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ABSTRACT Recently, increasing experimental studies have shown that microRNAs (miRNAs) involved in
multiple physiological processes are connected with several complex human diseases. Identifying human
disease-related miRNAs will be useful in uncovering novel prognostic markers for cancer. Currently, several
computational approaches have been developed for miRNA-disease association prediction based on the
integration of additional biological information of diseases and miRNAs, such as disease semantic similarity
and miRNA functional similarity. However, these methods do not work well when this information is
unavailable. In this paper, we present a similarity-based miRNA-disease prediction method that enhances
the existing association discovery methods through a topology-based similarity measure. DeepWalk, a deep
learning method, is utilized in this paper to calculate similarities within a miRNA-disease association
network. It shows superior predictive performance for 22 complex diseases, with area under the ROC
curve scores ranging from 0.805 to 0.937 by using five-fold cross-validation. In addition, case studies on
breast cancer, lung cancer, and prostatic cancer further justify the use of our method to discover latent
miRNA-disease pairs.

INDEX TERMS Deep learning, disease-related microRNAs, microRNA-disease association, similarity
measure.

I. INTRODUCTION
MicroRNAs (miRNAs), as a class of short non-coding
RNA molecules (19∼24 nt), act as negative regulators
of gene expression by binding to the 3’-UTRs of target
mRNAs [1], [2]. Recently, increasing evidence has indi-
cated that mutation and functional disorders of miRNAs are
connected with the development and progression of various
complex human diseases [3]–[5]. Consequently, identifying
disease-related miRNAs will be beneficial for investigating
mechanisms of pathogenicity and promoting the diagnosis
and treatment of human disease.

It has proved effective using biomedical technologies such
as microarrays and PCR to identify the miRNAs associ-
ated with individual diseases. However, these biological

experimental methods can be costly and time-consuming.
Encouragingly, more and more experimentally veri-
fied disease-miRNA association databases have become
available, for example, the Human miRNA Disease
Database (HMDD) [6] and miR2Disease [7]. The establish-
ment of these miRNA-related biological datasets has created
a foundation for predictive research. Therefore, there exists
a strong need to develop efficient computational models to
predict new types of disease-related miRNAs on a large scale.

Many computational models have been put forward
to excavate latent miRNA-disease associations, under the
assumption that functionally similar miRNAs are likely to
be linked with similar diseases, and vice versa [8]–[12].
For instance, Jiang et al. [13] introduced a computational
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model that integrates miRNA functional similarity data, phe-
notype similarity data, and experimentally verified disease-
miRNA association data to predict latent interactions between
miRNAs and diseases by using a hypergeometric distribu-
tion. Unfortunately, the efficacy of this method was seri-
ously restrained by predicted miRNA-target interactions
with high false-positive and false-negative rates [14], [15].
Xuan et al. [16] proposed a highly performing prediction
algorithm called HDMP based on weighted k most similar
neighbors, which computed miRNA functional similarity by
utilizing semantic similarity and phenotype similarity data
of their associated diseases. These aforementioned methods
only considered local miRNA and disease information in
their computational models but did not utilize global network
association information, which can significantly enhance
prediction performance. Thus, researchers have presented
many global network similarity-based computational modes
based on random walks. Chen et al. [17] developed the first
global model called RWRMDA by performing random walks
restarting on a constructed miRNA-miRNA functional sim-
ilarity network to infer new miRNA-disease pairs. In addi-
tion, Shi et al. [18] used random walk analysis to rank
miRNA-disease pairs by searching for functional associa-
tions between disease-related genes and miRNA targeted
genes in a protein-protein interaction network. Similarly,
Xuan et al. [19] presented another new model called MIDP
based on random walks, which assigned different transition
matrices to labeled and unlabeled miRNAs of a specific
disease during the iterative process. Luo and Xiao [20] also
introduced a novel approach that performed unbalanced bi-
random walks on bipartite subgraphs to identify disease-
miRNA interactions. Liu et al. [21] extended random walk
with restart on a constructed heterogeneous network to infer
the relationship between disease and miRNA. To further
enhance the prediction accuracy, Chen et al. [22] devel-
oped a computational model named WBSMDA, which took
advantage of within and between scores of each candidate
disease-miRNA pair to discover disease-miRNA associa-
tions. WBSMDA improved disease semantic similarity and
miRNA functional similarity by integrating Gaussian inter-
action profile kernel similarity. Recently, Chen et al. [23] has
further proposed a heterogeneous graph-based model called
HGIMDA, which infers the potential association likelihood
of each candidate disease-miRNA pair by counting all routes
of length three. In addition, some machine learning-based
models have been proposed to identify latent relationships
between diseases and miRNAs [24], [25]. However, none of
the above methods have satisfactory performance, and most
of them rely on heterogeneous omics data. On the other hand,
in a miRNA-disease bipartite network, each miRNA-disease
pair is validated by biological experiments, which provides
important prior information and produces direct benefits to
the prediction of novel disease-miRNA pairs.

