
Received November 14, 2019, accepted January 13, 2020, date of publication January 23, 2020, date of current version February 6, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2969038

Simple and Efficient Pattern Matching
Algorithms for Biological Sequences
PEYMAN NEAMATOLLAHI , MONTASSIR HADI , AND
MAHMOUD NAGHIBZADEH , (Senior Member, IEEE)
Computer Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran

Corresponding author: Mahmoud Naghibzadeh (naghibzadeh@um.ac.ir)

ABSTRACT The remarkable growth of biological data is a motivation to accelerate the discovery of
solutions in many domains of computational bioinformatics. In different phases of the computational
pipelines, pattern matching is a very practical operation. For example, pattern matching enables users to
find the locations of particular DNA subsequences in a database or DNA sequence. Furthermore, in these
expanding biological databases, some patterns are updated over time. To perform faster searches, high-speed
pattern matching algorithms are needed. The present paper introduces three pattern matching algorithms
that are specially formulated to speed up searches on large DNA sequences. The proposed algorithms
raise performance by utilizing word processing (in place of the character processing presented in previous
works) and also by searching the least frequent word of the pattern in the sequence. In terms of time cost,
the experimental results demonstrate the superiority of the presented algorithms over the other simulated
algorithms.

INDEX TERMS Bioinformatics, string matching, DNA sequence, frequent pattern, exact algorithm.

I. INTRODUCTION
In the pattern matching problem, a text, sequence or database
is scanned to detect the locations of a pattern in the
text [1], [2]. It is imperative that this kind of problem be
addressed mainly because of its applications in diverse and
important areas, such as image and signal processing, infor-
mation retrieval, text processing, search engines, question-
answer systems, and chemistry [3]–[6].

Notably, the pattern matching problem arises in the
different scopes of computational bioinformatics, which
include the basic local alignment search, biomarker dis-
covery, sequence alignment, proteogenomic mapping, and
homologous series detection. In these disciplines, there
is a need to recognize the locations of multiple pat-
terns, including those of amino acids and nucleotides in
databases [7], [8]. In biotechnology, forensics, medicine, and
agriculture research, the knowledge of gene analysis and
DNA sequences may be applied when exploring possible
disease or abnormality diagnoses [4]. The comparison of a
particular gene with similar genes of the same or different
organisms and the prediction of its function can also employ

The associate editor coordinating the review of this manuscript and

approving it for publication was Liangxiu Han .

DNA sequence analysis. In another application, the function-
ality of a recently discovered DNA sequence can be prespec-
ified by investigating its similarity to known sequences of
DNA. This approach has been used in various research studies
and medical applications.

Although there are some generalized and specialized DNA
pattern matching algorithms in the literature [8]–[17], the
development of efficient algorithms is still required. This is
mainly necessary because many current algorithms [18] may
not be well scalable for databases or large DNA sequences
due to high-computational costs. In contrast to approximate
pattern matching [19], [20], the current paper focuses on the
exact pattern matching problem which finds all the occur-
rences of a pattern in a text. The present study introduces three
algorithms to mitigate the drawbacks of previous works. Sim-
ilar to the literature [21]–[26], the operation of the proposed
algorithms is divided into a preprocessing and a matching
phase. In the preprocessing phase, the potential intervals
of the text to be matched with the pattern are recognized.
These candidate intervals are called windows. Next, during
the matching phase, the windows are carefully scanned in
order to be matched with the pattern. The fewer windows
found in the preprocessing phase, the less time taken for
verifying the windows in the matching phase. Accordingly,

23838 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

imperative = urgent
proteogenomic 蛋白質組學

homologous同源的 amino氨基nucleotides核甘酸

mitigate減輕

https://orcid.org/0000-0002-0216-9876
https://orcid.org/0000-0002-0365-5104
https://orcid.org/0000-0001-5550-5565
https://orcid.org/0000-0003-2491-7473
user
螢光標示

user
螢光標示

user
螢光標示

user
螢光標示

user
螢光標示

user
螢光標示

user
螢光標示

user
螢光標示

user
螢光標示



P. Neamatollahi et al.: Simple and Efficient Pattern Matching Algorithms for Biological Sequences

the present work’s primary aim is to decrease the number of
recognized windows. The main contributions of the current
study are:
• For diagnosing the windows, some algorithms in the
literature, such as in [22], search the text to separately
discover the first and last character of the pattern. In con-
trast, the current study’s first proposed algorithm finds
the windows by simultaneously considering the first and
last character of the pattern.

• Nowadays, the computational length of almost all pro-
cessors is 32 or 64 bits in each execution cycle. In more
precise terms, they can process 4 or 8 bytes of data
in an instant. Therefore, 4 or 8 characters, indicated
by a word, may be simultaneously compared to 4 or
8 other characters. As opposed to the character-based
comparisons applied in many previous works, such as
in [21]–[24], the present paper introduces a second algo-
rithm to conduct word-based comparisons. The word
processing is performed by utilizing the processing
power of the processor. This approach creates a new
class of string-matching algorithms that improve the per-
formance of character-based algorithms. By employing
this method, the current work decreases the number of
detected windows and speeds up the comparisons. As a
result, the performance improves in terms of time cost.

• The present study introduces a third algorithm that
focuses on the word of the pattern having the fewest
repetitions in the text. In other words, the algorithm
searches the text for a low-frequency word of the pat-
tern. This technique further advances the algorithm’s
efficiency by decreasing the number of discovered
windows.

