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ABSTRACT

Motivation:Protein sequence comparisonmethods are routinely used

to infer the intricate network of evolutionary relationships found within

the rapidly growing library of protein sequences, and thereby to predict

the structure and function of uncharacterized proteins. In the present

study, we detail an improved statistical benchmark of pairwise protein

sequence comparison algorithms. We use bootstrap resampling tech-

niques to determine standard statistical errors and to estimate the

confidence of our conclusions. We show that the underlying structure

within benchmark databases causes Efron’s standard, non-parametric

bootstrap to be biased. Consequently, the standard bootstrap under-

predicts average performance when used in the context of evaluating

sequence comparisonmethods.Wehavedeveloped, as an alternative,

an unbiased statistical evaluation based on the Bayesian bootstrap, a

resampling method operationally similar to the standard bootstrap.

Results:We apply our analysis to the comparative study of amino acid

substitution matrix families and find that using modern matrices results

in a small, but statistically significant improvement in remote homology

detection compared with the classic PAM and BLOSUM matrices.

Availability: The sequence sets and code for performing these

analyses are available from http://compbio.berkeley.edu/.

Contact: brenner@compbio.berkeley.edu

INTRODUCTION

The workhorse method of computational protein sequence analysis

is pairwise alignment (Needleman and Wunsch, 1970; Smith and

Waterman, 1981; Gotoh, 1982; Durbin et al., 1998). This is the

underlying methodology of programs such as SSEARCH (Pearson,

1991), FASTA (Pearson et al., 1988) and BLAST (Altschul et al.,
1990). In order to compare, analyze, parameterize and improve both

existing and novel sequence algorithms, it is first necessary to

accurately measure their effectiveness (Henikoff and Heinkoff,

1993; Brenner et al., 1995; Murzin et al., 1995; Pearson, 1995;
Gribskov and Robinson, 1996; Pearson, 1996, 1998; Brenner

et al., 1998; Geetha et al., 1999; Schaffer et al., 1999; Blake and

Cohen, 2001; Schaffer et al., 2001; Green and Brenner, 2002). To

this end, we had previously developed a sensitive and flexible sys-

tem for the evaluation of pairwise protein sequence comparison

(Brenner et al., 1998; Green and Brenner, 2002). We first assembled

a non-redundant dataset of several thousand protein sequences from

the SCOP (structural classification of proteins) database (Murzin

et al., 1995) whose evolutionary relations have been reliably

determined using structure, function and sequence. Every sequence

in the dataset is then aligned against every other sequence using the

algorithm under investigation. The resulting alignment scores

(typically E-values) are used to rank order the matches. A threshold

is then drawn. There is a natural tradeoff between allowing few false

Fig. 1. Example coverage versus errors per query (CVE)plot. The coverage is

the fraction of homologous sequences detected at the corresponding error rate,

which is the average number of false positives for each database query. As we

become more permissive with respect to what constitutes a sequence match

(increasing the cutoff of the program’s reported E-Value), the program finds

morematches at the expense of producingmore errors. Thus the coverage and

error per query (EPQ) both increase. CVE plots may be thought of as ROC

plots with the axes swapped and scaled suitably to focus attention on the most

relevant error values.

*To whom correspondence should be addressed at Department of Plant and
Microbial Biology, 111 Koshland Hall #3102, University of California,
Berkeley, CA 94720-3102, USA

� The Author 2005. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org

The online version of this article has been published under an open access model. Users are entitled to use, reproduce, disseminate, or display the open access
version of this article for non-commercial purposes provided that: the original authorship is properly and fully attributed; the Journal and Oxford University
Press are attributed as the original place of publication with the correct citation details given; if an article is subsequently reproduced or disseminated not in its
entirety but only in part or as a derivative work this must be clearly indicated. For commercial re-use, please contact journals.permissions@oxfordjournals.org

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/21/20/3824/202902 by N
ational Sun Yat-sen U

niversity user on 26 February 2020

http://compbio.berkeley.edu/
tcpyo
高亮



positive errors with a stringent score cutoff, or allowing more errors

but also finding more true relations with a more permissive thresh-

old. We, therefore, vary the score threshold, and plot the proportion

of true relations found (homology coverage) versus the number of

false positive matches (errors per query or EPQ) in a manner

conceptually similar to ROC plots. This is illustrated in Fig. 1.

