
INCREMENTAL STRING COMPARISON∗

GAD M. LANDAU† , EUGENE W. MYERS‡ , AND JEANETTE P. SCHMIDT§

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 2, pp. 557–582, April 1998 012

Abstract. The problem of comparing two sequences A and B to determine their longest common
subsequence (LCS) or the edit distance between them has been much studied. In this paper we
consider the following incremental version of these problems: given an appropriate encoding of a
comparison between A and B, can one incrementally compute the answer for A and bB, and the
answer for A and Bb with equal efficiency, where b is an additional symbol? Our main result is
a theorem exposing a surprising relationship between the dynamic programming solutions for two
such “adjacent” problems. Given a threshold k on the number of differences to be permitted in
an alignment, the theorem leads directly to an O(k) algorithm for incrementally computing a new
solution from an old one, as contrasts the O(k2) time required to compute a solution from scratch.
We further show, with a series of applications, that this algorithm is indeed more powerful than
its nonincremental counterpart. We show this by solving the applications with greater asymptotic
efficiency than heretofore possible. For example, we obtain O(nk) algorithms for the longest prefix
approximate match problem, the approximate overlap problem, and cyclic string comparison.

Key words. string matching, edit-distance, dynamic programming

AMS subject classification. 68P99

PII. S0097539794264810

1. Introduction. Sequence comparison is an extensively studied topic. Appli-
cations are numerous and include file comparison [HS-77], spelling correction [HD-80],
information retrieval [WM-92], and searching for similarities among biosequences
[NW-70, Se-80, SW-81]. Given string A = a1a2a3 . . . am and B = b1b2b3 . . . bn, one
seeks an alignment between the two strings that exposes their similarity. An align-
ment is any pairing of symbols subject to the restriction that if lines were drawn
between paired symbols as in Figure 1 below, the lines would not cross. Scores are
assigned to alignments according to the concept of similarity or difference required by
the context of the application, and one seeks alignments of optimal score [WF-74].

While for applications such as comparing protein sequences the methods of scor-
ing can involve arbitrary scores for symbol pairs and for gaps of unaligned symbols,
in many other contexts simple unit cost schemes suffice. Two of these, the longest
common subsequence (LCS) and the edit-distance measures, have been studied exten-
sively within computer science, and the unit cost nature of the scoring provides com-
binatorial leverage not found in the more general framework [Hi-77, HS-77, NKY-82,
Uk-85a, Uk-85b, My-86a, LV-89, GP-90]. In the edit distance problem, each mis-
matched aligned pair and unaligned symbol is called a difference and scores 1. All

∗Received by the editors March 21, 1994; accepted for publication (in revised form) March 27,
1996.

http://www.siam.org/journals/sicomp/27-2/26481.html
†Department of Computer Science, Polytechnic University, 6 MetroTech, Brooklyn, NY 11201

(landau@pucs2.poly.edu). The research of this author was partially supported by NSF grant
CCR-9305873 and the New York State Science and Technology Foundation Center for Advanced
Technology.

‡Department of Computer Science, University of Arizona, Tucson, AZ 85721 (gene@cs.
arizona.edu). The research of this author was partially supported by NLM grant LM-04960, NSF
grant CCR-9002351, and DOE grant DE-FG05-91ER61132.

§Department of Computer Science, Polytechnic University, 6 MetroTech, Brooklyn, NY 11201
(jps@pucs4.poly.edu). The research of this author was partially supported by NSF grants CCR-
9305873 and HRD-9627109 and by the New York State Science and Technology Foundation Center
for Advanced Technology.

557

D
ow

nl
oa

de
d

05
/0

9/
20

 to
 1

15
.4

3.
30

.2
35

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

558 G.M. LANDAU, E.W. MYERS, AND J.P. SCHMIDT

A T G C G

A A T G C

T T C TAC

T T C C T T

Gap

Unaligned Symbol

Mismatch

LCS = ATGCTTCT

Edit Distance = 5

FIG. 1. An alignment between two strings.

pairs of equal aligned characters score 0. One seeks an alignment that minimizes the
score or number of differences and this minimal score, ED(A, B), is called the edit
distance between A and B. Conversely, in the LCS problem matched pairs score 1,
mismatches and unaligned symbols score 0, and the goal is to find an alignment of
maximum score LCS(A, B). In this case, the sequence of matched characters is a
subsequence common to both sequences and is of maximum length, hence the name
longest common subsequence. Figure 1 illustrates these measures.

Although certainly complementary, the LCS and edit distance problems are not
formal duals. The LCS problem is equivalent to finding the minimum edit distance,
where mismatches are not allowed, or equivalently, where a mismatch scores 2, so that
it is no better than leaving the two characters unaligned. The reader may wish to
also verify that the edit distance problem is equivalent to the following “LCS-like”
problem: find an alignment of maximum score where matches score 1, unaligned
characters score 0, and mismatches score 1

2 .
In this paper we consider the following incremental version of the sequence com-

parison problem: given a solution for the comparison of A and B, can one in-
crementally compute a solution for A versus bB, where b is an additional symbol
prepended to B? By solution we mean some encoding of a relevant portion of the
traditional dynamic programming matrix D computed in comparing A and B. D is
an (m + 1) × (n + 1) matrix, where entry D[i, j] is the best score for the problem
of comparing Ai with Bj , and Ai is the prefix, a1a2 . . . ai, of A’s first i symbols.
As will be seen in detail later, the data-dependencies of the fundamental recurrence,
used to compute an entry D[i, j], is such that it is easy to extend D to a matrix D′

for A versus Bb by computing an additional column. However, efficiently comput-
ing a solution for A versus bB given D is much more difficult, in essence requiring
one to work against the “grain” of these data-dependencies. The further observa-
tion that the matrix for A versus B, and that the matrix for A versus bB can differ
in O(mn) entries, suggests that the relationship between such adjacent problems is
nontrivial.