As for the rest of the current paper, Section II reviews
related works, while Section III states the problem.
Sections IV, V, and VI describe the first, second, and third
proposed algorithms, respectively, along with their prepro-
cessing and matching phases. In terms of time require-
ments, Section VII evaluates the performance of these
algorithms in comparison with other previous algorithms.
Finally, Section VIII concludes the paper.

II. RELATED WORK
This section presents related work on pattern matching. In the
patternmatching literature, Brute Force (BF) [27] is a primary
method which preprocesses neither the text nor the pattern.
BF carries out a character by character comparison from
left to right. After either a match or mismatch, the sliding
window is shifted one position to the right and the matching
is restarted from the first character of the pattern. The high
consumption of time is a significant disadvantage of BF.

There are methods based onDeterministic Finite Automata
(DFA) [25], [26] that combine the dynamic programming
approach and DFA. Due to the use of a finite automaton, these
methods are not often scalable for large sequences. In addi-
tion, the memory requirements are tremendously greater
because of the usage of dynamic programming.

Knuth et al. [21] presented the KMP algorithm which
performs the comparison from the left side. In the event of
a mismatch, KMP moves the sliding window to the right
by holding the longest overlap of a suffix of the matched
text and a prefix of the pattern. This algorithm has a linear
performance. Although it performs well when the alphabet
size is large, the KMP algorithm requires a long run time
when either the alphabet size is small or the length of the
pattern is short [4].

The Boyer-Moore algorithm [23] and its variants [24], [28]
search the pattern in the text from right to left. In other words,
this algorithm first matches the pattern’s last character. At the
end of the matching phase, it computes the shift increment.
To decrease the number of comparisons when a mismatch
occurs, two useful rules (bad character and good suffix) are
utilized. The disadvantage of the Boyer-Moore algorithm is
the dependency of its preprocessing time on the pattern length
and alphabet size.

The Divide and Conquer Pattern Matching (DCPM) [22]
is a comparison-based algorithm. At the beginning of the
DCPM’s preprocessing phase, the text is scanned for the
rightmost character of the pattern. The index of the findings
is stored in the rightmost character table. Then, to detect the
leftmost character of the pattern, the text is scanned again.
In the case of sameness, the indexes are saved in the leftmost
character table. By utilizing these two tables, DCPM identi-
fies the boundary of the windows. In other words, by consid-
ering the length of the pattern, the elements of the tables are
investigated. A window is found when the distance between
the windows’ leftmost and rightmost character (extracted
earlier from the two tables) is the same as the length of the
pattern. Therefore, DCPM requires two passes of the text
and some computations to determine the windows. In the
matching phase, the algorithm checks the other characters of
the windows. If all characters of the pattern and the windows
of the text are matched, then complete sameness occurs. The
current study’s first algorithm promotes DCPM by recogniz-
ing the windows with one pass of the text.

III. PROBLEM STATEMENT
In recent years, the size of biological data has significantly
grown and yet these large volumes of data must be ana-
lyzed within a reasonable time. This issue is encountered
in molecular biology because sequences of amino acids
or nucleotides are often applied to approximate biological
molecules. Another example is the basic information of
species maintained by DNA sequences and the challenge
of accessing this information via pattern matching. Besides,
in a DNA sequence, specifying possible abnormalities or
errors often calls for DNA sequence analysis. In addition,
pattern matching is appropriate in fields such as phyloge-
netic and evolutionary biology. In these applications, specific
DNA subsequences are extracted from the genomic data of
organisms’ different species for the purposes of understand-
ing their relatedness, descent, and origin. Therefore, in this
context, a pattern matching algorithm must be able to search

VOLUME 8, 2020 23839

user
螢光標示

user
螢光標示

user
螢光標示

user
螢光標示

user
螢光標示



P. Neamatollahi et al.: Simple and Efficient Pattern Matching Algorithms for Biological Sequences

in databases spanning gigabytes to terabytes or more and in
whole genomes with 3 billion base pairs [13]. On the other
hand, the DNA sequences are very long. Therefore, the time
consumed for matching with the pattern is considered as the
most critical metric.

Consider pattern p of length m and text t of length n over
alphabet

∑
. A sequence of zero or more symbols of the

alphabet is nominated as a string. Over alphabet
∑
, the set of

all possible strings is represented by
∑
∗. If x = uwv, where

u, v, and w ∈
∑
∗
, then w is a substring of string x. Pattern p

is stored in finite array p [0..m− 1] , in which m > 0. The
(i + 1)−st character of p is represented by p[i], in which
0 ≤ i < m. Besides, p[i..j] signifies a substring of p from
the (i + 1)−st character to the (j + 1)−st character of p, in
which 0 ≤ i ≤ j < m. A substring of the form p[j..m − 1]
and p[0..i], respectively, are called the suffix and prefix of p,
in which 0 ≤ i, j ≤ m− 1.
Whenever character t[s] of the text is aligned with charac-

ter p[0], substring t[s..s+m−1] is called by the current win-
dow of the text. In the preprocessing phase of the proposed
pattern matching algorithms, the text is scanned in order to
find the windows of a size m. Then, to check the total occur-
rence of the pattern, the algorithms compare the characters
of the pattern one by one against those of the window in the
matching phase. After a whole match or mismatch, the other
windows are examined for matching the text.

IV. FIRST-LAST PATTERN MATCHING ALGORITHM
This section proposes a simple First-Last Pattern Matching
(FLPM) algorithm. FLPM is an enhancement of DCPM [22]
and is composed of preprocessing and matching phases. The
following explains these phases by using their pseudocodes.
An example is then presented to complete the algorithm
description.