However, this unnormalized coverage is dominated by the largest

SCOP superfamilies, since the number of relations scales as the

square of the superfamily size. To compensate for this unwarranted

dependence, we also report reweighted results, namely the average

fraction of true relations per sequence (linear normalization) and

the average fraction of true relations per superfamily (quadratic

normalization) (Green et al., 2002).

However, it is not sufficient to only determine the difference

in performance of two algorithms. It is also necessary to determine

if the observed differences are statistically significant, given the

finite size of our datasets. To this end, we previously estimated

standard statistical errors and confidence intervals using the non-

parametric bootstrap resampling method of Efron (Efron 1979;

Efron and Robert, 1993). We generate many replicas of the original

dataset by sampling N sequences, with replacement, from our

original dataset of N sequences. We then calculate the statistic of

interest (typically, the homology coverage at 0.01 EPQ) for

each replica. The standard deviation of the replica statistics is an

approximation to the standard error induced by the finite size of

our dataset.

Fig. 2. Demonstration of the difference between a standard and Bayesian bootstrap using the optimal parameter settings for the BLOCKS 13+BLOSUMmatrix

family and the test dataset. The original CVE lines are heavier and thicker than the 200 bootstrapped replicas. (A) The standard bootstrap preferentially selects

sequences from larger, more diverse superfamilies where the correct sequence relationships are harder to discover. Thus, when each superfamily possesses the

same amount of possible coverage (quadratic normalization), the bootstrap is biased toward the left because smaller superfamilies often drop out of the analysis

entirely. Linear normalization displays a less severe effect. Since larger superfamily relationships are harder to discover, when the superfamilies have equal total

weight (quadratic normalization), the coverage is much higher than with no normalization. To a lesser degree, the same effect is observable with linear

normalization. The bottom graph makes clear that the standard bootstrap also overpredicts the variance under normalization. (B) As the Bayesian bootstrap

assigns non-integer weights to each sequence, smaller superfamilies will not drop out of the analysis. This eliminates the bias and overpredicted variance of the

standard bootstrap.

Bayesian evaluation of protein sequence comparison
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Unfortunately, this straightforward resampling technique leads

to anomalous results when applied to our evaluation of pairwise

protein sequence comparison, illustrated in Figure 2A. As can be

seen, the coverage versus error (CVE) lines of the replicas (thin) are

biased relative to the original data (thick), underestimating the true

coverage. Why should this be? On reflection, it is apparent that these

anomalies are the result of an unfortunate interaction between the

resampling procedure and the fine structure of our dataset. Within

SCOP, related protein domains are grouped into superfamilies.

There are a few large, and many very small superfamilies (Green

and Brenner, 2002). As a result of the sampling procedure used in

the standard bootstrap, each sequence is represented zero, one or

more times. Because the dataset is moderately large, sequence

weights are approximately Poissionian with unit mean. Therefore,

the chance of not including a particular sequence in a replica is

�1/e, or 37%. The chance of including both sequences of a size-2

superfamily at least once is 40%. In other words, since self-relations

are not considered in our analysis, each replica has a 60% chance of

entirely neglecting each size-2 superfamily. Smaller, but still sig-

nificant proportions of other small superfamilies are also dropped.