In this study, we propose a similarity-based miRNA-
disease prediction method that adopts a deep learning
algorithm, DeepWalk [26], to extract features of vertices

in the miRNA-disease bipartite network, which can be
adapted to compute the topological similarities of two ver-
tices [27]. The resulting similarity measure is used to infer
disease-related miRNAs based on a rule-based inference
method [28] that uses disease-disease similarities as the input
for miRNA-disease prediction. The experimental results of
five-fold cross-validation and case studies support the ability
of our method to infer novel miRNA-disease pairs, which
may be of great use in further biological experiments.

FIGURE 1. Overall workflow of our method for identifying latent
miRNA-disease pairs.

II. MATERIALS AND METHODS
A. METHOD OVERVIEW
The method proposed in this study is based on the topo-
logical structure of a miRNA-disease bipartite network.
The association discovery method can be separated into
three steps: (i) data collection, (ii) similarity learning, and
(iii) association discovery. First, a bipartite network con-
taining the topological interactions of existing miRNAs
and diseases is constructed. Second, similarity scores of
disease-disease pairs are learned based on the topology of
this network. Finally, predictions and evaluations of new
disease-miRNA pairs are made based on these similarities.
Fig. 1 illustrates the overall workflow of our method.

B. HUMAN miRNA-DISEASE ASSOCIATION DATASET
The disease-miRNA association dataset was downloaded
from the HMDD v2.0 database. There were 5424 distinct
experimentally confirmed associations between 378 diseases
and 495 miRNAs after filtering out duplicate records. Briefly,
the number of diseases and miRNAs are represented by vari-
ables nd and nm, respectively. In addition, two other public
databases (i.e., dbDEMC [29] and PhenomiR2.0 [30]) were
adopted to assess the candidate miRNA predictions with case
studies.
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C. SIMILARITY LEARNING
DeepWalk [26], a deep learning method, vectorizes the ver-
tices (e.g., diseases and miRNAs) of the network for sim-
ilarity computation. This method utilizes local information
from truncated random walks to learn vertex representation
by maximizing the probability of observing vertex vi in view
of all vertices previously visited up to the current point in the
randomwalk. DeepWalk has two main components. First, for
each vertex vi, γ random walks with length t are conducted,
with vi as the starting vertex. Second, for eachwalk, the vertex
representation is updated with the SkipGram algorithm [31].
SkipGram maximizes the co-occurrence likelihood of the
vertices that come into view within a window w using an
independent assumption as follows:

Pr({vi−w, · · · , vi+w}\vi|8(vi)) =
i+w∏

j=i−w,j 6=i

Pr(vj|8(vi)) (1)

where8 denotes the latent topological representation associ-
ated with each vertex vi.8 is represented by a |V |×d matrix,
where |V | is the cardinality of vertex set V , and d is the
dimension of the vertex vector. To speed up the training time,
Pr(vj|8(vi)) is factorized with Hierarchical Softmax [32] by
allocating the vertices to the leaves of a binary tree, and
Pr(vj|8(vi)) is then computed as follows:

Pr(vj|8(vi)) =
dlog |V |e∏
l=1

1/(1+ e−8(vi)·ψ(bl )) (2)

where ψ (bl) represents the parent of tree node bl .
(b0, b1, . . . , blog|v|) is the sequence of tree nodes to identify
vj, where b0 = root and b+log |v| + = vj.