A. PREPROCESSING PHASE
Since FLPM acts based on comparisons, the FLPM prepro-
cessing phase scans text t to distinguish the windows of the
text which are later utilized by the matching phase. At the
beginning of the preprocessing phase, the first character of
pattern p, i.e., p[0], is searched in text t . As the length of
p is m, the search is performed during interval t[0..n − m].
In contrast to the DCPM algorithm [22], whenever character
p[0] is aligned with the character in position s (in which
0 ≤ s ≤ n − m) of text t, i.e., t[s] = p[0], the FLPM
algorithm immediately checks the correspondence of p[m−1]
to t[s+m− 1] in order to determine the end boundary of the
window. If these two characters are also the same, the window
of t[s..s+m−1] is selected as a candidate interval to be more
precisely checked in the next phase. The preprocessing phase
then continues on to diagnose more windows. In recognizing
windows, although this algorithm focuses on the first and last
character of the pattern, it may be extended by considering the
characters in other positions, such as m

/
4,m

/
2, and 3m

/
4.

Algorithm 1 presents the pseudocode of this phase. In this
algorithm, the initial amount of the while loop counter,

indicated by count variable, is zero (Line 1). The while loop
of this algorithm starts by count = 0 and continues up to
the time when this counter reaches n − m (Line 3). During
the loop (Lines 3-11), the first and last character of the
pattern, i.e., p[0] and p[m− 1], are compared to t[count] and
t[count + m− 1], respectively. If the result of both compar-
isons is correct, the start index of this window, i.e., count,
is stored in the window_index array and the number of win-
dows, saved in the num_window variable, increases by one.
Therefore, the number of windows and their start indexes are
achieved in the preprocessing phase.

Algorithm 1 Preprocessing Phase of FLPM Algorithm
Input:Text t and pattern p stored in the arrays of t[0..n−1]

and p[0..m− 1], respectively, over finite alphabet∑
.

Output: The number of windows identified in this phase
and their start indexes.

1. count ← 0
2. num_window← 0
3. WHILE count ≤ n− m DO
4. IF t [count] = p[0] THEN
5. IF t [count + m− 1] = p[m− 1] THEN
6. window_index[num_window]← count
7. num_window← num_window+ 1
8. END-IF
9. END-IF

10. count ← count + 1
11. END-WHILE

B. MATCHING PHASE
After the preprocessing phase identifies the windows,
the matching phase investigates the windows to find all
occurrences of the pattern in the text. Therefore, for the start
index of each window, say si, found in the previous phase,
the characters p[1..m− 2] must be compared with characters
t[si+1..si+m−2]. The first and last character of the pattern
and the window, respectively, should not be compared again
because their sameness was already checked in the previous
phase, i.e., p[0] = t[si] and p[m − 1] = t[si + m − 1].
If a whole sameness of the pattern with the window of text
occurs, then this window is an answer. Otherwise, there is a
mismatch. After a match or mismatch, this phase continues
by investigating the next windows.

Algorithm 2 provides the pseudocode of this phase and
shall be described in detail here. The number of windows
identified in the previous phase and their start indexes are
considered as the inputs of Algorithm 2. In Lines 3-17,
the algorithm’s outer while loop repeats the instructions for
all windows, i.e., count = 0, 1, . . . , num_window − 1. Line
4 assigns the start index of the current window to s. The
inner while loop (Lines 6-11) checks the correspondence of
the pattern’s non-boundary characters and those of the text
window with the start index of s. If alignment succeeds,

23840 VOLUME 8, 2020

nominate提名、任命

len(t) >= len(p),

頭尾都相等
紀錄頭的index => window_index
num_window++

user
螢光標示

user
螢光標示

user
螢光標示

user
螢光標示

user
螢光標示



P. Neamatollahi et al.: Simple and Efficient Pattern Matching Algorithms for Biological Sequences

Algorithm 2Matching Phase of FLPM Algorithm
Input: The number of windows identified in the

preprocessing phase and their start indexes.
Output: The start index for all occurrences of pattern p in

text t .
1. count ← 0
2. num_match←
3. WHILE count < num_window DO
4. s← window_index[count]
5. c← 1
6. WHILE c ≤ m− 2 DO
7. IF p [c] 6= t[s+ c] THEN
8. BREAK /∗Exit the current loop∗/
9. END-IF

10. c← c+ 1
11. END-WHILE
12. IF c = m− 1 THEN
13. match_index[num_match]← s
14. num_match← num_match+ 1
15. END-IF
16. count ← count + 1
17. END-WHILE

then s is stored in the match_index array (Lines 12-15) so
as to identify the start index of an occurrence of pattern p in
text t . The algorithm then continues to study the next
window.

FIGURE 1. Example for the operation of the FLPM algorithm. Note that
some windows have been specified in Array t .

C. AN EXAMPLE
As an example, Fig. 1 shows text t in array t[0..51] and
pattern p, which is AAGCGTA in array p[0..6]. The pre-
processing phase searches for the first and last character of
the pattern, i.e., p[0] and p[6], in the text. At the beginning
of Algorithm 1, t[0] and t[6] are aligned to p[0] and p[6],
respectively. Thus, the start index of the first window, i.e., 0,
is stored in the window_index array. Following this example,
the preprocessing phase identifies ten other windows. After
this phase terminates, the matching phase employs Algo-
rithm 2 to check all windows in order to find pattern p in
text t . Consequently, the window of t[25..31] and the pattern
are the same.

Algorithm 3 PAPM Algorithm
Input: Text t and pattern p stored in the arrays of t[0..n−1]

and p[0..m− 1], respectively, over finite alphabet∑
.