Large superfamilies, however, may change in size from sample to

sample, but there is a proportionally smaller chance that they will

fail to be represented. This fact alone would not introduce a bias into

the standard bootstrap procedure if the relationships within smaller

superfamilies were, on average, just as easily detectable as those

within larger superfamilies. However, this is not the case. In gen-

eral, proteins within small superfamilies are more closely related,

and less diverse, than those within large superfamilies, and easier to

detect using pairwise sequence comparison. Consequently, the

undersampling of small superfamilies that results from using the

standard bootstrap biases the samples toward larger, more difficult

superfamilies, leading to an unwarranted reduction in homology

coverage within the replica ensemble.

One possible solution to this biased sampling of superfamilies

might be to resample entire superfamilies, rather than individual

sequences. However, this will probably lead to very noisy replica

ensembles, since the largest superfamilies contain themajority of the

intersequence relations. Another potential problem is that res-

ampling on superfamilies assumes that relations are transitive (i.e.

if A is related to B, and B is related to C, then A and C are related)

and therefore, related sequences are grouped into non-overlapping

families. This property is true for our current dataset, since SCOP

separates proteins into evolutionary domains. But many interesting

datasets are not transitive (e.g. multidomain protein sequences), and

therefore superfamily resampling is not universally applicable.

Schaffer et al. (2001) presented a related bootstrap method for the

evaluation of PSI-BLAST performance. Instead of resampling all

sequences, they resample only the false positives. This allows an

analytic evaluation of the bootstrap distribution, obviating the com-

putational costs, but this approximation may introduce unnecessary

bias to the error calculations.

As an alternative, we have implemented the Bayesian bootstrap

(Rubin, 1981), a Bayesian resampling procedure that is operation-

ally similar to the standard non-parametric bootstrap. In the standard

bootstrap, resampling with replacement in effect assigns to each

sequence integer weights drawn from a multinomial distribution. In

the Bayesian bootstrap, the sequences are assigned continuously

varying weights drawn from a Dirichlet distribution. This alternat-

ive procedure has a clear Bayesian interpretation. In essence, we

assume that the sequences have been sampled from some unknown

distribution to which, in the absence of any pertinent information,

we associate an uninformative prior. This prior combines with the

multinomial sample likelihood, via Bayes’ theorem, to result in a

Dirichlet posterior distribution on the fraction of the original

population that each sampled sequence represents. Therefore, we

can think of the ensemble of Bayesian bootstrap replicas, and the

distribution of statistics derived from them, as samples from a

Bayesian posterior distribution (Durbin et al., 1998).
In practice, we find that the Bayesian bootstap does not suffer

from the strong replica bias exhibited by the standard bootstrap

(Fig. 2B). Why should this be? The standard bootstrap has a

37% chance of not including any given sequence in a replica.

Consequently, its resampling does not preserve the structure of

relations between and within superfamilies, which has a detrimental

effect on the CVE statistic, since it is sensitive to this structure. In

contrast, in the Bayesian approach the sample weights are continu-

ously varying, and therefore there is a vanishingly small chance of

assigning a zero weight to any sequence. Thus, all of the interre-

lations between sequences are preserved in the replicas, albeit

reweighted (in particular, we no longer undersample small super-

families), and the replicas provide a more trustworthy estimate of

the inherent uncertainly in our statistic due to the finite size of the

dataset.

We have previously used our sequence comparison evaluation to

contrast various alignment programs, including BLAST, FASTA

and SSEARCH, to select appropriate gap parameters, and to rigor-

ously evaluate statistical E-value homology scores (Brenner, 1996;

Brenner et al., 1998; Park et al., 1998; Green and Brenner, 2002).

More recently, we have applied the Bayesian bootstrap statistics

described herein to compare different protein sequence gapping

models (Zachariah et al., 2004), to contrast various models of

amino acid evolution (Crooks and Brenner, 2004) and to evaluate

algorithmic extensions to standard Smith–Waterman alignment

(Crooks, Green and Brenner, 2005).

