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Abstract—The identification of the side-effects of chemicals
is the serious and costly stage in the drug development.
Most side-effects are caused by their toxicity and also their
correlation with other diseases than target diseases. We present
a novel measure that identifies disease-associated genes from
the biomedical literature in terms of causing less side-effects.
This enables the identification of specific disease-associated
genes, the decreased expression of which would result in a
lower probability of side-effects, thus contributing to efficient
drug development. Our method evaluates the specificity of a
gene to a particular disease based on the number of associated
diseases with the gene. In addition, we consider transitive
gene-disease associations, that is, indirect gene-disease asso-
ciations via intermediate genes. Gene-disease associations are
extracted from the PubMed abstracts based on term co-
occurrences. Also, we discuss the ranking results for Alzheimer
disease and various cancers to verify the effectiveness of our
measure. Ranking results for other diseases are available at
http://www.ps.noda.tus.ac.jp/ddss/.
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I. INTRODUCTION

Recently, a lot of works have been done on extracting
biological knowledge, especially gene-disease associations,
from the biomedical literature such as the PubMed abstracts.
Though there are a number of criteria for evaluating asso-
ciation between diseases and genes, most of them depend
on the co-occurrence frequency (that is, the number of
documents) of gene and disease terms [1], [4]. Adamic et
al. [1] propose the statistical significance of the occurrence
frequency of a particular gene term under documents that
contain a particular disease term. Cheng et al. [4] measure
the degree of association between two terms by their co-
occurrence frequency with other scoring strategies such as
rule-based pattern matching in sentences.

For supporting new drug development, it is desirable that
only specifically associated genes with a particular disease
are extracted so that drug developers can avoid cost- and
time-consuming wet experiments on genes also associated

with other diseases, which may produce unexpected side-
effects. Existing co-occurrence frequency-based measures
can extract enough good candidates for disease-associated
genes, but may not limit results to good target genes for the
disease because they evaluate association with a particular
disease, but do not explicitly consider the possibility of caus-
ing side-effects. Thus, with those measures, drug developers
must verify that extracted candidate genes are actually target
genes by examining whether those genes are not extracted
as candidate genes for other diseases.

In this work, we propose another measure for disease-
associated genes which aims at extracting specifically asso-
ciated genes with a given disease. This enables the identifi-
cation of associated genes that are more likely to have fewer
side-effects, which contributes to efficient drug development.
We measure the specificity of a gene to a disease by a tf-idf
(term frequency-inverse document frequency) like method,
where the number of documents in which the gene and
the disease co-occur is used in the tf part and the number
of diseases associated with a gene is used instead of the
number of documents in the idf part. Furthermore, based
on an assumption that a disease is also indirectly associated
with genes via intermediate genes, we extend the notion of
specificity to incorporate indirect gene-disease associations.
This idea comes from a heuristics that if two genes co-occur
in the same part of a document, then they may belong to
a same family or be on a same pathway, and therefore,
share same affect to diseases. This type of transitivity is
also adopted for mutual information in [15] using common
terms.

Our measure is different from existing co-occurrence
frequency-based approaches in that it incorporates the num-
ber of associated diseases with a gene as a factor of
specificity, while others, such as mutual information based
on term occurrence probabilities [13], focus on association
only between a particular disease and a gene. That is, other
measures do not consider the number of associated diseases
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. Other approaches to extract disease-associated genes in-
clude using known disease genes [9], phenotypes, expression
data [6], ontologies [12], and so on. GeneSeeker [6] collects
these data from multiple human and mouse databases and
prioritizes candidate genes for a particular disease based
on positional, expression and model data. Tiffin et al. use
the eVOC anatomical ontology and human gene expression
data, and evaluate their approach using known 17 disease
genes [12]. Özgür et al. use protein-interaction networks [9].
Their method first constructs gene networks for a disease by
literature mining based on dependency trees of sentences
and support vector machines which classify sentences as
describing interactions between genes or not. Then, central
nodes are identified as candidate genes under the assumption
that central genes in the network are likely to be associated
with the disease. Yu et al. compare various alternatives in
gene prioritization methods such as the representation of a
term vector, a ranking algorithm of associated genes, and
available vocabularies [16]. Though our approach uses only
documents, it can be combined with other methods where
additional data are available to further improve precision.