Output: The start index for all occurrences of pattern p
in text t .

/∗ PREPROCESSING PHASE ∗/
1. count ← 0
2. num_window← 0
3. WHILE count ≤ n− m DO
4. IF t [count..count + word_len− 1]
5. = p[0..word_len− 1] THEN
6. window_index[num_window]← count
7. num_window← num_window+ 1
8. END-IF
9. count ← count + 1

10. END-WHILE
/∗ MATHING CASE ∗/

11. k ← m mod word_len
12. IF k = 0 THEN
13. start_index ← word_len
14. ELSE
15. start_index ← k
16. END-IF
17. count ← 0
18. num_match← 0
19. WHILE count < num_window DO
20. s← window_index[count]
21. c← start_index
22. WHILE c ≤ m− word_len DO
23. IF p [c..c+ word_len− 1]
24. 6= t[s+ c..s+ c+ word_len− 1] THEN
25. BREAK
26. END-IF
27. c← c+ word_len
28. END-WHILE
29. IF c = m THEN
30. match_index[num_match]← s
31. num_match← num_match+ 1
32. END-IF
33. count ← count + 1
34. END-WHILE

V. PROCESSOR-AWARE PATTERN MATCHING
ALGORITHM
This section presents the Processor-Aware Pattern Match-
ing (PAPM) algorithm. This algorithm is different from the
FLPM algorithm in the way pattern p characters and text t
characters are compared. PAPM performs comparisons based
on a word comprised of several characters while FLPM uses
a character-based pattern matching algorithm.

With the processing power of a processor, PAPM com-
pares two words concurrently. In the case of a b−bit pro-
cessor, the registers also have a b−bit length and, in each

VOLUME 8, 2020 23841

整個都match

從第2個字元開始(頭尾已經在Preprocessing)

一次比對b/8個字元(4 chars with 32-bit CPU)
前b/8個字元一樣就存起來

避免最後start_index + 3 不是剛好在結尾

一次比對4個char

user
螢光標示

user
螢光標示

user
螢光標示



P. Neamatollahi et al.: Simple and Efficient Pattern Matching Algorithms for Biological Sequences

execution cycle, the processor can compare the data of two
registers. Since each byte (or character) is composed of
eight bits, the number of processable bytes (or word length)
for this processor, indicated by word_len, is computed as
word_len = b/8. In other words, by using its registers each
time, the processor can compare a word (including word_len
characters) with another. For instance, a 32-bit processor is
able to simultaneously compare a word of four characters to
another.

To apply this processor’s ability in the pattern matching
problem during the first phase of PAPM, the first word of
the pattern is searched in the text. As shown in Lines 1-10 of
Algorithm 3, the preprocessing phase of PAPM scans interval
t[0..n−m] to find theword p[0..word_len−1]. The start index
of the found windows is saved in the window_index array.
As opposed to FLPM, when windows are sought in PAPM,
the higher number of characters (a word) searched in the text
yields a lower number of windows, which may decrease the
time duration necessary for the next phase.

In the matching phase of Algorithm 3, displayed in Lines
11-34, the words of pattern p are compared with the words
of the windows found, respectively. At the beginning of this
phase (Lines 11-16), the start index for the word comparison
is computed. By setting this start index, the algorithm is
performed correctly, even if the length of the pattern and
windows are not an integer multiple of the word length.
Lines 19-34 of Algorithm 3 are similar to Lines 3-17 of
Algorithm 2. However, Algorithm 3 carries out word-based
processing in contrast to the character-based processing in
Algorithm 2.

FIGURE 2. An example of the PAPM algorithm operation.

Fig. 2 provides an example employing Algorithm 3 run
on a 32-bit processor. In the preprocessing phase, the first
word (consisting of the first four characters) of pattern p
is searched in text t . After the preprocessing phase of the
PAPM algorithm, the window_index array is composed of
two start indexes of the found windows, i.e., 25 and 4. For
this example, it should be noted that the FLPM algorithm
identifies 11 start indexes as candidate intervals or windows.
Therefore, PAPM reduces the number of identified windows.
In the matching phase, since the remainder of pattern length
over the word length is 3, the start index for matching is also 3
(Lines 11-16). Therefore, the second word of the pattern to

align with the second word of windows is CGTA. After
the termination of this phase, only one of the two windows
(i.e., t[25..31]) is matched with the pattern.

VI. LEAST FREQUENCY PATTERN MATCHING
ALGORITHM
The Least Frequency Pattern Matching (LFPM) algorithm
is an enhancement of PAPM that is specialized for DNA
applications. However, the LFPM algorithm can be extended
to other pattern matching applications. LFPM is an appro-
priate choice when many patterns must be searched in the
text, but not an efficient option for few patterns due to the
time overhead. To reduce the number of recognized windows,
LFPM searches for a low-frequency word of the pattern in the
text. In other words, LFPM focuses on a word that is expected
to appear less than other words of the pattern appearing in
the text.

TABLE 1. THE freq_table.