As a concrete example of using our methodology, in this paper

we compare the performance of several different substitution matrix

families. Every pairwise sequence alignment program requires a

substitution matrix, a 20 · 20 table of scores, each of which rep-

resents the propensity for some amino acid to be replaced by a

different amino acid during the course of protein sequence evolu-

tion. A matrix family encompasses a set of matrices that are suitable

for different evolutionary distances. In principle, we should match

the divergence inherent in the substitution matrix to the divergence

of the pair of sequences we wish to align (Altschul, 1993). However,

this is computationally expensive, and, in practice, a single matrix

is chosen based on its ability to align remote homologs, on

the grounds that matching close homologs is relatively easy

(Brenner, 1996).

Many different matrix families have been created using different

datasets and different evolutionary models. In the present work, we

compare the relative effectiveness of four such families. The pop-

ular BLOSUM matrices were derived empirically from the

BLOCKS database of reliable protein sequence alignments

(Henikoff and Henikoff, 1992; Henikoff et al., 2000). We have

also created a family of BLOSUM matrices reparameterized

using the BLOCKS 13+ database. This BLOCKS version contains

many more sequences than BLOCKS 5, the database version used to

create standard BLOSUM matrices.

G.A.Price et al.
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The classic PAM matrices (Dayhoff, 1978) were trained on a

limited set of close homologs using a Markovian model of

amino acid replacement. The modern VTML (variable time max-

imum likelihood) matrices are also based on the Dayhoff model, but

are trained on a large set of diverse homologs (Muller and Vingron,

2000; Muller et al., 2002).
A major advantage of the PAM and VTML families is that since

they are directly associated with an explicit model of amino acid

substitution, they can be used for distance estimation and

maximum-likelihood tree estimation procedures. In contrast,

there is no unique rate matrix associated to the BLOSUM matrixes.

After extensively testing these four families, we find that the modern

VTML and BLOCKS 13+ BLOSUM matrices show a small, but

statistically significant improvement in remote homology

detection compared with the classic PAM and BLOSUM matrices,

respectively.

MATERIALS AND METHODS

Dataset construction

A set of proteins whose evolutionary interrelations are known was assembled

from the SCOP database (version 1.61) (Murzin et al., 1995). SCOP clas-

sifies protein domains using structure, function and sequence and has been

widely used as a gold standard for interprotein evolutionary relations

(Brenner et al., 1995; Russell et al., 1997; Brenner et al., 1998; Karplus

et al., 1998; Lindahl and Elofsson, 2000). Protein structures are divided into

separate evolutionary domains, which are then classified into a hierarchy of

class, fold, superfamily and family. Homologous domains are placed into the

same superfamily, whereas domains belonging to different classes or folds

may safely be considered unrelated.We treat the evolutionary relationship of

domains classified in the same fold but different superfamilies as undeter-

mined and do not consider them in our benchmarking (Green and Brenner,

2002). To focus our evaluations on the detection of remote homologs, rather

than highly similar sequences, we filter the protein domains such that no two

sequences share >40% pairwise identity. The ASTRAL compendium

(Brenner et al., 2000; Chandonia et al., 2002, 2004) conveniently provides

such SCOP subsets. The 40% filtered set was further divided into training

(2592 sequences) and test (2182 sequences) sets—this allows for optimiza-

tion of methods on the training database and comparison on the test database

to avoid overfitting. The training set consists of the odd numbered folds in

SCOP classes a, c, e and g, and even folds from classes b, d and f, and

conversely for the test set. This alternation of folds is necessary to obtain

approximately equally sized subsets, since the first fold in a class is generally

the largest. Use of distinct folds maintains the independence of the sets.

Superfamily size normalization

The number of relationships within a given superfamily grows quadratically

with the size of the superfamily. Therefore, the large superfamilies account

for most true relations between protein sequences in the database analysis.