II. MATERIAL AND METHOD

The outline of our method is as follows. First, we create
term dictionaries of disease and gene names. Using these
term dictionaries, we create occurrence tables of disease
and gene names in the collection of PubMed abstracts. By
joining the occurrence tables on PubMed IDs, we obtain
co-occurrence tables of disease-gene and gene-gene names.
For each disease, its associated genes are extracted from the
co-occurrence table of disease-gene names and specificity
score is assigned to each gene according to our proposed
measure. In addition, we incorporate indirect associations
between genes and diseases into the specificity score so as
not to miss the possibility of implicit side-effects. These
indirect associations are extracted from the co-occurrence
tables of disease-gene and gene-gene names.

We describe the detail of each step in the following.

A. Term Dictionaries

Gene dictionary: We downloaded human gene data from
NCBI (National Center for Biotechnology Information)
FTP site (ftp://ftp.ncbi.nlm.gov/gene/DATA/) in March 2010.
Then, we select Entrez Gene ID, gene symbol, gene syn-
onym, and gene name fields from the data. The gene
dictionary contains a total of 115,624 entries including gene
synonyms.

Disease dictionary: We use CTD (Comparative Toxi-
cogenomics Database) disease terms in January 2010 [5]
and NLM (National Library of Medicine) MeSH (Medical
Subject Headings) database (http://www.nlm.nih.gov/mesh/
filelist.html) in March 2010. CTD provides curated disease
names, while MeSH provides a lot of synonyms for disease
names. To receive benefit from the two databases, we adopt

Table I
SYNONYMS FOR APP AND THE NUMBER OF OCCURRENCES.

Gene occ Gene occ Gene occ
APP 4563 ABPP 14 CTFgamma 6
AAA 1238 AD1 10 CVAP 3
ABETA 6241 APPI 16 PN2 10

CTD disease names as primary diseases and MeSH thesaurus
as synonyms for CTD disease names．The resulting disease
dictionary contains a total of 45,522 entries.

B. Term Occurrences

As a collection of documents, we downloaded MED-
LINE/PubMed abstracts from NLM (ftp://ftp.nlm.nih.gov/
nlmdata/) in January 2010 and select PubMed ID, Arti-
cleTitle, and AbstractText fields from each abstract of total
18,502,912 documents. First, all gene symbol occurrences
are extracted from the PubMed data using keyword search.
The gene occurrence table consists of Gene ID, PubMed
ID, and the sentence number in which a corresponding gene
symbol appears in an abstract. All occurrences of synonyms
of a gene are normalized into the occurrences of the corre-
sponding single official symbol. For example, gene symbol
APP, amyloid beta (A4) precursor protein, may appear as
AAA, ABETA, ABPP, AD1, APPI, CTFgamma, CVAP, or
PN2 in documents. Table 1 shows a list of synonyms for
APP and the number of occurrences of each synonym. The
total number of occurrences, in this case 10,656 (excluding
duplications), is considered as the number of occurrences of
APP.

In addition to keyword search, additional checking, called
neighbor search, is performed to reduce false positives
of gene symbol occurrences. Because gene symbols are
generally created from acronyms of gene names, some sym-
bols such as IMPACT (imprinted and ancient gene protein
homolog) and LARGE (like-acetylglucosaminyltransferase)
have the same spells as general words. Such symbols may
produce many false positives in keyword search. Neighbor
search checks whether any constitution word of a symbol ap-
pears near the symbol (in our setting, in the same sentence).
Constitution words of a symbol are created by splitting its
gene name into a set of words delimited by special signs
such as pluses, minuses, parentheses, brackets, hyphens, and
spaces. General words such as body, cell, and protein, which
are defined manually, are deleted from constitution words
because they do not positively support the occurrence of
a particular symbol in general. If any constitution word is
found in the same sentence, the occurrence of the symbol
is decided to be positive. Given an occurrence of a symbol,
whether neighbor search is performed is determined by the
character length of the symbol and characteristic letters such
as digits and hyphens.

Figure 1 shows an example of neighbor search. Consider a
case that gene symbol ALK, Entrez Gene ID 238, occurs in
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PubMed ID=7772531
Recent molecular characterization of the translocation
breakpoint has identified a gene fusion between NPM
(nucleophosmin) and ALK (anaplastic lymphoma kinase).

PubMed ID=1522609
There was no histopathological evidence of hepatic damage
with ethanol alone, and no effect on hepatic cytochrome P-
450 and glutathione levels or on serum levels of alanine
aminotransferase (ALT), aspartate aminotransferase (AST),
and alkaline phosphatase (ALK).