In the first step before the preprocessing phase, LFPM
computes the frequency of all possible words for the related
alphabet. Although the computations of this step create a
time overhead, it dramatically reduces the time cost of the
upcoming phases. To compute the frequency of different
words, the current text or a related dataset can be selected as a
reference. Here, the Human Reference Genome (HRG) [29]
is applied as a reference to count all possible words
(i.e., 6∗) having the length of word_len over the finite
alphabet 6 = {A,C,G,T}. Note that four nucleotide bases
in a molecule of DNA (or a DNA sequence) are Adenine,
Guanine, Cytosine, and Thymine. Because word_len is the
length of a word in a particular computer, the number of
all possible words over alphabet 6 is 4word_len. It is worth
mentioning that this number is fixed for all b−bit computers.
For example, in a 32-bit computer, 256 different words having
the length of four characters from the related alphabet 6
can be generated. The frequency of all words is stored in
a table nominated by freq_table and having 4word_len rows
and word_len + 1 columns, as indicated in Table 1. In each
row, there is a word the length of word_len characters in the
columns zero toword_len−1. Besides, the frequency of each
word is shown in the word_len column of that word. Since
word_len is either four or eight on a 32 or 64-bit computer,
respectively, the amount of memory required to maintain the
frequency table is reasonable. Therefore, this table can be
placed in the main memory.

23842 VOLUME 8, 2020

32bit核心的CPU，一個cycle可以比較2個32bit暫存器，因此一個cycle可以比較2個4-char words

user
螢光標示

user
螢光標示

user
螢光標示

user
螢光標示

user
螢光標示



P. Neamatollahi et al.: Simple and Efficient Pattern Matching Algorithms for Biological Sequences

Algorithm 4 Filling the Table of Frequency
Input:The array of reference and the length of this array.
Output:The filling table of word frequency.
1. freq_table[0..4word_len − 1][0..word_len− 1]←
2. All possible words with word_len length over

6={ACGT }
3. freq_table[0..4word_len − 1][word_len]← 0
4. count ← 0
5. WHILE count ≤ REF_len− word_len DO
6. row_count ← 0, col_count ← 0
7. w [0..word_len− 1]← REF

[count..count + word_len− 1]
8. WHILE col_count < word_len DO
9. SWITCH w [col_count]
10. CASE ‘A’: nothing
11. CASE ‘C’: Increase row_count by

1× 4word_len−col_count−1

12. CASE ‘G’: Increase row_count by
2× 4word_len−col_count−1

13. CASE ‘T’: Increase row_count by
3× 4word_len−col_count−1

14. END- SWITCH
15. col_count ← col_count + 1
16. END-WHILE
17. Increase freq_table[row_count][word_len] by

one
18. count ← count + 1
19. END-WHILE

Algorithm 5 LFPM Algorithm

Input: The filled freq_table on reference data. Text t and
pattern p stored in the arrays of t[0..n−1] and p[0..m−1],
respectively, over finite alphabet

∑
= {A,C,G,T}.

Output: The first indexes for all occurrences of pattern p
in text t .

/∗PREPROCESSING PHASE∗/
/∗Step 1: finding the least frequent word in the

pattern∗/
1. count ← 0
2. min_value←∞
3. min_index ←−1
4. WHILE count ≤ m− word_len DO
5. row_count ← 0, col_count ← 0
6. w [0..word_len− 1]←

p [count..count + word_len− 1]
7. WHILE col_count < word_len DO
8. SWITCH w [col_count]
9. CASE‘A’: nothing
10. CASE‘C’: Increase row_count by

1× 4word_len−col_count−1

11. CASE‘G’: Increase row_count by
2× 4word_len−col_count−1

12. CASE‘T’: Increase row_count by
3× 4word_len−col_count−1

13. END- SWITCH
14. col_count ← col_count + 1
15. END-WHILE
16. IF freq_table[row_count][word_len] < min_value

THEN
17. min_value=freq_table[row_count][word_len]
18. min_index ← count
19. END-IF
20. count ← count + 1
21. END-WHILE

/∗Step 2: finding the windows∗/
22. count ← min_index
23. num_window← 0
24. WHILE count ≤ n− (m− min_index) DO
25. IF t [count..count + word_len− 1]
26. = p[min_index..min_index + word_len− 1]

THEN
27. window_index[num_window]←

count − min_index
28. num_window← num_window+ 1
29. END-IF
30. count ← count + 1
31. END-WHILE

/∗MATCHING PHASE∗/
32. count ← 0
33. num_match← 0
34. k ← mmodword_len
35. WHILE count < num_window DO
36. s← window_index[count]
37. c← 0
38. w← word_len
39. WHILE c ≤ m− 1 DO
40. IF c > m− word_len THEN
41. w← k
42. END-IF
43. IF p [c..c+ w− 1]
44. 6= t[s+ c..s+ c+ w− 1] THEN
45. BREAK
46. END-IF
47. c← c+ w
48. END-WHILE
49. IF c = m THEN
50. match_index[num_match]← s
51. num_match← num_match+ 1
52. END-IF
53. count ← count + 1
54. END-WHILE

For details, Algorithm 4 explains the filling task of
freq_table. In Lines 1 and 2, all possible words with
word_len characters over alphabet6 are assigned to columns
0..word_len− 1 of all rows in the table. Line 3 initializes the
cells of theword_len column by zero. In Lines 5-19, the outer
loop repeats the instructions for all words in the reference.
On the other hand, the inner while loop (Lines 8-16) matches
the current reference word to one of the freq_table words.

VOLUME 8, 2020 23843



P. Neamatollahi et al.: Simple and Efficient Pattern Matching Algorithms for Biological Sequences

When matching occurs, the frequency of that word, saved in
theword_len column, increases by one (Line 17). It should be
mentioned that a total search of the table should be avoided
as this is a time-consuming task. Instead, a heuristic method,
implemented by Lines 8-16, can be applied. In each iteration
of the innerwhile loop, a character of the word is compared to
the elements of6. According to the result of this comparison,
row_count increases. This action continues until the time
when the location of the current word in the table is achieved.
As the length of the reference array is presented by REF_len
and the word-based comparison is performed on alphabet 6,
the time complexity for filling freq_table is θ (word_len ×
(REF_len− word_len+ 1)). Although filling freq_table is a
time-consuming task, this is performed only one time on the
reference data. After completion, the table can be utilized for
searching every pattern over the related alphabet6. It should
be noted that the table can be constructed for any alphabet
based on other data sets or text for other applications. How-
ever, in applications with a large alphabet, the size of the table
may be enlarged. Note that, if the reference modifies over
time, the table can be periodically updated.