One might immediately suggest that by comparing the reverse of A and B,
prepending symbols becomes equivalent to appending symbols, and so the problem,
as stated, is trivial. But in this case, we would ask for the delivery of a solution for A
versus Bb. The point is that our method allows one to append and prepend symbols
to A and/or B in any order, efficiently solving one problem from the previous one.
More formally, given an initial solution S(0) for A(0) = A versus B(0) = B, and a
sequence of operations op(t) that either prepend or append a single symbol to A(t−1)

or B(t−1) to produce A(t) and B(t), we can deliver the corresponding sequence of so-
lutions S(t) with linear efficiency. Moreover, we can do so online, i.e., the sequence of

D
ow

nl
oa

de
d

05
/0

9/
20

 to
 1

15
.4

3.
30

.2
35

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

INCREMENTAL STRING COMPARISON 559

operations need not be known in advance. To keep matters simple, however, we will
focus on the core problem of computing a solution for A versus bB, given a “forward”
solution for A versus B. A “forward” solution of the problem contains an encoding
of a comparison of all (relevant) prefixes of A with all (relevant) prefixes of B. It
turns out that the ability to efficiently prepend a symbol to B when given all the
information contained in a “forward” solution allows one to solve the applications
given in section 4 with greater asymptotic efficiency than heretofore possible.

As an example of such application, consider the problem of approximate string
matching within k differences: find all substrings of a text B of length n whose edit
distance from a query A is not greater than threshold k. With our O(k) incremental
version of the well-known O(n + k2) greedy algorithm for edit distance, the problem
can be solved in O(nk) time by starting with an empty text and building it up from
the right, one character at a time. Proceeding formally, let Bl denote the suffix of
B starting at its l + 1st symbol, bl+1bl+2 . . . bn. Begin the search by building the
trivial k-thresholded solution for A versus Bn (= ε). Then incrementally compute
the solutions to A versus Bl for l = n − 1, n − 2, n − 3 . . . 0 in O(k) time per step.
While the overall time, O(nk), is no better than previous results, [LV-89, GP-90], the
algorithm is superior in that for each left index l it reports all right indexes r, (and
for each right index r it hence reports all left indexes l), delimiting a substring Br

l =
bl+1bl+2 . . . br that matches A within k differences. For each such match-pair (l, r),
the algorithm delivers the number of differences, ED(A, Br

l), in the match. Previous
algorithms either report for each right index r, the matches with the smallest number
of differences ending at r (the “forward” solution), or report the matches with the
smallest number of differences starting at l (the “backward” solution). In our solution
at each potential left-index l, the entire k-thresholded solution for A versus Bl is
available and can be examined in O(k) time to find any corresponding right-indices
and their match score. In addition, if A does not match any prefix of Bl with at most
k differences, we can report the longest prefix of A that matches a prefix of Bl with
k differences. If desired, one can also build an O(nk) table T [0 . . . n][−k . . . k] during
the search where T [l][r − (l + m)] equals ED(A, Br

l), if (l, r) delimits a k-match (i.e.,
a match with at most k differences) and k + 1 otherwise. The table T is a record
of all k-matches found, as r must be in the interval [l + m − k, l + m + k] if (l, r)
delimits a k-match. It is impossible for previous string-matching algorithms to be
augmented (1) to report, at each position of B, the longest prefix of A matching with
k differences, (2) to build T , or, equivalently, (3) to report all k-matching substrings
and their match distances in O(nk) time. Such a capability is essential, for example,
if one is searching for the best match under a scoring criterion that is a complex
function of the length and number of differences in the match.

The algorithmic results of this paper hinge on what we find to be the rather
surprising fact that there are exploitable relationships between the dynamic program-
ming solutions of adjacent problems computed by several well-known comparison algo-
rithms for LCS and edit distance. Throughout the paper we will focus on formulating
incremental versions of the well-known O(n + k2) greedy algorithms for finding the
edit distance and the LCS between two sequences [My-86a, LV-88]. A similar and
somewhat simpler incremental version [My-86b] also holds for the O(r log n) Hunt–
Szymanski algorithm [HS-77]. After a presentation of preliminary concepts and a
review of the O(n + k2) greedy algorithm in section 2, we present the main theorem
exposing the relationship between adjacent solutions and sketch an incremental algo-
rithm based on it in section 3. Section 4 then presents four applications of incremental
algorithms in order to demonstrate the power of such algorithms.

D
ow

nl
oa

de
d

05
/0

9/
20

 to
 1

15
.4

3.
30

.2
35

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

560 G.M. LANDAU, E.W. MYERS, AND J.P. SCHMIDT

A G G A T A T T A
0 1 2 3 4 5 6 7 8 9 0

A 1 0 1 2 3 4 5 6 7 8 1
T 2 1 1 2 3 3 4 5 6 7 2
G 3 2 1 1 2 3 4 5 6 7 3
G 4 3 2 1 2 3 4 5 6 7 4
T 5 4 3 2 2 2 3 4 5 6 5
A 6 5 4 3 2 3 2 3 4 5 6
T 7 6 5 4 3 2 3 2 3 4 7
A 8 7 6 5 4 3 2 3 3 3 8

0 1 2 3 4 5 6 7 8 9

FIG. 2. A sample dynamic programming matrix.

2. Preliminaries.

2.1. The dynamic programming algorithm. Consider the problem of com-
puting the edit distance between strings A = a1a2 . . . am and B = b1b2 . . . bn where
without loss of generality we assume that m ≤ n hereafter. The well-known dy-
namic programming algorithm [NW-70, WF-74] computes an (m + 1) × (n + 1) edit-
distance matrix D[0 . . . m][0 . . . n], where entry D[i, j] is the edit distance ED(Ai, Bj)
between the prefixes Ai and Bj of A and B, and where Ai = Ai

0 = a1 . . . ai and
Bj = Bj

0 = b1 . . . bj as defined in the introduction. Figure 2 gives an example of the
matrix D[0 . . . 8, 0 . . . 9] for A = ATGGTATA versus B = AGGATATTA. The edit
distance between A and B is given in entry D[8, 9] which is 3. Conceptually we think
of D as an (m + 1) × (n + 1) grid of points (i, j) to which we assign value D[i, j].