After completing the training, the output of DeepWalk is a
latent topological representation (i.e., d-dimensional vector)
of vertices in the network. Therefore, the similarity of two
vertices u and v can be computed by using cosine similarity
as follows:

sim(u, v) =

d∑
k=1

ukvk√√√√ d∑
k=1

u2k

√
d∑
k=1

v2k

(3)

where d is the dimension, and ui and vi are the components
of vector u and v, respectively.

D. DISEASE-BASED SIMILARITY INFERENCE
We adapted a rule-based inference method, drug-based sim-
ilarity inference (DBSI) [28], which was derived from com-
plex network theory [33] to predict disease-related miRNA
candidates with disease-disease similarities. The main idea of
DBSI is as follows: if a disease is associated with a miRNA,
then other diseases similar to that disease will also possibly
be associated with the miRNA. In terms of the pair (di,mj),
a linkage between disease di and miRNAmj is decided by the

FIGURE 2. The average AUCs of varying the parameters. (a) The effect of
different dimensionality and training ratio. (b) The effect of different
number of walks.

following prediction score:

ScoreDBSI (di,mj) =

nd∑
l=1,l 6=i

sim(di, dl)alj

nd∑
l=1,l 6=i

sim(di, dl)

(4)

where sim(di, dl) is the similarity between disease di and
disease dl obtained from (3), and alj = 1 if an association
between disease dl and miRNA mj is known; otherwise,
alj = 0.
Operationally, for a disease di as the input query, each

associated score is normalized as follows:

Score∗DBSI (di,mj) =
ScoreDBSI (di,mj)−Min(di, ·)

Max(di, ·)−Min(di, ·)
(5)

where Max(di, ·) and Min(di, ·) represent the maximum and
minimum associated score, respectively, of disease di with
miRNAs that have no known association with di.
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TABLE 1. Prediction results of our method, RWRMDA, MIDP, and WBSMDA over five-fold cross-validation.

III. EXPERIMENTS AND RESULTS
A. EVALUATION METRICS
To systematically evaluate the prediction accuracy of our
method, five-fold cross-validation was implemented on the
basis of disease-miRNA pairs obtained from the HMDD
database. In the 5-fold cross validation framework, for a given
disease d , the labeled d-associated miRNAs are partitioned
into five disjoint subsections at random: one subsection is
used for testing and the other four subsections for training
through multiple iterations. The similarity computation for
diseases is connected with known disease-miRNA pairs; thus,
disease-disease similarities are recalculated in each repetition
of the cross-validation experiments. The area under the ROC
curve (AUC) was used to assess the quality of the predicted
associations.

B. EFFECT OF PARAMETERS ON THE PERFORMANCE
OF OUR METHOD
There are five parameters in DeepWalk. In this article,
we fixed the window size w = 10 and the walk length
t = 40 to highlight the local structure according to a previous
study [26]. The three other parameters were determined by a
grid search over the parameter ranges specified in previous
work (i.e., dimension d = {32, 64, 128}, training rate α =
{0.01, 0.05, 0.09}, and number of walks γ = {40, 80, 120,
160}) [26]. Here, to study the effect of these three parameters
on the prediction accuracy, we varied the values of d , α, and
γ in 5-fold cross-validation experiments. Fig. 2 presents the
average AUC values obtained from our method for different
values of d , α, and γ . As is shown in the figure, the best
prediction performance is achieved at d = 64, α = 0.05, and

γ = 120. Therefore, we set d = 64, α = 0.05, and γ = 120
as default values in our experiment.

C. PREDICTION PERFORMANCE EVALUATION
We compared our method with RWRMDA [17], MIDP [19],
and WBSMDA [22], which serve as advanced
computational prediction models to discover potential candi-
date miRNAs. Since RWRMDA and MIDP were developed
based on the association data from the previous version of
HMDD, the similarity of diseases or miRNAs pairs was
recalculated with the latest version of HMDD.Many diseases
have connections with only a few miRNAs; hence, the per-
formance of five-fold cross-validation may not be sufficient
for them. Consequently, we only considered 22 diseases
associated with at least 60 miRNAs, as confirmed by our
experiments.