This is potentially problematic, since there are known biases within the

database of solved protein structures (and by extension, within SCOP and

ASTRAL) and between superfamilies. In particular, the protein domains

within large superfamilies are more diverse, and the interrelations harder

to discover, than proteins within small superfamilies. Because of this bias,

and the dominance of large superfamilies, performance evaluations may be

skewed.

In order to compensate for these effects, we previously developed two

alternative normalization methods (Green and Brenner, 2002). In linear

normalization the weight of each sequence match is divided by the number

of true homologs of the query (i.e. s�1, where s is the size of the super-

family). In quadratic normalization the weight of each sequence match is

divided by the total coverage of the superfamily, i.e. the number of true

relations within the superfamily, (s2�s). In other words, unnormalized

coverage is the fraction of all true relations that are found, linear normalized

coverage is the average fraction of true relations per sequence and quadratic

is the average fraction per superfamily. Since linear and quadratic

normalizations systematically downweight large superfamilies relative to

small superfamilies, and because finding correct relations in large super-

families is harder, quadratic coverage is generally larger than linear cover-

age, which in turn is larger than unnormalized coverage, as can be seen

in Fig. 2.

Non-parametric and Bayesian bootstrap

The statistical errors and statistical significance of homology coverage were

estimated using both non-parametric and Bayesian bootstrap resampling. In

Efron’s standard, non-parametric bootstrap (Efron, 1979; Efron et al., 1993),

replicas of the original dataset are generated by sampling N items, with

replacement, from the original dataset of sizeN. Equivalently, in each replica

the items are assigned integer weights, 0, 1, 2 . . . , distributed according to

the multinomial distribution. The distribution of the statistic of interest

across the ensemble of replicas is taken as an estimate of the statistical

errors owing to the finite size of the original dataset.

In the alternative Bayesian bootstrap (Rubin, 1981) the data items in each

replica are assigned continuous weights drawn from a Dirichlet distribution.

This Dirichlet can be thought of as the posterior distribution of sequences in

the original population, assuming multinomial sampling of the original data

from an improper prior across all possible sequences (i.e. a priori all

sequences are equally probable, but since there are many possible sequences,

each has vanishing small weight in the prior). Consequently, the distribution

of the statistic across the replica ensemble is the Bayesian posterior of the

statistic.

Appropriate multinomial weights are generated by randomly sampling the

sequences, with replacement. The Dirichlet random variants are generated

by sampling N intervals between N�1 sorted random numbers uniformly

distributed on the interval [0,N] (Rubin, 1981). The requisite pseudo-random

numbers were drawn from the Mersenne Twister generator (Matsumoto and

Nishimura, 1998)

In the unweighted case, each correctly deduced sequence relationship

contributes one divided by the number of possible sequence relationships

to the coverage. The total possible number of correct sequence relationships

is n2�n, n being the number of sequences in the database, so the coverage

contributed by one correctly deduced sequence relationship results in

(n2�n)�1 coverage. The linear and quadratic normalization schemes

weight the value of a correctly deduced sequence relationship by s�1

and s2�s, respectively, where s is the number of sequences in the query

sequence’s superfamily. Consequently, the effective number of possible

sequence relationships are also reduced. The coverage contribution for

a correctly deduced sequence relationship is described by the following

formulas:

Standardbootstrap Bayesianbootstrap

Nonormalization
1

n2�n

wiwjXn
k¼1

wk

 !2

�
Xn
k¼1

ðwkÞ2

Linear normalization
1

nðs�1Þ
wiwjXs

k¼1

 ! Xs
k¼1

wk

 !
�wi

 !

Quadratic normalization
1

ðs2�sÞS
wiwjXs

k¼1

Xs
k¼1

wk·wl

 !
�
Xn
k¼1

ðwkÞ2
 !

S

‚

where wi is the weight of the query sequence, wj the weight of the target

sequence and S the number of superfamilies in the database. Summing to s

indicates that only the weights of the sequences in the query sequence’s

superfamily should be summed. It should be clear that in the special case of

Bayesian evaluation of protein sequence comparison
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unitary weights, the Bayesian bootstrap formulas reduce to those of the

standard bootstrap.