A best alignment between Ai = a1 . . . ai and Bj = b1 . . . bj must either (1) leave
ai unaligned and optimally align Ai−1 and Bj , (2) leave bj unaligned and optimally
align Ai and Bj−1, or (3) align ai and bj and optimally align Ai−1 and Bj−1. This
observation leads immediately to the following fundamental dynamic programming
recurrence.

LEMMA 2.1. For all i + j > 0,

D[i, j] = min

 D[i−1, j] + 1 if i > 0
D[i, j−1] + 1 if j > 0
D[i−1, j−1] + δai,bj

if i, j > 0


where δa,b is 1 or 0 depending on whether or not a = b, respectively.

Coupled with the obvious boundary condition that D[0, 0] = 0, this recurrence
can be used to efficiently compute the O(mn) entries of the matrix D in an order
of i and j that observes the data-dependencies of the recurrence, i.e., an order that
computes D[i−1, j], D[i, j −1], and D[i−1, j −1] before D[i, j]. Traditionally, the
lexicographical order of (i, j) (which clearly observes data-dependencies) is used to
determine the value of the equation in Lemma 2.1 in O(1) time. An algorithm based
on this recurrence thus takes O(mn) time to compute the value of every point of D.
The edit distance ED(A, B) is delivered in D[m, n].

The matrix D has a number of useful monotonicity properties with respect to
diagonals that are essential to our result.

DEFINITION 2.2. Diagonal d is the list of all points (i, j) for which j = i + d.
Note that with this definition the lowest, leftmost diagonal is numbered −m and

the highest, rightmost diagonal is numbered n. The first essential property is that
values are nondecreasing along diagonals and never increase by more than one.

D
ow

nl
oa

de
d

05
/0

9/
20

 to
 1

15
.4

3.
30

.2
35

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

INCREMENTAL STRING COMPARISON 561

LEMMA 2.3 (see [Uk-85a]). For all points (i, j): D[i, j] − D[i−1, j−1] ∈ {0, 1}.
The second essential property is that adjacent values in adjacent diagonals never

differ by more than one.
LEMMA 2.4 (see [Uk-85b]). For all points (i, j): D[i, j]−D[i−1, j], D[i, j]−D[i, j−

1] ∈ {−1, 0, 1}.

2.2. The greedy algorithm. In the mid-80s [NKY-82, Uk-85a] came upon
the idea of computing the points of the matrix D in an order dictated by a greedy
approach, (i.e., to compute the values in nondecreasing order), instead of the lexico-
graphic order of (i, j). In this way entries whose values are 0 are computed first, then
those whose values are 1, and then 2, and so on until either (i) some threshold k is
reached, or (ii) the value D[m, n] is determined.

By Lemma 2.1, D[0, j] = j for j = 0, . . . , n, and D[i, 0] = i for i = 0, . . . , m.
By Lemma 2.3, the values along a diagonal are nondecreasing, so that D[0, d] (resp.,
D[d, 0]) are the smallest values on diagonal d, (resp., −d). We conclude that all values
not greater than k are on diagonals −k, −k +1, . . . , k in D, and there are therefore at
most (2k + 1)m entries with such values. This idea gives rise to an O(km) algorithm
to determine the k-thresholded edit distance of A and B.

The algorithm can be realized by a modified version of Dijkstra’s shortest path
algorithm on a directed, weighted edit graph G = (V, E). V consists of the set of all
points (i, j) of D. For each point (i, j) there is an edge into it from (i−1, j) weighted
1, another from (i, j−1) also weighted 1, and a third edge from (i−1, j−1) weighted
δai,bj . For points along the left and upper boundaries of D, there is an edge from a
predecessor of (i, j) only if the predecessor exists. Observe that the edge weights are
chosen in exact correspondence with Lemma 2.1, and that D[i, j] is the length of the
shortest path from (0, 0) to (i, j) in this edit graph. The algorithm stops when either
(i) the distance to (m, n) is determined, or (ii) the first node with distance greater
than k from (0, 0) is reached. Since the lengths of all paths are integers in [0 . . . k],
and the outdegree of each node in the graph is at most 3, a standard modification of
Dijkstra’s algorithm will run in O(km) time and space.

Ukkonen [Uk-85a] noticed that it suffices to determine, for all h, the last h on
each diagonal d of the matrix D, as this determines all other values in D by Lemma
2.3. More precisely, let Lh(d) denote the largest row index of a point on diagonal d
that has value h.

DEFINITION 2.5. Lh(d) = max { i : D[i, i+d] = h }.
Figure 3 illustrates this definition by labeling just these furthest h-points with their

values. Note that the row number, i = Lh(d), of the furthest h-point on diagonal d
identifies the point itself as (i, i + d). So henceforward, we will liberally use Lh(d)
to denote either the point (i, i + d) or the row i. The interpretation of Lh(d) will be
obvious from context.

As observed earlier, there are no h-points outside diagonals [−h . . . h]. Thus it
suffices to compute for each value h, the h-wave.

DEFINITION 2.6. Lh = 〈Lh(−h), Lh(−h+1), . . . , Lh(0), . . . , Lh(h−1), Lh(h)〉.
That is, Lh is the orderered list consisting of the 2h + 1 furthest h-points in

diagonals −h up to h.
The algorithm then computes wave Lh, for h = 0, 1, 2, . . . , until either (i) a wave

e is computed for which Le(n−m) = m, or (ii) wave Lk is computed in the case that
the algorithm is thresholded by k. In the event that termination is by condition (i) it
follows that ED(A, B) = D[m, n] = e.