As is shown in Table 1, our method achieves the best per-
formance for all the 22 diseases except esophageal neoplasms
and urinary bladder neoplasms, which performed better with
MIDP and WBSMDA, respectively. The average AUC value
achieved by our tool was 0.865, with a minimum of 0.805 for
heart failure and a maximum of 0.937 for lung neoplasms,
whereas the respective AUCs of RWRMDA, MIDP, and
WBSMDA were 0.801, 0.833, and 0.829. The average AUCs
obtained by our method were 6.4%, 3.2%, and 3.6% higher
than those of the other three methods. The ROC curves
of each method using five-fold cross-validation are shown
in Fig. 3.

Moreover, for purpose of comparison we select the top 10,
top 30, top 50, top 80 and top 100 predicted associations
for each disease as potential candidates. For these selections,
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FIGURE 3. The ROC curves and average AUCs of each method for
22 diseases.

FIGURE 4. Comparison of the number of known associations identified
by different methods.

the number of known disease-miRNA associations detected
by our method and three other methods are shown in Fig. 4.
From Fig. 4, we can see that the result of our method per-
forms better than the other three algorithms in all selections,
except in top 10 which is only slightly lower than that of
MIDP. These prediction results illustrate that our method
achieves reliable prediction performance, especially because
our method only depends on the topological structure of the
miRNA-disease bipartite network.

D. DEEPWALK-BASED VS. GAUSSIAN INTERACTION
PROFILE KERNEL-BASED SIMILARITY MEASURES
We compared DeepWalk-based to Gaussian interaction pro-
file kernel-based topology similarity measures [34], predict-
ing miRNA-disease association for the 22 aforementioned
diseases. As for the latter, we first adopted the Gaussian
kernel to compute the similarity of each disease-disease pair
based on the topological structure of the miRNA-disease
bipartite network. We then assembled similarity measures
with the rule-based inference method, DBSI, to obtain the

FIGURE 5. Comparison of average AUCs (5-fold validation) using different
similarity measures.

association probability of each candidate disease-miRNA
pair. Fig. 5 illustrates that DeepWalk is superior to the method
based on Gaussian kernel in terms of AUC for these diseases,
except for acute myeloid leukemia. For example, the AUC
scores achieved by DeepWalk for breast cancer, lung cancer,
and prostatic cancer are 0.861, 0.937, and 0.888, respectively,
whereas the respective AUCs obtained byGaussian kernel are
0.810, 0.922, and 0.839. The comparison results also demon-
strate that applying DeepWalk for similarity computation can
improve prediction accuracy.

E. CASE STUDIES
Additionally, in an attempt to assess the ability of our method
to uncover potential disease-associated miRNAs, case studies
of three important complex human diseases were investigated
by considering all known associations included in the HMDD
database as a training set. The prediction-associated miRNAs
for each selected disease were validated based on two inde-
pendent databases, dbDEMC [29] and PhenomiR2.0 [30],
and experimental literature.

Particularly in developed countries, women’s cancer deaths
are primarily caused by breast cancer. Recently, accumulat-
ing evidence has shown that many miRNAs are related to
the formation of diverse cancers comprised of breast neo-
plasms. For instance, hsa-mir-205 regulates ErbB3 by bind-
ing to its 3’-UTR, which is significantly under-expressed in
breast tumors [35]. Discovering more miRNAs associated
with breast cancer will aid in accurately assessing clinical
results. The case study of breast neoplasms was implemented
with our method. As a result, 14 and 26 out of the top 15 and
top 30 potentially related miRNAs have been directly shown
to be linked with breast neoplasms through dbDEMC and
PhenomiR2.0 databases (see Table 2). Furthermore, some
predicted miRNAs were verified by previously published lit-
erature. Specifically, hsa-mir-378a (6th in the prediction list)
represses the expression of two genes in breast neoplasms,
ERR γ and GABPA [36]. Hsa-mir-574 (18th in the prediction
list) has been identified as a potentially novel prognostic
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TABLE 2. The top 30 predicted breast neoplasm-associated miRNAs.