Figure 1. This is an example of neighbor search. From ALK’s gene
names, the constitution words are generated: anaplastic, lymphoma, CD246,
and 2p23. Because the first sentence (PubMed ID=7772531) contains
“anaplastic” and “lymphoma”, this occurrence of ALK is considered to
be positive. The second sentence (PubMed ID=1522609) does not contain
any of the constitution words, and therefore, this occurrence is discarded.

some abstract. ALK’s gene names are anaplastic lymphoma
receptor tyrosine kinase, tyrosine kinase receptor, CD246
antigen, and 2p23. By splitting these gene names by delim-
iters, we obtain a set of constitution words as anaplastic,
lymphoma, receptor, tyrosine, kinase, CD246, antigen, and
2p23. Among these words, repceptor, tyrosine, kinase, and
antigen are dropped from constitution words because they
are not specific words to ALK. Next, neighbor search tries
to find any occurrence of one of these constitution words
in the same sentence where ALK appears. In the first case
in Fig. 1 (PubMed ID=7772531), we can see that the word
“anaplastic” or “lymphoma” occurs. On the other hand, the
second case (PubMed ID=1522609) does not contain any
of these words, and therefore, this occurrence of ALK is
decided to be a false positive and deleted from the gene
occurrence table.

The occurrence table for disease terms is constructed
using keyword search. Also, synonyms are normalized into
its representative disease name. We regard the co-occurrence
of gene and disease terms in a same sentence as association
between the two terms. There are other alternatives to the
range of co-occurrence of two terms, e.g., one document, one
paragraph, and a fixed length of words. In general, a broad
range generates high recall and low precision results. Among
these, we chose one sentence in a same abstract because it
is enough to find a small number of candidate genes that are
worth being verified for new drug development. By joining
the gene occurrence table and disease occurrence table on
the PubMed ID and the sentence number fields, we obtain
co-occurrence tables of gene-disease and gene-gene asso-
ciations. Gene-gene associations are used for incorporating
indirect gene-disease associations, which will be described
later.

Further refinement methods to extract gene-disease as-
sociations are also applicable such as natural language
processing and machine learning techniques. However, these
methods take a significant amount of time and need a large
amount of training data and thus, are not suited for the

exhaustive analysis of a large set of documents, especially
when data should be updated constantly.

C. Measuring Associations

Specificity is measured based on a tf-idf like method. The
difference from the original definition is that the number of
diseases associated with a particular gene is used in the idf
definition rather than the number of documents in which the
gene appears.

First, we define the gene term frequency (gtf in short). The
gtf part evaluates the frequency of co-occurrences between
a particular disease and its associated gene. Similar to the
original tf definition, the gtf part of gene g with respect to
disease d is defined as follows:

gtfd(g) =
n(d, g)∑
g′ n(d, g′)

,

where n(d, g) denotes the number of documents in which d
and g co-occur. In the context of drug development, a gene
of high gtf value is more appropriate for a target gene.

Next, we define the associated disease frequency (adf
in short). The adf part evaluates the specificity of co-
occurrences between a particular disease and its associated
gene. Let ad(g) be the number of diseases sufficiently asso-
ciated with gene g. Here, disease d is said to be sufficiently
associated with g if n(d, g) ≥ th, where th is a given
threshold. Then, similar to the original idf definition, the
adf part of g is defined as follows:

adf(g) = log
m

ad(g)
,

where m is the number of distinct diseases. In the context
of drug development, a gene of high adf value has less
possibility of side-effects and therefore, can be considered
as a good candidate target gene.

The association score of g to d, denoted as asd(g), is
defined as follows:

asd(g) = gtfd(g) · adf(g).

D. Indirect Associations via Intermediate Genes

In addition to direct gene-disease associations, there may
be indirect gene-disease associations via intermediate genes.
The notion of indirect associations is based on the assump-
tion that gene g′ has an association with disease d if there
is another gene g that co-occurs with d and frequently co-
occurs with g′ in literature, even if g′ does not directly co-
occur with d. Two genes that co-occur in a same sentence
often appear owing to belonging to a same family or being
located in a same pathway. Those genes are expected to
share similar affect to a particular disease, since they have
similar functions in the former case, and have multiplier
effects in the latter case. For example, apolipoprotein E
(APOE), which is known as a causal gene for Alzheimer
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disease, co-occurs with lipoprotein lipase (LPL) in 74 doc-
ument abstracts. This implies that diseases associated with
LPL such as Cachexia may be associated also with APOE.
In fact, we can expect that APOE also has some relationship
to Cachexia via LPL because APOE and LPL are both lipid
metabolism-related genes. According to this assumption, we
redefine the adf of a gene so that the number of indirect
gene-disease associations via intermediate genes are taken
into account.