Note that the highest values on some of the diagonals may be less than h. In
Figure 3 for example, the highest value in diagonal −2 is 2 (in D[8, 6]), and L3(−2)

D
ow

nl
oa

de
d

05
/0

9/
20

 to
 1

15
.4

3.
30

.2
35

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

562 G.M. LANDAU, E.W. MYERS, AND J.P. SCHMIDT

A G G A T A T T A
• 0

A 0 1 2 • 1
T • • 3 2
G • 1 2 3 3
G 1 • 4
T • 2 • 5
A • • 6
T • 2 • 7
A 2 3 3 3 8

3 3 ∞

0 1 2 3 4 5 6 7 8 9 ∞

FIG. 3. The h-waves of the matrix of Figure 2.

therefore does not exist, as there is no 3-point in diagonal −2. We handle this overflow
by adding a “dummy” point Lh(d) with value ∞ to wave h, whenever no real point
Lh(d) exists, so that Lh always has 2h + 1 points. In addition, when the extreme
point on diagonal d has value h, it is also convenient to set Lh(d) to ∞ whenever (1)
this extreme point is (m, m + d), D[m, m + d] = h, and D[m, m + d + 1] = h − 1, or
when (2) this extreme point is (n−d, n), D[n−d, n] = h, and D[n−d+1, n] = h−1.
Intuitively, this is justified because if we were to extend the matrix D with one more
row and column, then D[m+1, m+d+1] (resp., D[n−d+1, n+1]) would still always
have value h, regardless of how we interpret the “dummy” character associated with
that row (resp., column). This is shown in Figure 3, where L3(−3) is shown outside
the boundary of the matrix and hence assigned ∞, although the preceding point on
that diagonal, D[8, 5], also has value 3.

Given wave Lh−1, wave Lh is computed from it by induction. Consider i =
Lh−1(d), the furthest (h−1)-point in diagonal d, and a corresponding optimal align-
ment between Ai and Bj , where j = i+d. The alignment involves h−1 differences
and ai+1 6= bj+1, as otherwise (i+1, j+1) would also be an (h−1)-point (a contra-
diction). Observe that in this case this alignment can be maximally extended, with
one additional difference, in the following three ways: (1) leave ai+1 unaligned and
then align ai+1+q with bj+q for q > 0 as long as the symbols are equal, (2) leave bj+1
unaligned and then align ai+q with bj+1+q for q > 0 as long as the symbols are equal,
and (3) mismatch ai+1 with bj+1 and then align ai+1+q with bj+1+q for q > 0 as long
as the symbols are equal. In each case, we visualize the alignment of equal symbols
as “sliding down” the relevant diagonal: d − 1 in case (1), d + 1 in case (2), and d in
case (3).

We capture such a substring of equal characters, resulting in a slide down a
diagonal, with the following definition.

DEFINITION 2.7. Slided(i) = max{ q : Aq
i = Bq+d

i+d }.
That is, Slided(i) corresponds to a slide in diagonal d starting on row i. In order

to correctly handle the cases where Lh(d) is or becomes ∞, we define Slided(i) = ∞,
when i > m or i + d > n. Note that by definition Slided(i) = i when i = m or
i + d = n.

The gist of earlier papers was a proof that the furthest point reached in di-
agonal d over the relevant extensions from the points Lh−1(d − 1), Lh−1(d), and

D
ow

nl
oa

de
d

05
/0

9/
20

 to
 1

15
.4

3.
30

.2
35

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

INCREMENTAL STRING COMPARISON 563

Lh−1(d + 1) on wave h − 1 is the point Lh(d).1 Combining this with the identity,
max{Slided(a), Slided(b)} = Slided(max{a, b}), leads to the following recurrence for
a furthest h-point in terms of furthest (h−1)-points.

LEMMA 2.8.

For all h > 0, Lh(d) = Slided

 max

 Lh−1(d + 1) + 1 if d < h − 1
Lh−1(d) + 1 if −h < d < h
Lh−1(d − 1) if d > −h + 1


 .

Using Lemma 2.8 one can immediately compute the 2h+1 points of wave Lh,
given the 2h−1 points of wave Lh−1. The induction of the algorithm is started by
observing that wave L0 is the single point L0(0) = Slide0(0).

In Figure 3 the furthest points of waves 0 through 3 are indicated by the placement
of their value at their location, and the solid circles annotate points that the function
Slide extends through to reach a furthest point. Note that many of the points in the
matrix D of Figure 2, that have value 3 or less, are not marked in Figure 3.

The time complexity of the greedy algorithm depends on the efficiency with which
the function Slide is realized. When Slide is computed by a brute-force comparison
of the relevant characters, computing s = Slided(i) takes O(s−i) time, resulting in
O(km) total time. However, Myers [My-86a] has shown that when one of the strings,
say A, is a random string2 then the algorithm takes O(m + k2) expected time. This
result is true even if B is chosen so as to maximize the time spent by the Slide function.

2.3. An O(n + k2) algorithm. The worst-case time of the previous algorithm
is improved to O(n + k2) by computing Slide in constant time [My-86a, LV-88].

In a preprocessing step one computes a suffix tree [Wn-73, Mc-76] of the string
AxBy = a1a2 . . . amxb1b2 . . . bny where x 6= y are two symbols not in the alphabets
of A and B. One further preprocesses this suffix tree using any of the algorithms
[HT-84, SV-88, BV-93], to allow any LCA (least common ancestor) query over the
tree to be answered in O(1) time. This preprocessing takes O(n) time.3

For given indices i, j the Slide function must return the largest q for which
ai . . . ai+q = bj . . . bj+q. The key observation is that this q can be retrieved from
the suffix tree described above with an LCA query in O(1) time. Specifically, it has
been shown that Slided(i) = depth(LCA(leaf(i),leaf(m + 1 + i + d))) where leaf(t) is
the leaf in the suffix tree for suffix (AxBy)t, LCA(u, v) is the LCA of vertices u and
v, and depth(v) is the length of the string that labels the path from the root of the
suffix tree to vertex v.

As noted earlier, wave Lh has 2h + 1 points, each of which can now be computed
in O(1) time. Thus it takes O(k2) worst-case time to compute the (k + 1)2 points in
waves L0 through Lk after the initial O(n) preprocessing. This results in an O(n+k2)
worst-case time algorithm.

3. The central theorem and basic algorithm. Given two strings A = a1a2 . . .
am and B = b1b2 . . . bn, we now show how to compute the k+1 waves L0

new, . . . , Lk
new

of the edit-distance matrix Dnew[i, j] of A and bB, when given the k + 1 waves
L0

old, . . . , L
k
old of the edit-distance matrix Dold[i, j] of A versus B.