TABLE 3. The top 30 predicted lung neoplasm-associated miRNAs.

TABLE 4. The top 30 predicted prostatic neoplasm-associated miRNAs.

indicator of breast cancer, which is significantly down-
regulated in tumor samples [37]. Hsa-mir-362 (19th in the
prediction list) has been shown to be differentially expressed
in MCF-7 human breast cancer cells [38]. It has also been
shown that hsa-mir-542 (27th in the prediction list) is signif-
icantly down-regulated in breast cancer cells [39].

Lung cancer is one of the pervasive malignant tumors
with the highest mortality. The top 30 predicted lung

neoplasm-associated miRNAs are listed in Table 3. From the
table, 15 out of the top 15 and 28 out of the top 30 poten-
tially associated miRNAs were validated by the two afore-
mentioned databases. In addition, the other two candidates
are supported by published literature. Specifically, hsa-mir-
151a (16th in the prediction list) is markedly up-regulated in
non-small cell lung carcinoma compared with non-tumorous
tissue [40]. Hsa-mir-378a (19th in the prediction list) is

VOLUME 5, 2017 24037



G. Li et al.: Predicting miRNA-Disease Associations Using Network Topological Similarity Based on DeepWalk

significantly overexpressed in squamous cell carcinoma
when compared with lung adenocarcinoma [41].

Prostatic cancer is the second major cause of male cancer-
related deaths in developed countries. We implemented our
method to prioritize candidate prostatic neoplasm-associated
miRNAs, and results show that 13 and 26 out of the top 15
and top 30 predicted miRNAs were contained in dbDEMC
and PhenomiR2.0 (see Table 4). Two candidates, hsa-mir-
9 [42] and hsa-mir-138 [43], were verified to be correlated
with prostatic neoplasms by experimental literature. In addi-
tion, hsa-mir-429 (17th in the prediction list) is the sec-
ond ranked miRNA by RWRMDA and Jiang’s method.
Hsa-mir-103a (19th in the prediction list) is ranked No. 3 by
KRLSM [12], which indirectly confirms that it is probably
associated with prostatic cancer.

In summary, the results of cross-validation and case stud-
ies of several common diseases fully illustrate that our
method achieves excellent prediction performance. There-
fore, we have further used our method to rank potential
miRNAs for each human disease contained in HMDD (shown
in Supplementary Table S1), in the hope that these prediction
results can be verified in future scientific research.

IV. CONCLUSION
Identifying novel miRNA-disease associations is important
for exploring disease pathogenesis and to further improve
human medicine. In this paper, a similarity-based method
was designed to identify latent miRNA-disease pairs. First,
we adopted a deep learning algorithm, DeepWalk, to deter-
mine the similarity of each disease-disease pair based on a
known disease-miRNA bipartite network. Then, with a rule-
based inference method, DBSI, similarity measures were
assembled to compute the association likelihood of each
candidate disease-miRNA pair. To validate the prediction
accuracy of our approach, five-fold cross-validation was
implemented with a miRNA-disease association dataset.
In addition, case studies on breast cancer, lung cancer, and
prostatic cancer were done, and 30, 30, and 28 of the top
30 predicted miRNAs for each of these three principal human
diseases have been verified by the latest experimental litera-
ture and two independent databases.

Despite this successful exploitation of bipartite network
topology through application of DeepWalk for similarity
computation in miRNA-disease interaction prediction, there
are also some inevitable limitations expected to be improved
in future research. To begin with, the proposed method fails
to predict associations for new diseases or miRNAs that do
not exist within the network because our method is only
informed by known miRNA-disease associations. To solve
this problem, a hybrid similarity measure that includes both
topological and non-topological features, like disease seman-
tic similarity data and miRNA functional similarity data,
may facilitate application of this methodology to predict
new diseases or miRNAs. Second, the currently known
miRNA-disease associations are insufficient. Therefore,
a heterogeneous network that integrates additional

disease-gene and miRNA-gene associations can be used for
similarity learning, whichmay potentially improve prediction
results. Finally, there are five parameters in our method, and
the selection of appropriate parameters for different diseases
needs to be properly addressed.
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