Whenever freq_table is ready, the preprocessing phase
can start. At the beginning of this phase (Lines 1-21 of
Algorithm 5), the least frequent word in the pattern must be
specified by utilizing the filled freq_table. Therefore, in each
iteration, the current word frequency of the pattern is obtained
from the table. Then, if this frequency is currently the lowest,
the start index of this word and its value are saved for compar-
isons with those of other words in the pattern (Lines 16-19).
The time complexity for determining the least frequent word
is θ (word_len × (m − word_len)). However, as word_len is
fixed for each computer, this time complexity may be stated
as θ (m). In the second step of the preprocessing phase, similar
to PAPM, the text is scanned to discover windows by finding
the least frequent word (See Lines 22-31). In the following,
the matching phase (Lines 32-54) of Algorithm 5 is proposed,
which is similar to that of Algorithm 3.

FIGURE 3. An example for the operation of LFPM algorithm.

For example, Fig. 3 illustrates the operation of LFPM on a
32-bit computer. It is assumed that freq_table is ready from
beforehand. Therefore, the frequency of all words in the pat-
tern is extractable from the table as AAGC: 785, AGCG: 144,
GCGT: 146, and CGTA: 67. As a result, the word CGTA is

chosen as a word having the least frequency. Then, the search
is started to encounter CGTA in the text. The start index of
the related window is only 25. As the least frequent word is
searched in the text, the number of windows using LFPM is
often less than in the previously presented algorithms. After
distinguishing the windows, the matching phase checks the
sameness of the pattern words with those of the windows.
In this case, the words AAGC and GTA, respectively, are
compared with the first and secondwords of the window. This
comparison reveals that the recognized window in the index
of 25 is the answer. Consequently, the superiority of LFPM
is its lowest frequency word approach which tremendously
reduces the number of windows that must be checked in the
next phase.

VII. RESULTS
This section compares the performance of the presented algo-
rithms (FLPM, PAPM, and LFPM) with that of the Brute
Force (BF), Boyer-Moore (BM), and Divide and Conquer
Pattern Matching (DCPM) algorithms. The specifications of
the computing environment for executing different simulated
algorithms were as follows:

• Intell R©coreTM2 Duo CPU T6600 (a 2.2 GHz clock)
• A 2GB Memory
• Acer (Aspire 5738)
• Windows 7 ultimate 32 bit

Due to the use of a 32-bit computer, the word length for the
PAPM and LFPM algorithms was considered as four bytes.
In LFPM, the HRG [29] was utilized as a reference to con-
struct the table of frequency. The simulation was performed
with the C programing language. In each experiment, ten
patterns were searched in the reference and the average of the
results was then reported. It should be noted that LFPM has a
time overhead to construct the table of frequency. As theHRG
dataset was employed for all experiments, this time overhead
was fixed during the simulation. The amount of overhead was
12 milliseconds. However, this time overhead was ignored
in the calculations because the table of frequency is created
only once for any text or database worked on by LFPM. The
results of the simulated algorithms’ performance evaluation
in the preprocessing phase, matching phase, and total phases
in terms of time cost are presented as follows.

A. THE TIME OF PREPROCESSING PHASE
Fig. 4 illustrates the time of the preprocessing phase for dif-
ferent simulated algorithms over the pattern length. It should
be pointed out that the BM’s time is negligible as the pat-
tern is only analyzed during the preprocessing phase of this
algorithm. This figure reveals the dominance of the present
study’s algorithms over the other algorithms. In FLPM, one
pass across the text is sufficient to concurrently discover the
first and last character of the pattern. In contrast, DCPM
requires two passes: one to search for the leftmost character
of the pattern and another for the rightmost. PAPM searches
for the first word of the pattern in the text, for example,

23844 VOLUME 8, 2020

negligible微不足道的，微乎其微的

user
螢光標示

user
螢光標示

user
螢光標示

user
螢光標示

user
螢光標示

user
螢光標示

user
螢光標示

user
螢光標示



P. Neamatollahi et al.: Simple and Efficient Pattern Matching Algorithms for Biological Sequences

FIGURE 4. Time comparisons in preprocessing phase.

the first four characters in a 32-bit computer. Therefore, the
PAPM preprocessing phase also needs one pass. As displayed
in Fig. 4, it is expected that PAPM finds fewer windows than
FLPM, because it considers a word with some characters in
order to recognize the windows, while FLPM only focuses on
two characters (the first and last). Because LFPM searches
for the least frequent word of the pattern, it finds fewer
windows. However, finding the least frequent word from the
frequency table in LFPM is time-consuming. As a result,
PAPM and LFPM consume the least amount of time among
the simulated algorithms in Fig. 4. It is noteworthy that BF
has been removed from this figure since it does not have any
preprocessing phase.

FIGURE 5. Time comparisons in matching phase.

