

4: end for

5: S)f(0‚ 0)g {current set of states}

6: for i = 1 to n do

7: for j = 1 to m do

8: for each (a‚ b) 2 S do

9: if xi 6¼ yj then

10: f (i‚ j‚ (a‚ b))) maxff (i - 1‚ j‚ (a‚ b))‚ f (i‚ j - 1‚ (a‚ b))g
11: else

12: �a)d(a‚ xi), �b)c(a‚ b‚ c), s�b)sb
S

O�a

13: f (i‚ j‚ (�a‚ �b))) maxff (i - 1‚ j - 1‚ (�a‚ �b))‚ 1 + f (i - 1‚ j - 1‚ (a‚ b))g
14: S)S

S
f(�a‚ �b)g

15: end if

16: end for

17: end for

18: end for

19: return max
0�i<t

f (n‚ m‚ (i‚ 2d - 1)
� �

In Algorithm 1, T is the keyword tree for set P. The root of the keyword tree is numbered 0, and the other

nodes are numbered 1‚ 2‚ � � � ‚ t - 1 in their preorder numbering. d(a‚ c) is the Aho–Corasick-next function

defined in Definition 2, which can be computed in O(1) time. The function c(a‚ b‚ c) is defined in Definition

3, which can be computed in O(d) time. The variable S is used to record the current states created. If a node

944 WANG ET AL.

D
ow

nl
oa

de
d

by
 U

ni
ve

rs
ite

it
U

tr
ec

ht
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

3/
05

/2
0.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

is reached and its output set is not empty, then a new state may be created. The current state set S is

extended gradually in the ‘‘for’’ loop of Algorithm 1. In the worst case, the set S will have a size of

t2d = O(2dr), where r is the total lengths of the constrained strings. The body of the triple for loops can be

computed in O(d) time in the worst case. Therefore, the total time of Algorithm 1 is O(d2dnmr). The space

used by Algorithm 1 is O(2dnmr). In case the number of constraint strings is fixed, that is, d is a constant,

our new algorithm for the M-STR-IC-LCS problem requires O(nmr) time and space.

The number of constraints is an influent factor in the time and space complexities of our new algorithm.

If a string Pi in the constraint set P is a proper substring of another string Pj in P, then an LCS of X and Y

including Pj must also include Pi. For this reason, the constraint string Pi can be removed from constraint

set P without changing the solution of the problem. Without loss of generality, we can make the following

two assumptions on the constraint set P.

Assumption 1. There are no duplicated strings in the constraint set P.

Assumption 2. No string in the constraint set P is a proper substring of any other string in P.

If Assumption 1 is violated, then there must be some duplicated strings in the constraint set P. In this

case, we can first sort the strings in the constraint set P, then duplicated strings can be removed from P

easily and then Assumption 1 on the constraint set P is satisfied. It is clear that removed strings will not

change the solution of the problem.

For Assumption 2, we first notice that a string A in the constraint set P is a proper substring of string B in P, if

and only if in the keyword tree T of P, there is a directed path of failure links from a node v on the path from the

root to the leaf node corresponding to string B to the leaf node corresponding to string A (Aho and Corasick,

1975). For example, in Figure 1, there is a directed path of failure links from nodes 5 to 7 and thus we know the

string ba corresponding to node 7 is a proper substring of string aba corresponding to node 5.

With this fact, if Assumption 2 is violated, we can remove all proper substrings from the constraint set P

as follows. We first build a keyword tree T for the constraint set P, then mark all the leaf nodes pointed by a

failure link in T by using a depth first traversal of T. All the strings corresponding to the marked leaf node

can then be removed from P. Assumption 2 is now satisfied on the new constraint set and the keyword tree

T for the new constraint set is then rebuilt. It is not difficult to do this preprocessing in O(r) time. It is clear

that the removed proper substrings will not change the solution of the problem.

If we want to compute the LCS of X and Y including P, but not just its length, we can also present a

simple recursive backtracking algorithm for this purpose as the following Algorithm 2.

In the end of our new algorithm, we will find an index a such that f (n‚ m‚ (a‚ 2d - 1)) gives the length of

an LCS of X and Y including P. Then, a function call back(n‚ m‚ (a‚ 2d - 1)) will produce the answer LCS

accordingly.

Algorithm 2: back(i‚ j‚ (a‚ b))

1 Comments: A recursive back tracing algorithm to construct the answer LCS

1: if i = 0 or j = 0 then

2: return

3: end if

4: if xi = yj then

5: if f (i‚ j‚ (a‚ b)) = f (i - 1‚ j - 1‚ (a‚ b)) then

6: back(i - 1‚ j - 1‚ (a‚ b))

7: else

8: for each (�a‚ �b) 2 S do

9: if a = d(�a‚ xi) and b = c(�a‚ �b‚ xi) and f (i‚ j‚ (a‚ b)) = 1 + f (i - 1‚ j - 1‚ (�a‚ �b)) then

10: back(i - 1‚ j - 1‚ (�a‚ �b))

11: print xi

12: end if

13: end for

14: end if

15: else if f (i - 1‚ j‚ (a‚ b)) > f (i‚ j - 1‚ (a‚ b)) then

16: back(i - 1‚ j‚ (a‚ b))

17: else

18: back(i‚ j - 1‚ (a‚ b))

19: end if

LCS WITH MULTIPLE SUBSTRING INCLUSIVE CONSTRAINTS 945

D
ow

nl
oa

de
d

by
 U

ni
ve

rs
ite

it
U

tr
ec

ht
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

3/
05

/2
0.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

Since the cost of d(k‚ xi) is O(1) in the worst case, the time complexity of the algorithm back(i‚ j‚ k) is

O(n + m).