As previously discussed, and illustrated in Fig. 2, although the non-

parametric and Bayesian bootstraps are formally equivalent in the large

dataset limit, for our particular application and dataset, the non-

parametric bootstrap produces a very biased replica ensemble. Con-

sequently, estimates of statistical significances were carried out using the

Bayesian bootstrap. For each bootstrap replica we calculate the difference in

coverage between each search method, typically at 0.01 EPQ with linear

normalization. From the set of coverage differences, we calculate the

Z-statistic: the mean divided by the standard deviation. Generating 500

bootstrap replicas were found to be adequate.

RESULTS

For each of the four matrix families (PAM, BLOSUM from

BLOCKS 5 and 13+, and VTML), we evaluated the coverage

produced by SSEARCH, a standard implementation of the

Smith–Waterman alignment algorithm with statistical scores

(Pearson, 1991), on the training dataset under linear normalization

at 0.01 EPQ. We generated BLOCKS 13+ BLOSUM and VTML

matrices with software supplied by Henikoff (http://blocks.fhcrc.

org, Blimps v3.5) and Muller (Muller et al., 2002), respectively,
using 1/3 bit scaling consistently. We obtained BLOSUM matrices

Fig. 3. Plots of the coverage versus matrix number and gap open penalty for each matrix family. The global maxima are indicated by circles and detailed in

Table 1. In general, performances are robust to small changes away from the optimal parameters. All results are at 0.01 EPQ, use the optimal gap extension

parameter setting and are under linear normalization on the training database. The main plots show the results in three dimensions, with a contour plot projected.

The contour plot is also shown above each figure for clarity. High numbered PAM and VTML matrices represent large evolutionary times, whereas high

numbered BLOSUM matrices represent short evolutionary times. For the standard, publicly available BLOSUM and PAM matrices, the matrix scaling varies

withmatrix number, as indicated, which results in discontinuities in the coverage surfaces. Small gap parameters representmore gappy alignments, and therefore,

more distantly related sequences.

G.A.Price et al.
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from the internet distribution also at http://blocks.fhcrc.org and

PAM matrix generation is described in Dayhoff (1978). The latter

two matrix sets change scale with the matrix number. We varied the

values of three parameters: matrix number, gap open penalty and

gap extension penalty. Matrix number ranged from 40 to 100 for the

BLOCKS 13+ BLOSUM matrices, 50 to 350 for the VTML mat-

rices, 30 to 100 for the BLOSUM matrices and 10 to 310 for the

PAM matrices. The gap open and extension penalties ranged,

respectively, from 5 to 20 and 1 to 3. In total, we generated over

1200 result sets for the four different families at various different

matrix and gap parameters. The performance of each matrix family

was judged by the coverage at 0.01 EPQ on a test dataset, using the

parameters that optimize the coverage on the training set. The best

scoring matrix, with coverage of 25.6%, was BLOSUM65 derived

from BLOCKS 13+ with gap open/extension parameters of 12/1.

The VTML240/12/1 and standard BLOSUM55/14/1 matrices

scored equivalently at 25.2%, and the PAM200/12/2 matrix scored

at 23.5% (Table 1). In other words, the BLOCKS13+ BLOSUM

matrices outperformed the VTML and standard BLOSUM matrices

by 1.6%, and the PAM matrices by 8.5%. Considering the maturity

of this particular technology, these gains are significant.