1This is not immediately obvious as indicated by the fact that this property is not true for more
general, weighted-cost comparison models.

2Specifically, the result of Bernoulli trials over a finite distribution.
3O(n log Σ) time if the alphabet size, Σ, is not considered fixed.

D
ow

nl
oa

de
d

05
/0

9/
20

 to
 1

15
.4

3.
30

.2
35

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

564 G.M. LANDAU, E.W. MYERS, AND J.P. SCHMIDT

Dnew, when viewed as a leftward extension of Dold, is an (m+1)× (n+2) matrix
Dnew[0 . . . m][−1 . . . n], with main diagonal labeled −1. Labeling the columns in Dnew

from −1 to n (as opposed to 0 . . . n + 1) has the advantage that entry Dnew[i, j]
corresponds to the edit distance, ED(Ai, bBj) between the prefixes Ai and bBj of
A and bB, establishing the correspondence of the points Dnew[i, j] and Dold[i, j].
Furthermore, for any index pair (i, j) that is valid in both Dold and Dnew, Slidej−i(i)
is the same in both matrices.

Since the waves for Dnew are computed after those for Dold have been computed,
we shall refer to Lh

old and Dold as the old h-wave and old matrix and to Lh
new and Dnew

as the new h-wave and matrix. We show that Lh
new is composed of a concatenation

of a prefix of Lh+1
old , a sublist of Lh

old, a suffix of Lh−1
old , and at most two points p1 and

p2, separating the sublists of Lold, not included in any of the old waves Lh−1
old , Lh

old,
Lh+1

old . Furthermore, the two points p1 and p2 can be computed in O(1) time and the
entire list Lh

new can be pasted together from the lists Lh+1
old , Lh

old, Lh−1
old in O(1) time.

The following five observations define the concepts and terminology needed to
formulate and prove our central theorem.

The first observation relates the values in the matrices Dold and Dnew. We note
that any alignment between Ai and Bj with k differences can easily be used to obtain
an alignment between Ai and bBj with at most k + 1 differences, and any alignment
between Ai and bBj with k differences can easily be used to obtain an alignment
between Ai and Bj with at most k + 1 differences. This implies the following.

Observation 1.

∀(i, j) ∈ [0 . . . m, 0 . . . n], Dold[i, j] − 1 ≤ Dnew[i, j] ≤ Dold[i, j] + 1
∀i ∈ [0 . . . m], Dnew[i,−1] = i.

Dold is not defined on (i,−1). The point following (i,−1) on diagonal −i−1 is (i+1, 0)
and Dold[i + 1, 0] = i + 1.

The second observation is an immediate consequence of the recurrence for com-
puting Lh(d) from Lh−1(d−1), Lh−1(d), and Lh−1(d+1) given in Lemma 2.8. Recall
that we identify the points on a given diagonal by their row number. Hence, an in-
equality p > q (even if p and q are not on the same diagonal) is always interpreted as
“the row number of p is higher than the row number of q.”

Observation 2. If the three points of wave Lg−1
old on diagonals d − 1, d, and d + 1

are all less than or equal to (resp., greater than or equal to) the three points on
those diagonals for Lh−1

new , then Lg
old(d) ≤ Lh

new(d) (resp., Lg
old(d) ≥ Lh

new(d)). If
the three points on the two waves are all equal, then clearly Lg

old(d) = Lh
new(d).

Furthermore, if max{Lg−1
old (d + 1) + 1, Lg−1

old (d) + 1, Lg−1
old (d − 1)} is less than or equal

to max{Lh−1
new(d + 1) + 1, Lh−1

new(d) + 1, Lh−1
new(d − 1)}, then Lg

old(d) ≤ Lh
new(d).

In the following it will be important to distinguish how a given point Lh(d) got
its value in the equation of Lemma 2.8. We will say that

Lh(d) was obtained from above iff Lh(d) = Slided(Lh−1(d + 1) + 1).
Lh(d) was obtained diagonally iff Lh(d) = Slided(Lh−1(d) + 1).
Lh(d) was obtained from the left iff Lh(d) = Slided(Lh−1(d − 1)).

Note that a point can be obtained in more than one way.
Our third observation compares the scope of the new h wave with the scope of

the old h − 1, h, and h + 1 wave.
Observation 3. Wave Lh

new = 〈Lh
new(−h − 1), . . . , Lh

new(h − 1)〉, and so it has a
point on each of diagonals −h − 1 through h − 1 and only these diagonals. Similarly,
observe that Lg

old has a point on each (and only) the diagonals −g through g. Thus

D
ow

nl
oa

de
d

05
/0

9/
20

 to
 1

15
.4

3.
30

.2
35

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

INCREMENTAL STRING COMPARISON 565

the leftmost diagonal of Lh
new, −h − 1, is also the leftmost diagonal of Lh+1

old and both
Lh

old and Lh−1
old do not have a point on this diagonal or to the left of this diagonal. On

the other hand, the rightmost diagonal of Lh
new, h − 1 is also the rightmost diagonal

of Lh−1
old , and both Lh

old and Lh+1
old do have a point on this diagonal as well as to the

right of this diagonal.
Crucial to our central result is the idea of the key value of a point, p = Lh

new(d), on
a new wave, which describes p’s position relative to points in the old waves. Informally,
if a point p = Lh

new(d) of a new wave coincides with a point Lg
old(d) of an old wave,

then the key value of p is the wave number, g, of the old wave. The other possibility
is that p is an in-between point that does not coincide with any old point and, in this
case, its key value is g− 1

2 , where g is the smallest wave number for which p < Lg
old(d).

Note that if wave Lg−1
old has a point on diagonal d, then clearly p lies on diagonal d

between the points of the old g − 1 and g waves; hence the term in-between point.
DEFINITION 3.1. Formally, for a point p on diagonal d,

key(p) = min { g : g ∈
{

0,
1
2
, 1, 1

1
2
, . . . ,

}
and

(
p = L

bgc
old (d) or p < L

bg+ 1
2 c

old (d)
)
}.