First, we define the strength of association between two
genes. Again, among various methods for detecting gene
relationships from the PubMed abstracts such as natural lan-
guage processing, statistics [2], and multiple thesauri [11],
we adopt the frequency of co-occurrences of gene symbols
because of its simplicity and efficiency. Let gi and gj be
distinct genes. Then, the similarity of gi and gj , denoted as
sim(gi, gj), is defined as:

sim(gi, gj) = ci ·
n(gi, gj)∑
j ̸=i n(gi, gj)

,

where n(gi, gj) represents the number of documents in
which gene gi and gj co-occur and ci (≤ 1) is a weight that
reflects a decline of influence by one gene-gene association.
Then, an extended version of the adf(g) definition that
incorporates indirect gene-disease associations is defined as
follows:

adfI(gi) = log
m

ad(gi) +
∑

j ̸=i sim(gi, gj)ad̸=i(gj)
,

where ad ̸=i is the number of diseases other than directly
associated diseases with gi, which is introduced to avoid
duplicate count of same diseases. In the above expression,
the left term in the denominator corresponds to the contri-
bution of direct gene-disease associations to the specificity
and the right term corresponds to that of indirect gene-
disease associations. The number of diseases associated
with gj is weighted by sim(gi, gj) under the assumption
that the probability that two genes share same associated
diseases gets higher depending on the similarity of the
two genes. Note that so-called hubgenes which have many
links with other genes in this gene-gene association network
are ranked lower in our measure because of their many
indirect associations with other diseases. This is different
from existing methods such as [9], where hubgenes in a
protein-interaction network are extracted as most associated
genes with a disease.

Figure 2 shows an example of adfI calculation when
incorporating indirect gene-disease associations. A number
on a line between genes represents a sim value between the
two genes. Assume that we want to find genes specific to
disease d1. A gene directly associated with d1 in the left
(and respectively, right) network of the figure is g1 (and
respectively, g4). With direct associations, g1 is more specific
to d1 than g4 because g1 has an association with only one

g3
g1d1

g: gene     d: disease

g2 d3
d4
d5d3

0.7

0.3

g4d1 d2 d3
g6
g5 d10.6

0.4

d2
d4

Number of directly associated diseases Number of directly associated diseases
= d1 + d2 = 2d = d1 + d2 + d3 = 3d

Number of indirectly associated diseases Number of indirectly associated diseases
= (0.7 + 0.3)d3 + 0.7d4 + 0.3d5 = 0.4d4
= 2d

Number of associated diseases Number of associated diseases
= 2d + 2d = 4d = 3d + 0.4d = 3.4d

Figure 2. Indirect assocations are incorporated into association scores.
Numbers on lines between genes represent sim values between them. In
the left network of the figure, adfI(g1) = 2 + (0.7 ∗ 2 + 0.3 ∗ 2) = 4.
In the right network of the figure, adfI(g4) = 3 + 0.4 = 3.4. Since d1

is already counted in the calculation of direct associations, its weight is
omitted in the calculation of indirect associations. As a result, g4 is more
specific to d1 in the context of less side-effects.

disease d2 other than d1. However, with direct and indirect
associations, g4 is more specific to d1 because g4 has less
indirect associations with other diseases via intermediate
genes. Thus, in the context of drug development, it is
effective to set g4 as a candidate target gene because g4

is expected to have less possibility of side-effects than g1.
The above definition is given for indirect gene-disease

associations via one intermediate gene, but can be naturally
extended for an arbitrary number of intermediate genes.
To compute specificity values, it is sufficient to create an
adjacency matrix, where an element of the i-th row and the
j-th column is sim(gi, gj) and obtain indirect associations
via n intermediate genes by multiplying the matrix n times.

III. RESULTS AND DISCUSSION

To verify the effectiveness of our measure, we experi-
mented with well-studied Alzheimer disease (AD) by check-
ing whether drug targets and known associated genes are
ranked higher than results by the co-occurrence frequency-
based measure including mutual information.