B. THE TIME OF MATCHING PHASE
Fig. 5 presents the time cost of the matching phase for the
algorithms. Because DCPM compares each element in the
rightmost table to all elements of the leftmost table, its match-
ing phase is very time-consuming. Thus, the DCPM plot has
been cut to 3.5 milliseconds. As shown, FLPM, PAPM, and
LFPM outperform the other algorithms. The main reason for
their superiority is because they specify a low number of

FIGURE 6. Total time comparisons.

windows in the previous phase. In addition, by employing
word processing, PAPM and LFPM’s inquiry to match the
windows and the pattern is much faster than that of the
simulated character-based algorithms, i.e., BF, DCPM, BM,
and FLPM.

C. TOTAL TIME
Fig. 6 provides the sum of the time costs for the two phases,
as illustrated in the two previous figures. This figure reveals
that the use of word processing by PAPM and LFPM signifi-
cantly reduces the time required to execute pattern matching.
In LFPM, there is a difference between the repetition number
of the least frequent word and those of other words of the
pattern. The higher value of this difference leads to more
improvement in LFPM performance.

VIII. CONCLUSION
The current paper introduces three new algorithms: FLPM,
PAPM, and LFPM. Similar to previous works, LFPM is
a character-based pattern matching algorithm, while PAPM
and LFPM perform based on the word processing approach.
Furthermore, LFPM searches for the lowest frequency word
of the pattern in order tominimize the algorithm run time. The
present work’s experimental results reveal that the proposed
algorithms, especially LFPM, surpass the other simulated
algorithms in terms of time cost. This improvement is mainly
due to having decreased the number of found windows.

The presentation of a parallel version of the presented algo-
rithms is left for future work.Moreover, as this paper provides
solutions for exact pattern matching, future research may
investigate the algorithms supporting approximate matching.

REFERENCES
[1] P. Montanari, I. Bartolini, P. Ciaccia, M. Patella, S. Ceri, andM.Masseroli,

‘‘Pattern similarity search in genomic sequences,’’ IEEE Trans. Knowl.
Data Eng., vol. 28, no. 11, pp. 3053–3067, Nov. 2016.

[2] V. Abrishami, A. Zaldívar-Peraza, J. M. de la Rosa-Trevín, J. Vargas,
J. Otón, R. Marabini, Y. Shkolnisky, J. M. Carazo, and C. O. S. Sorzano,
‘‘A pattern matching approach to the automatic selection of particles
from low-contrast electron micrographs,’’ Bioinformatics, vol. 29, no. 19,
pp. 2460–2468, Oct. 2013.

VOLUME 8, 2020 23845

↓FLPM

user
螢光標示

user
螢光標示

user
螢光標示



P. Neamatollahi et al.: Simple and Efficient Pattern Matching Algorithms for Biological Sequences

[3] S. Faro and T. Lecroq, ‘‘The exact online string matching problem,’’
CSURACM Comput. Surv., vol. 45, no. 2, pp. 1–42, Feb. 2013.

[4] M. Tahir, M. Sardaraz, and A. A. Ikram, ‘‘EPMA: Efficient pattern
matching algorithm for DNA sequences,’’ Expert Syst. Appl., vol. 80,
pp. 162–170, Sep. 2017.

[5] S. I. Hakak, A. Kamsin, P. Shivakumara, G. A. Gilkar, W. Z. Khan, and
M. Imran, ‘‘Exact string matching algorithms: Survey, issues, and future
research directions,’’ IEEE Access, vol. 7, pp. 69614–69637, 2019.

[6] M. Sazvar, M. Naghibzadeh, and N. Saadati, ‘‘Quick-MLCS: A new algo-
rithm for the multiple longest common subsequence problem,’’ in Proc. 5th
Int. Conf. Comput. Sci. Softw. Eng. (CSE), 2012, pp. 61–66.

[7] V. Y. Gudur and A. Acharyya, ‘‘Hardware-software codesign based accel-
erated and reconfigurable methodology for string matching in compu-
tational bioinformatics applications,’’ IEEE/ACM Trans. Comput. Biol.
Bioinf., to be published.

[8] M. Amit, ‘‘Local exact pattern matching for non-fixed RNA structures,’’
IEEE/ACM Trans. Comput. Biol. Bioinf., vol. 11, no. 1, pp. 219–230,
Jan. 2014.

[9] D. Cantone, S. Faro, and A. Pavone, ‘‘Linear and efficient string match-
ing algorithms based on weak factor recognition,’’ J. Exp. Algorithmics,
vol. 24, no. 1, pp. 1–20, Feb. 2019.

[10] F. Deng, L. Wang, and X. Liu, ‘‘An efficient algorithm for the blocked
pattern matching problem,’’ Bioinformatics, vol. 31, no. 4, pp. 532–538,
Feb. 2015.

[11] C. Ryu and K. Park, ‘‘Improved pattern-scan-order algorithms for string
matching,’’ J. Discrete Algorithms, vol. 49, pp. 27–36, Mar. 2018.

[12] Z. Li, M. Yan, and M. Zhou, ‘‘Synthesis of structurally simple supervisors
enforcing generalized mutual exclusion constraints in Petri Nets,’’ IEEE
Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 40, no. 3, pp. 330–340,
May 2010.

[13] A. Srikantha, A. S. Bopardikar, K. K. Kaipa, P. Venkataraman, K. Lee,
T. Ahn, and R. Narayanan, ‘‘A fast algorithm for exact sequence search
in biological sequences using polyphase decomposition,’’ Bioinformatics,
vol. 26, no. 18, pp. i414–i419, Sep. 2010.

[14] S. Hakak, A. Kamsin, P. Shivakumara, M. Y. Idna Idris, and G. A. Gilkar,
‘‘A new split based searching for exact pattern matching for natural texts,’’
PLoS ONE, vol. 13, no. 7, Jul. 2018, Art. no. e0200912.