Figure 3 illustrates the variation of performance (as measured by

linear coverage at 0.01 EPQ) with matrix and gap parameters. The

contours mark a difference of 0.5% in coverage, which is roughly

the minimum difference in mean coverage between statistically

different methods and parameters (see Discussion section). In gen-

eral, the optimum performances are robust to small changes in

parameters. For example, the coverage difference between gap

opening penalty settings in the range from 11 to 15 is only 0.5%

when testing the VTML matrix family with the gap extension pen-

alty set to 1 and the matrix number set to 140. It is also interesting to

note that a relatively small reduction in gap parameters can lead to a

large drop in homology detection coverage, presumably because

alignment becomes overly permissive, allowing many gaps. For

example, dropping the gap parameter from 11 to 10 in the previous

example reduces coverage by 1.5%.

The top graphs in Figure 2 show the CVE plots for the

optimal BLOCKS 13+ BLOSUM65 matrix. The bold CVE line

is generated from the original data, whereas each of the lighter

lines are generated from a bootstrap replica; a standard non-

parametric bootstrap is in panel A and the Bayesian bootstrap is

in panel B. The lower graphs show the coverage distribution of

the bootstrap replicas at 0.01 EPQ. As can be seen, both the

non-parametric and Bayesian bootstraps generate approximately

Gaussian distributions of the replicates’ coverage. However, the

Efron bootstrap replicas are clearly biased relative to the original

data. This is particularly notable for linear and quadratic normal-

izations, which emphasize the contributions of smaller super-

families. In contrast, the Bayesian bootstrap ensemble does not

exhibit a significant bias. Also notable is that the Bayesian coverage

distributions are narrower. Both the bias and broadening effects can

be seen to arise from the interaction of standard bootstrap

resampling and small superfamilies. As we have discussed, each

standard replica will randomly drop, on average, over one half of all

size-2 superfamilies (and smaller, but still significant portions of

other small superfamilies). This noisy sampling leads to the

observed bias and larger variance of coverage, particularly

when alternative normalizations emphasize small superfamilies.

Consequently, in the following differential analysis of substitution

matrix performance, we only consider the Bayesian bootstrap

results.

Figure 4A displays coverage versus errors for all four families of

matrices with optimal parameters under linear normalization.

Clearly, the widths of these distributions are large compared

with the average differences in coverage. This is emphasized in

Figure 4B, which displays the bootstrap replicate distribution for

each family at 0.01 EPQ. These overlapping distributions make it

difficult to distinguish the performance of BLOSUM, VTML and

BLOCKS 13+ BLOSUM matrices, although PAM is clearly worse

than the other three. However, the statistic of interest in this analysis

is not the difference in mean coverage, rather it is the mean
difference in coverage, as shown in Fig. 4C. This distinction is

significant, since the results obtained from a single data replica

are correlated across different parameters. In our previous work

(Green et al., 2002), we did not take this issue into account and

generated independent bootstrap replicates for different methods,

which resulted in an unnecessary reduction in sensitivity and an

underestimation of statistical significance.

The absolute value of the Z-statistic (mean divided by the stand-

ard deviation of the difference in coverage) for each pair of search

methods is shown in Table 2 as produced by the bootstrap. If the

Z-statistic is >1.96, we reject the hypothesis that the methods pos-

sess equivalent performance at 95% confidence. It is clear from

Table 2 that examining the appropriate metric, mean coverage dif-

ference, rather than the difference in mean coverage, yields a test

that is more sensitive by a factor of >3 in the Z-score. To summarize

the results, the least effective family is clearly PAM; BLOSUM and

VTML are statistically indistinguishable; and the updated BLOCKS

13+ BLOSUM is significantly better than standard BLOSUM, but

not quite significantly improved over VTML.

DISCUSSION

We have compared the performance of four substitution matrix

families—PAM, BLOSUM, BLOCKS 13+ BLOSUM and

VTML. Using the SSEARCH sequence comparison program, we

evaluated each sequence in a database against every other sequence

in that database. The Dayhoff PAM matrices are clearly worse than

any other family, but this is well known and not surprising since

PAMwas trained on a small collection of relatively close homologs.