Finally we summarize our results in the following Theorem.

Theorem 2. For the two input sequences X = x1x2 � � � xn and Y = y1y2 � � � ym of lengths n and m, re-

spectively, and a set of d constraints P = fP1‚ � � � ‚ Pdg of total length r, Algorithms 1 and 2 solve the

M-STR-IC-LCS problem correctly in O(d2dnmr) time and O(2dnmr) space, with preprocessing time

O(rjSj). In case the number of constraint strings is fixed, Algorithms 1 and 2 for the M-STR-IC-LCS

problem require O(nmr) time and space.

5. CONCLUDING REMARKS

We have suggested a new dynamic programming solution for the new GC-LCS problem M-STR-IC-

LCS. The new dynamic programming algorithm requires O(d2dnmr) time in the worst case. In case the

number of constraint strings d is fixed, our new algorithm for the M-STR-IC-LCS problem requires O(nmr)

time and space, and thus this is a polynomial time algorithm. If d is not fixed, the time complexity

O(d2dnmr) is still exponential in its expression. It is not clear whether there is an efficient algorithm in this

case. We conjecture that our new algorithm is still polynomial even though d is not fixed. We will

investigate this issue further.

ACKNOWLEDGMENTS

This work was supported by Fujian Provincial Key Laboratory of Data-Intensive Computing and Fujian

University Laboratory of Intelligent Computing and Information Processing.

AUTHOR DISCLOSURE STATEMENT

The authors declare there are no competing financial interests.

REFERENCES

Aho, A., and Corasick, M. 1975. Efficient string matching: An aid to bibliographic search. Commun. ACM. 18, 333–

340.

Alam, M.R., and Rahman, M.S. 2012. The substring inclusion constraint longest common subsequence problem can be

solved in quadratic time. J. Discret. Algorithm. 17, 67–73.

Ann, H., Yang, C., Peng, Y., et al. 2010. Efficient algorithms for the block edit problems. Inf. Comput. 208, 221–229.

Ann, H., Yang, C., Tseng, C., et al. 2008. A fast and simple algorithm for computing the longest common subsequence

of run-length encoded strings. Inform. Process. Lett. 108, 360–364.

Apostolico, A., and Guerra, C. 1987. The longest common subsequences problem revisited. Algorithmica. 2, 315–336.

Arslan, A., and Egecioglu, O. 2005. Algorithms for the constrained longest common subsequence problems. Int. J.

Found. Comput. Sci. 16, 1099–1109.

Blum, C., Blesa, M., and Lpez-Ibnez, M. 2009. Beam search for the longest common subsequence problem. Comput.

Oper. Res. 36, 3178–3186.

Chen, Y., and Chao, K. 2011. On the generalized constrained longest common subsequence problems. J. Comb. Optim.

21, 383–392.

Chin, F., Santis, A., Ferrara, A., et al. 2004. A simple algorithm for the constrained sequence problems. Inform.

Process. Lett. 90, 175–179.

Deorowicz, S. 2012. Quadratic-time algorithm for a string constrained LCS problem. Inform. Process. Lett. 112, 423–

426.

Deorowicz, S., and Obstoj, J. 2010. Constrained longest common subsequence computing algorithms in practice.

Comput. Inform. 29, 427–445.

Hirschberg, D. 1977. Algorithms for the longest common subsequence problem. J. ACM. 24, 664–675.

946 WANG ET AL.

D
ow

nl
oa

de
d

by
 U

ni
ve

rs
ite

it
U

tr
ec

ht
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

3/
05

/2
0.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

Iliopoulos, C., and Rahman, M. 2008. New efficient algorithms for the LCS and constrained LCS problems. Inform.

Process. Lett. 106, 13–18.

Iliopoulos, C., and Rahman, M. 2009. A new efficient algorithm for computing the longest common subsequence.

Theor. Comput. Sci. 45, 355–371.

Knuth, D., Morris, J., and Pratt, V. 1977. Fast pattern matching in strings. SIAM J. Comput. 6, 323–350.

Peng, Y., Yang, C., and Huang, K. 2010. An algorithm and applications to sequence alignment with weighted con-

straints. Int. J. Found. Comput. Sci. 21, 51–59.

Tsai, Y. 2003. The constrained longest common subsequence problem. Inform. Process. Lett. 88, 173–176.

Tseng, C., and Yang, C. 2013. Efficient algorithms for the longest common subsequence problem with sequential

substring constraints. J. Complexity. 29, 44–52.

Wagner, R., and Fischer, M. 1974. The string-to-string correction problem. J. ACM. 21, 168–173.

Wang, L., Wang, X., Wu, Y., et al. 2013. A dynamic programming solution to a generalized LCS problem. Inform.

Process. Lett. 113, 723–728.

Address correspondence to:

Prof. Daxin Zhu

School of Mathematics and Computer Science

Quanzhou Normal University

Quanzhou 362000, China

E-mail: dex@qztc.edu.cn

LCS WITH MULTIPLE SUBSTRING INCLUSIVE CONSTRAINTS 947

D
ow

nl
oa

de
d

by
 U

ni
ve

rs
ite

it
U

tr
ec

ht
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

3/
05

/2
0.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