Table II shows the top-20 results for AD. APP, PSEN1,
PSEN2, and APOE, which are emphasized in Table II, are
known causal genes for AD [14]. Many current drug thera-
pies of AD such as donepezil, rivastigmine and galantamine
use acetyl cholinesterase (ACHE) inhibitors to reduce the
rate at which acetylcholine is broken down. PharmGKB [8],
a curated database of gene-drug-disease relationships, enu-
merates butyryl cholinesterase (BCHE) other than ACHE as
drug targets of rivastigmine. ACHE and BCHE are ranked
at the 5th and 20th positions by gtf values, respectively.
However, ACHE co-occurs with over 500 disease names
including AD, brain neoplasms, breast neoplasms, colonic
neoplasms, intestinal neoplasms, lung neoplasms, ovarian
neoplasms, stomach neoplasms, and thyroid neoplasms,
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Table II
TOP-20 ASSOCIATED GENES FOR ALZHEIMER DISEASE.

Gene n(d, g)† ad(g)‡
Rank by

gtf adf adfI as asI MI∗

MAPT 135 117 3 195 210 1 1 22
PSEN1 73 68 4 124 156 2 3 10
APP 543 331 1 298 306 3 2 15
PSEN2 31 34 8 71 113 4 5 8
BACE1 32 42 6 86 104 5 4 16
SORL1 14 23 11 45 51 6 6 4
APOE 243 451 2 327 330 7 7 29
CHAT 21 106 10 176 309 8 8 82
APBB1 7 18 28 34 46 9 9 20
NCSTN 4 6 40 10 14 10 11 6
TARDBP 9 57 17 109 112 11 10 23
SLC6A3 32 344 6 304 305 12 12 78
BCHE 8 60 20 115 153 13 17 61
A2M 9 75 17 135 146 14 13 26
IDE 6 35 33 73 76 15 14 34
CST3 4 12 41 25 33 16 18 9
PRNP 14 177 11 239 241 17 15 130
HTT 14 181 11 242 243 18 16 109
CDK5 8 86 21 156 198 19 23 76
ACHE 38 508 5 340 338 20 19 108
† The number of documents in which the gene and Alzheimer Disease co-occur.
‡ The number of diseases associated with the gene. ∗ Mutual Information
A2M alpha-2-macroglobulin; ACHE acetyl cholinesterase (Yt blood group);
APBB1 amyloid beta A4 precursor protein-binding family B member 1; APOE
apolipoprotein E; APP amyloid beta (A4) precursor protein; BACE1 beta-site
APP-cleaving enzyme 1; BCHE butyryl cholinesterase; CDK5 cyclin-dependent
kinase 5; CHAT choline acetyltransferase; CST3 cystatin C; HTT huntingtin;
IDE insulin-degrading enzyme; MAPT microtubule-associated protein tau;
NCSTN nicastrin; PRNP prion protein; PSEN1 presenilin 1; PSEN2 presenilin 2
(Alzheimer disease 4); SORL1 sortilin-related receptor, L(DLR class)
A repeats-containing; SLC6A solute carrier family 6 member 3;

while BCHE co-occurs with only 60 disease names in-
cluding AD and lung neoplasms. BCHE does not co-occur
with other neoplasms other than lung neoplasms, and thus,
BCHE is ranked higher than ACHE by as values. Actually,
PharmGKB enumerates a lot of side-effects of donepezil
such as severe nausea, vomiting, salivation, sweating, brady-
cardia, hypotension, respiratory depression, collapse and
convulsions as symptoms of overdose.

Next, we examine the effectiveness of indirect associ-
ations via intermediate genes. There are over 100 genes
associated with BCHE including APOE. According to an
article of PubMed ID 15519745, there is a synergic asso-
ciation between butyrylcholinesterase-K variant (BChE-K)
and apolipoproteinE-epsilon 4 (ApoE-epsilon 4) to promote
risk for AD. APOE co-occurs with 451 diseases such as
atherosclerosis and hypercholesterolemia. Thus, one of the
reasons that the rank of BCHE gets lower by asI than by
as is that a number of diseases associated with APOE are
considered to be transitively associated with BCHE in the
asI measure.

Table III shows a summary of the ranking results for
cancers that contain “neoplasms.” The 2nd and 3rd columns
are related drugs and target genes to cancers, where their
field values are cited from PharmGKB. The 4th and 5th
columns represent the ranks of the corresponding target

Table III
RELATED DRUGS AND TARGET GENES TO CANCERS.