The VTML family, which is essentially a modern reparameterized

PAM, performs significantly better. However, surprisingly, it does

not outperform the empirical BLOSUM families. This suggests that

Table 1. Optimal matrix and gap parameters for each matrix family and

corresponding performance on the training and test databases under linear

normalization at 0.01 EPQ

Matrix

family

Matrix

number

Gap

open

Gap

extension

Training

dataset

coverage

Test

dataset

coverage

BLOCKS 13+ BLOSUM 65 12 1 24.4 25.6 ± 0.09

VTML 240 12 1 24.3 25.2 ± 0.09

BLOSUM 55 14 1 23.9 25.2 ± 0.09

PAM 200 12 2 21.5 23.5 ± 0.09

Standard deviations derived from bootstrapping the test datasets are given.

Bayesian evaluation of protein sequence comparison
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the improvement of VTML and BLOSUM over PAM is the result of

training on larger sets of remote homologs, rather than the rigor or

sophistication of the training procedure. Clearly, there is a benefit to

using the more recently developed matrix sets rather than the stan-

dard BLOSUM and PAM matrices.

We have also demonstrated that the Bayesian bootstrap can be

used to estimate statistical errors and intervals in a database homo-

logy search without the anomalies introduced into this same

analysis by the standard bootstrap. This is because the Bayesian

resampling does not underrepresent small superfamilies in the res-

ampled replicas, and is therefore not subject to the bias and noise

introduced by Efron’s non-parametric bootstrap. It has been shown

that the Bayesian and Efron’s bootstraps are asymptotically equi-

valent for large datasets (Lo, 1987) and thus the Bayesian and

standard bootstraps can be interchanged in principle. However,

this result clearly does not hold in our case. This is because,

although our datasets are relatively large, the prevalence of small

superfamilies introduces a fine-grained structure to our data that

precludes the application of the asymptotic limit. Since several

researchers predict that most or all of the superfamilies remaining

to be discovered contain comparatively few sequences (Brenner

et al., 1997, 1998; Zhang and Delisi, 1998; Govindarajan et al.,
1999; Coulson and Moult, 2002; Koonin et al., 2002), the coverage
bias inherent to Efron’s bootstrap will probably be exacerbated,

rather than diminished, as sequence databases grow. The Bayesian

bootstrap does not explicitly take the superfamily structure into

account, but it is nonetheless robust to the superfamily sampling

problem. Generally, the Bayesian bootstrap may exhibit similar

advantages over the standard bootstrap whenever the underlying

data has a fine-grained structure and the statistic of interest is sens-

itive to that structure. Moreover, with the Bayesian bootstrap we

also gain an unambiguous Bayesian interpretation of resampling

without increasing the computational or conceptual complexity.
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Fig. 4. Results of the Bayesian bootstrap applied to the optimal search meth-

ods. (A) The original CVE lines and bootstrapped lines. The original lines are

heavier and thicker than the bootstrapped replicas. (B) The bootstrap dis-

tributions for each method at 0.01 EPQ and under linear normalization. Note

that all the distributions overlap to some extent, and all but PAM overlap

heavily. (C) Distributions of the bootstrap replicas’ differences for the two

extreme cases: VTML versus BLOSUM, which are nearly equivalent, and

BLOCKS 13+ BLOSUM versus PAM, which differ significantly. The other

four distributions are omitted for clarity.

Table 2. Absolute value of the Z-statistic for each pair of distributions of the

optimal search methods at 0.01 EPQ and under linear normalization

Matrix set Matrix

number

BLOCKS 13+
BLOSUM

BLOSUM VTML PAM

BLOCKS 13+
BLOSUM

65 — 0.36/2.16 0.37/1.89 1.67/6.09

BLOSUM 55 — 0.01/0.05 1.31/4.70

VTML 240 — 1.31/4.70

PAM 200 —

Statistics are for difference in mean coverage (independent bootstrap replica)/mean

difference in coverage. The latter is the statistic of interest.
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