In terms of key values, Observation 1 yields the following fact.
Observation 4. ∀ h, d, h − 1 ≤ key(Lh

new(d)) ≤ h + 1.
Also in terms of key values, Observations 2 and 3 yield the following.
Observation 5. If key(Lh

new(d − 1)), key(Lh
new(d)), and key(Lh

new(d + 1)) are all
≤, =, or ≥ g, (for g ∈ {h − 1, h, h + 1}), then key(Lh+1

new(d)) is ≤, =, or ≥ g + 1,
respectively. However, Lh+1

new(d) may exist, although some of the above h-wave points
do not exist, i.e., when d is in {−h−2,−h−1, h−1, h}. If those that do exist all have
key values ≤ g, then it still follows that key(Lh+1

new(d)) ≤ g +1. Greater care has to be
taken for the = and ≥ case. If for all diagonals δ ∈ {d−1, d, d+1}, for which Lh

new(δ)
does not exist, Lg

old(δ) does not exist either, and all other relevant h-wave points have
key values = or ≥ g, then key(Lh+1

new(d)) will still be =, or ≥ g + 1, respectively.
We now have the concepts and terminology needed to proceed with our central

theorem.
THEOREM 3.2. Lh

new is the concatenation of (up to) five pieces: (i) a prefix of
Lh+1

old , (ii) an in-between point p1, with key(p1) = h + 1
2 , (iii) a sublist of Lh

old, (iv) an
in-between point p2, with key(p2) = h − 1

2 , and (v) a suffix of Lh−1
old . Each individual

piece may be empty.
Proof. The proof of Theorem 3.2 is essentially by induction on h, but we will first

show that certain monotonicity properties imply Theorem 3.2 and then prove these
properties inductively.

We will prove that the following monotonicity property on key values holds for
all h waves. The key values of the points along Lh

new are nonincreasing and strictly
decreasing around in-between points as one proceeds from left to right (i.e., from
diagonal −h − 1 to h − 1). Formally, we have the following key property.

First key property. For d ∈ [−h, h − 1], bkey(Lh
new(d − 1))c ≥ key(Lh

new(d)).
Observation 4 says that all key values on Lh

new are between h − 1 and h + 1. The
first key property says that key values are strictly decreasing along in-between points
and are otherwise nonincreasing. This implies that there is at most one point with
key value h + 1

2 , (and it is to the right of any points with key value h + 1, and to the
left of any points with key value h), and at most one point with key value h − 1

2 , (to
the right of any points with key value h, and to the left of any points with key value
h − 1). It follows that the first key property implies that Lh

new is the concatenation of
the (up to) five pieces given in Theorem 3.2.

D
ow

nl
oa

de
d

05
/0

9/
20

 to
 1

15
.4

3.
30

.2
35

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

566 G.M. LANDAU, E.W. MYERS, AND J.P. SCHMIDT

We shall prove by induction on h that the first key property holds for all h waves.
Before proceeding with a formal proof, we provide some intuition on why the

Theorem holds and, at the same time, point to some of the difficulties in proving it.
Suppose that Lh

new is indeed a concatenation of a prefix 〈Lh+1
old (−h − 1), . . . , Lh+1

old (r)〉
of Lh+1

old , a point p1 on diagonal r + 1, a sublist 〈Lh
old(r + 2), . . . , Lh

old(s)〉 of Lh
old, a

point p2 on diagonal s + 1, and a suffix 〈Lh−1
old (s + 2), . . . , Lh

old(h − 1)〉 of Lh−1
old . By

Observation 2, clearly Lh+1
new will be equal to Lh+2

old on diagonals −h − 2 . . . r − 1, will
be equal to Lh+1

old on diagonals r + 3 . . . s − 1, and will be equal to Lh
old on diagonals

s+3 . . . h−1. It is hence easy to see that the Theorem can be proven by induction for
“most points.” One of the difficulties lies in proving that at most one of the diagonals
in {r, r + 1, r + 2} and at most one in {s, s + 1, s + 2} can contain an in-between
point. A further (more serious) difficulty comes from the fact that any individual
piece (of the five pieces composing Lh

new) can be empty, resulting in the necessity
to examine an enormous number of cases. In addition, points on extreme diagonals
behave differently than points on the inner diagonals. In particular, since the various
scopes of the waves Lh

new, Lh−1
new , Lh−1

old , Lh
old, and Lh+1

old are different, special care has
to be taken to cover all cases, where a diagonal is in the scope of one wave but outside
the scope of another (see Observations 3 and 5).

Therefore, instead of proving Theorem 3.2 directly, we choose to prove that the
first key property holds for all waves. This will allow us to reduce the number of cases
we need to examine significantly, although a large number still remain.

In order to prove the first key property, it is very helpful to have established the
following second key property for wave h, which is implied by the first key property
on wave h − 1, as shown below in Lemma 3.3.

Second key property. If key(Lh
new(d))=g+ 1

2 , then Lg+1
old (d) was obtained from

above.
In other words, the second key property asserts that if there is a new point p in

diagonal d between the g- and g+1-points of the old waves, then the g+1-point must
have been obtained from the g-point on diagonal d + 1.

See Figure 4(a) for an illustration of the situation.
The second key property is quite intuitive, but its proof is not immediate. Key

values (on wave h− 1) are nonincreasing, hence if the old g +1 value was not reached
on diagonal d in the new h wave, it would seem likely that this happened because the
key value on diagonal d + 1 of Lh−1

new “dropped below” g, and the old g + 1 point was
obtained from this “missing” old g point, Lg

old(d + 1).
The remainder of the proof of Theorem 3.2 is complex enough that we capture

it in three lemmas below. First we prove in Lemma 3.3 that if the first key property
holds on new wave h−1, then the second holds on new wave h. Then a useful corollary
(Lemma 3.4) of Lemma 3.3 is given. Finally, with the aid of the second key property
and its corollary, we complete the proof of Theorem 3.2 by inductively showing the
first key property to hold for all waves in Lemma 3.5.