Disease Drug† Target†
Rank‡

as asI

Breast neoplasms capecitabine DPYD NR NR
cetuximab EGFR 52 NR
anastrozole CYP19A1 11 17

Colonic neoplasms acetaminophen PTGS2 28 50
cetuximab EGFR 37 51
lapatinib ERBB2 86 NR

Colorectal neoplasms capecitabine DPYD 9 7
cetuximab EGFR 37 49
bevacizumab VEGFA 89 91

Gastrointestinal neoplasms capecitabine DPYD 5 1
Head and neck neoplasms capecitabine DPYD 43 36

cetuximab EGFR 1 2
docetaxel BCL2 25 27

Kideney neoplasms bevacizumab VEGFA 39 42
Liver neoplasms celecoxib PTGS2 65 NR

paclitaxel BCL2 79 NR
Lung neoplasms cetuximab EGFR 7 11

lapatinib ERBB2 18 24
gemcitabine RRM1 44 26
topotecan ABCG2 62 46
rifampin ABCB1 65 93
docetaxel BCL2 97 NR

Ovarian neoplasms lapatinib ERBB2 6 10
rifampin ABCB1 37 64

Pancreatic neoplasms capecitabine DPYD 88 69
lapatinib ERBB2 22 29
cetuximab EGFR 25 32
celecoxib PTGS2 70 NR

Prostatic neoplasms testosterone AR 12 8
docetaxel BCL2 99 NR

Stomach neoplasms capecitabine DPYD 21 18
lapatinib ERBB2 23 28
docetaxel BCL2 72 84

Thyroid neoplasms sorafenib BRAF 4 4
Uterine neoplasms trastuzumab EGFR 27 28
† This field is cited from PharmGKB. ‡ NR denotes that the corresponding
target is not ranked in top-100 results. ABCB1 ATP-binding cassette, sub-family
B, member 1; ABCG2 ATP-binding cassette, sub-family G, member 2; AR
androgen receptor; BCL2 B-cell CLL/lymphoma 2; BRAF v-raf muring sarcoma
viral oncogene homolog B1; CYP19A1 cytochrome P450, family 19, subfamily
A, polypeptide 1; DPYD dihydropyrimidine dehydrogenase; EGFR epidermal
growth factor receptor; ERBB2 e-erb-b2 erythroblastic leukemia viral oncogene
homolog 2; PTGS2 prostaglandin-endoperoxide synthase2; RRM1 ribonucleotide
reductase M1; VEGFA vascular endothelial growth factor A

genes by as and asI measures, respectively.
Capecitabine, which is emphasized in Table III, is a drug

given as a treatment for many types of cancers, including
breast cancer, colorectal cancer, gastrointestinal cancer, head
and neck cancer, pancreatic cancer, and stomach cancer,
and has side effects such as fatigue, diarrhea, constipation
headaches, conjunctivitis, and anorexia [10]. Dihydropyrim-
idine dehydrogenase (DPYD), a target gene of capecitabine,
is ranked at the 5th and the 1st positions for gastrointestinal
neoplasms by as and asI , respectively, but is ranked much
lower than for other cancers and does not appear in even top-
100 results for breast cancer in both measures. Therefore, we
can expect that DPYD is the most specific gene to gastroin-
testinal cancer because the gene is strongly associated with
gastrointestinal cancer and capecitabine that uses DPYD as
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a target gene is more effective to gastrointestinal cancer
than other cancers. Furthermore, DPYD is more associated
with colorectal cancer, gastrointestinal cancer and stomach
cancer than with other cancers such as breast cancer and
pancreatic cancer. This implies that capecitabine is effective
to intestine- and stomach-related cancers.

Cetuximab, which is underlined in Table III, is also a drug
given as a treatment for many types of cancers. A target gene
of cetuximab, epidemal growth factor receptor (EGFR), is
ranked at the 1st position by as for head and neck cancer.
This implies that EGFR is deeply associated with the two
cancers compared to other cancers. Thus, we can expect that
cetuximab is more effective to head and neck cancer than
other cancers, as shown in [3], [7].

From this experiment, it was found that there is a pos-
sibility that better results can be obtained by our measure.
Also, it can be expected that this method is effective as a
filtering step for identifying candidate target genes.

IV. CONCLUSIONS

We proposed a novel measure for identifying candidate
target genes that incorporates direct and indirect disease-
gene associations in literature and experimented with some
diseases to examine the effectiveness of the measure.

Although the way of measuring the possibility of side-
effects depends on the associated disease frequency defined
simply by co-occurrences in literature, the experimental re-
sults show that incorporating associations with other diseases
can better filter candidates which may cause side-effects.

As a future work, we plan to perform further detailed
analysis and extend our method to combine other fact data
such as pathways with the literature analysis. Developing a
proper test set for target genes with less side-effects is also
required.
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