[15] H. Kim and K.-I. Choi, ‘‘A pipelined non-deterministic finite automaton-
based string matching scheme using merged state transitions in an FPGA,’’
PLoS ONE, vol. 11, no. 10, Oct. 2016, Art. no. e0163535.

[16] C.-L. Lee, Y.-S. Lin, and Y.-C. Chen, ‘‘A hybrid CPU/GPU pattern-
matching algorithm for deep packet inspection,’’ PLoS ONE, vol. 10,
no. 10, Oct. 2015, Art. no. e0139301.

[17] C. Otto, ‘‘ExpaRNA-P: Simultaneous exact pattern matching and folding
of RNAs,’’ BMC Bioinf., vol. 15, no. 1, p. 404, Dec. 2014.

[18] A. M. Al-Ssulami and H. Mathkour, ‘‘Faster string matching based on
hashing and bit-parallelism,’’ Inf. Process. Lett., vol. 123, pp. 51–55,
Jul. 2017.

[19] A. Policriti and N. Prezza, ‘‘Fast randomized approximate string matching
with succinct hash data structures,’’ BMC Bioinf., vol. 16, no. 9, p. S4,
Dec. 2015.

[20] L. A. K. Ayad, S. P. Pissis, and A. Retha, ‘‘LibFLASM: A software library
for fixed-length approximate string matching,’’ BMCBioinf., vol. 17, no. 1,
p. 454, Dec. 2016.

[21] D. E. Knuth, J. H. Morris, Jr., and V. R. Pratt, ‘‘Fast pattern matching in
strings,’’ SIAM J. Comput., vol. 6, no. 2, pp. 323–350, Jul. 1977.

[22] S. V. Raju, K. K. V. V. S. Reddy, and C. S. Rao, ‘‘Parallel string matching
with linear array, butterfly and divide and conquer models,’’ Ann. Data.
Sci., vol. 5, no. 2, pp. 181–207, Jun. 2018.

[23] R. S. Boyer and J. S. Moore, ‘‘A fast string searching algorithm,’’Commun.
ACM, vol. 20, no. 10, pp. 762–772, Oct. 1977.

[24] A. Apostolico and R. Giancarlo, ‘‘The boyer–Moore–galil string search-
ing strategies revisited,’’ SIAM J. Comput., vol. 15, no. 1, pp. 98–105,
Feb. 1986.

[25] C. Charras and T. Lecroq,Handbook of Exact String Matching Algorithms.
Princeton, NJ, USA: Citeseer, 2004.

[26] H. Li and R. Durbin, ‘‘Fast and accurate long-read alignment with
Burrows-Wheeler transform,’’ Bioinformatics, vol. 26, no. 5, pp. 589–595,
Mar. 2010.

[27] T. H. Cormen C. E. Leiserson, R. L. Rivest, and C. Stein, Introduc-
tion to Algorithms (Computer Science). Cambridge, MA, USA: MIT
Press, 2009. [Online]. Available: https://books.google.com/books?id=
aefUBQAAQBAJ

[28] M. Crochemore, T. Lecroq, A. Czumaj, L. Gasieniec, S. Jarominek,
W. Plandowski, and W. Rytter, ‘‘Speeding up two string-matching algo-
rithms,’’ Algorithmica, vol. 12, nos. 4–5, pp. 247–267, Nov. 1992.

[29] (2019). National Center for Biotechnology Information. [Online].
Available: https://www.ncbi.nlm.nih.gov/projects/genome/guide/human/
index.shtml

PEYMAN NEAMATOLLAHI received the B.S.
and M.S. degrees in computer engineering, with a
concentration in parallel and distributed systems,
in 2007 and 2011, respectively, and the Ph.D.
degree in computer engineering from the Ferdowsi
University of Mashhad, in 2017. He has pub-
lished several conference and journal articles. His
research interests are in bioinformatics, the Inter-
net of Things (IoT), job scheduling in distributed
environments, distributed algorithms, and fuzzy

logic control. He also serves as a Reviewer of the IEEE SENSORS JOURNAL,
Ad Hoc Networks, the Journal of Networks and Computer Applications,
Computers and Electrical Engineering, Wireless Networks, and the Journal
of Supercomputing.

MONTASSIR HADI received the M.S. degree in
computer engineering from the Ferdowsi Univer-
sity of Mashhad, Iran. His thesis was on string
matching algorithms for bioinformatics applica-
tions. His research interests are in bioinformatics
and string-matching algorithms. Besides, he can
work well with the simulation tools as a software
developer.

MAHMOUD NAGHIBZADEH (Senior Mem-
ber, IEEE) received the M.S. and Ph.D. degrees
in computer science and computer engineering
from the University of Southern California (USC),
USA. He has taught Undergraduate and Gradu-
ate courses at USC and the University of South
Florida, USA. He was a Visiting Professor with
the University of California at Irvine (UCI), USA,
in 1991, and a Visiting Professor with Monash
University, Australia, from 2003 to 2004. He is

currently a Full Professor with the Ferdowsi University of Mashhad, Iran.
He has published numerous articles and eight books. His research interests
include scheduling aspects of real-time systems, grid, cloud, multiproces-
sors, multicores, andGPGPUs and also bioinformatics algorithms, especially
genomics and proteomics. He was a recipient of many awards includingM.S.
and Ph.D. study scholarship. He has been the chairman of two international
conferences and technical chair of many others. He is the Reviewer of many
journals and a member of many computer societies.

23846 VOLUME 8, 2020

user
螢光標示

user
螢光標示

user
螢光標示

user
螢光標示