LEMMA 3.3. If the first key property holds up to wave h − 1 of Dnew, then the
second key property holds up to wave h of Dnew.

Proof. The lemma is proven by induction on h.
Basis: Wave L0

new has only one point, which is on diagonal −1. By Observation 4
key(L0

new(−1)) ≤ 1, and since L0
old does not have a point on diagonal −1, we also

know that key(L0
new(−1)) > 0. Hence key(L0

new(−1)) is either 1 or 1
2 . L1

old(−1),
(whether it collides with the new zero point or not) was obtained from the (only) old
zero point L0

old(0), i.e., from above. It follows that the second key property holds for
wave 0 of Dnew.

D
ow

nl
oa

de
d

05
/0

9/
20

 to
 1

15
.4

3.
30

.2
35

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

INCREMENTAL STRING COMPARISON 567

L

old

old

g

g+1

g
L

old
g-1

L

old

old L

L

g+1

L

L

g

>0-Lold
g-1

old

-

g
old

>0

(a) (b)

d d+1

p

dd-1

r

p

(=q)

FIG. 4. The second key property. Old points are shown as solid circles and new points as open
squares. (a) If the new point p has key value g + 1

2 , then Lg+1
old (d) was obtained from above, i.e.,

from Lg
old(d + 1). (b) Shown are new points p and r on diagonals d and d − 1 with key values g − 1

2
and g + 1

2 , respectively. The second key property implies that p could not have been obtained from r.

Induction: Assume that our claim holds for all new waves up to wave h − 1, i.e.,
given an in-between point Lh−1

new(d) with key(Lh−1
new(d)) = g − 1

2 , Lg
old(d) was obtained

from Lg−1
old (d + 1). As easily seen in Figure 4(a), with p = Lh−1

new(d) and g replaced by
g − 1, the inductive assumption implies that

(1) if key(Lh−1
new(d)) = g − 1

2 , then Lg−1
old (d + 1) ≥ Lh−1

new(d).
Henceforward, consider an in-between point p = Lh

new(d), for which key(Lh
new(d)) =

g + 1
2 . That is, Lg

old(d) (if it exists) < p < Lg+1
old (d), and Observation 4 further implies

that g ∈ {h − 1, h}.
To prove the second key property it suffices to show that q = Lg+1

old (d) could not
have been obtained diagonally or from the left. If Lg

old(d) exists, then Slided(L
g
old(d)+

1) is at most p as Lg
old(d) < p and p is a furthest point. Thus since p < q, q could not

have been obtained diagonally.
It remains to show that q could not have been obtained from the left. Again we

only need to examine the case when Lg
old(d−1) exists. (If it did not exist, then clearly

q could not have been obtained from the left.) This implies by Observation 3 that
d − 1 ≥ −g, and since g ≤ h, d − 1 is at least −h and Lh−1

new(d − 1) exists also.
The assumption that key(p) = g+ 1

2 , (p = Lh
new(d)) implies by Observation 5 that

one of the three points Lh−1
new(d−1), Lh−1

new(d), Lh−1
new(d+1) must have a key value greater

than g−1, and since key(Lh−1
new(d−1)) ≥ key(Lh−1

new(d)) (if it exists) ≥ key(Lh−1
new(d+1))

(if it exists), it must always be that the key value of r = Lh−1
new(d − 1) is greater than

g − 1. Hence key(r) = g − 1
2 or key(r) ≥ g.

key(r) ≥ g means that r = Lh−1
new(d − 1) ≥ Lg

old(d − 1); hence if q = Lg+1
old (d) were

obtained from Lg
old(d − 1) (i.e., the left), then Lh−1

new(d − 1) would produce a point
greater than or equal to q, but Lh

new(d), the point reached on diagonal d, is strictly
less than q, which is a contradiction.

We now show that assuming that key(r) = g − 1
2 leads to a contradiction because

none of the three points Lh−1
new(d − 1), Lh−1

new(d), or Lh−1
new(d + 1) could have produced

Lh
new(d). Figure 4(b) will help in understanding the argument that follows. Since

r = Lh−1
new(d−1) is an in-between point in this case, it follows from (1) that Lg−1

old (d) ≥
r; hence r cannot produce p = Lh

new(d), a point with key value (much) higher than

D
ow

nl
oa

de
d

05
/0

9/
20

 to
 1

15
.4

3.
30

.2
35

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

568 G.M. LANDAU, E.W. MYERS, AND J.P. SCHMIDT

g − 1. On the other hand, key(Lh−1
new(d − 1)) = g − 1

2 implies that the key values of
both Lh−1

new(d) and Lh−1
new(d + 1) are at most g − 1 (if they exist); hence neither could

have produced Lh
new(d) with key value g + 1

2 .
We have shown that for all legal key values of Lh−1

new(d− 1), q could not have been
obtained from the left, and we have shown earlier that q could not have been obtained
diagonally. It must be that q was obtained from the right.

The following lemma is an immediate corollary of Lemma 3.3.
LEMMA 3.4. If the first key property holds up to wave h − 1, then the following

holds. If key(Lh−1
new(d)) = g − 1

2 , then key(Lh
new(d + 1)) ≤ g. Moreover, if Lh

new(d + 1)
was obtained from Lh−1

new(d), then key(Lh
new(d + 1)) ≤ g − 1.

Proof. Since Lh−1
new(d) is an in-between point, Lg

old(d) was obtained from Lg−1
old (d+

1). As observed earlier and seen in Figure 4(a), it must be the case that Lg−1
old (d+1) ≥

Lh−1
new(d). Hence Slided+1(Lh−1

new(d)) cannot be greater than Lg−1
old (d + 1) (a furthest

point), which proves the second part of the lemma. Moreover, if the first key property
holds for wave h − 1, the key values of both Lh−1

new(d + 1) and Lh−1
new(d + 2) are at most

g − 1, and hence key(Lh
new(d + 1)) ≤ g by Observation 2.

We conclude the proof of Theorem 3.2 by proving by induction that the first key
property holds for all waves in Dnew.

LEMMA 3.5. The first key property holds for all waves in Dnew.
Proof. The proof is by induction on h.
Basis: Wave 0 in Dnew has only one point L0

new(−1). The first key property
therefore trivially holds for L0

new.
Induction: Assume now that the first key property holds up to wave h−1 and the

second key property holds up to wave h. We shall prove that the first key property also
holds for wave h. To achieve this it suffices to examine all adjacent pairs of diagonals
in wave h and to prove the required inequality on their key values. Henceforward
consider the pair of points Lh

new(d) and Lh
new(d + 1). The proof is divided into two

cases depending on whether Lh
new(d) is the leftmost point of the wave.

Case 1. Diagonal d is not the leftmost (lowest) diagonal on Lh
new, i.e., d ≥ −h.

By Observation 3, Lh−1
new also has a point on diagonal d. On the other hand, we

do not assume that d < h − 1, and hence the point Lh−1
new(d + 1) may not exist. Let

g = bkey(Lh−1
new(d))c and note that by Observation 4, g ∈ {h − 2, h − 1, h}, and by

definition, key(Lh−1
new(d)) ∈ {g, g + 1

2}. We now further divide the proof of this case
into four subcases depending on the key values of Lh−1

new(d) and Lh−1
new(d+1) in relation

to g. Table 1 illustrates the four cases factored into two conditions on the key value of
Lh−1

new(d) and two conditions on the key value of Lh−1
new(d+1), and for each case gives the

implication on the key values of Lh
new(d) and Lh

new(d + 1) that will be proven below.
Note in each of the four cases we prove that bkey(Lh

new(d))c ≥ key(Lh
new(d + 1)).

Subcase 1(a). key(Lh−1
new(d)) = g and key(Lh−1

new(d + 1)) = g.
It suffices to show that key(Lh

new(d)) ≥ g + 1 ≥ key(Lh
new(d + 1)). Either

key(Lh−1
new(d + 2)) does not exist, (i.e., d + 1 is the rightmost diagonal of

Lh−1
new), or by the first key property on wave h − 1 key(Lh−1

new(d + 2)) ≤ g. In
either case, Observation 5 implies key(Lh

new(d + 1)) ≤ g + 1. We now show
that key(Lh

new(d)) ≥ g + 1. Either key(Lh−1
new(d − 1)) ≥ g, (by the first key

property on wave h−1), or key(Lh−1
new(d−1)) does not exist because d = −h is

the leftmost diagonal of wave Lh−1
new , in which case, by Observation 3, neither

Lh−2
old , Lh−1

old , nor Lh
old have points on diagonal d−1, and d is also the leftmost

diagonal on Lg
old. In either case, Observation 5 implies key(Lh

new(d)) ≥ g +1.
Subcase 1(b). key(Lh−1

new(d))=g and key(Lh−1
new(d + 1))≤g − 1

2 (or doesn’t exist).
If key(Lh

new(d+1)) ≤ g we are immediately done, as Lh
new(d) is always greater

than Lh−1
new(d), and since key(Lh−1

new(d)) = g, we have key(Lh
new(d)) > g. So

D
ow

nl
oa

de
d

05
/0

9/
20

 to
 1

15
.4

3.
30

.2
35

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

INCREMENTAL STRING COMPARISON 569

TABLE 1
The key values of the pair Lh

new(d), Lh
new(d + 1), as implied by the key values of the pair

Lh−1
new(d), Lh−1

new(d + 1).

key(Lh−1
new(d + 1)) = g key(Lh−1

new(d + 1)) ≤ g − 1
2 (or doesn’t exist)

key(Lh−1
new(d)) = g key(Lh

new(d)) ≥ g + 1 ≥ key(Lh
new(d + 1))

key(Lh
new(d)) > g ≥ key(Lh

new(d + 1))
or

key(Lh
new(d)) ≥ g + 1 ≥ key(Lh

new(d + 1)) > g

key(Lh−1
new(d)) = g + 1

2 key(Lh
new(d)) ≥ g + 1 ≥ key(Lh

new(d + 1)) key(Lh
new(d)) ≥ g + 1

2 > key(Lh
new(d + 1))

we assume key(Lh
new(d + 1)) ≥ g + 1

2 and show that key(Lh
new(d)) ≥ g +

1 ≥ key(Lh
new(d + 1)). Lh

new(d + 1) got its value from one of the points in
{Lh−1

new(d), Lh−1
new(d+1), Lh−1

new(d+2)}. Since all three points have key values of
g or less, clearly key(Lh

new(d+1)) ≤ g+1. In addition, since key(Lh−1
new(d+1))

is either g− 1
2 or ≤ g−1, key(Lh−1

new(d+2)) (if it exists) ≤ g−1 by the first key
property, and cannot produce Lh

new(d+1), a point with key value greater than
g. Lh−1

new(d+1) (if it exists) < Lg
old(d+1), (by definition of Subcase 1(b)) and

hence Lh−1
new(d+1) cannot produce a point beyond Lg

old(d+1) either. It follows
that Lh

new(d + 1) got its value from the left, (i.e., from Lh−1
new(d) = Lg

old(d)).
Since key(Lh

new(d + 1)) is also ≥ g + 1
2 , it must be the case that

Lh−1
new(d) > Lg

old(d + 1); and by Subcase 1(b) Lg
old(d + 1) > Lh−1

new(d + 1).

It follows that Lh
new(d) was not obtained from above. If Lh−1

new(d − 1) exists,
then key(Lh−1

new(d−1)) ≥ g, (by the first key property), otherwise d = −h and
Lg

old(d − 1) does not exist either (since by Observation 3 none of the three
relevant old waves have a point on diagonal −h). Thus Lh

new(d) was obtained
from the left or diagonally, and both of these source points in the Lh−1

new wave
have key values of g or greater (or do not exist on both Lh−1

new and Lg
old). Thus

by Observation 5 key(Lh
new(d)) ≥ g + 1.

Subcase 1(c). key(Lh−1
new(d)) = g + 1

2 and key(Lh−1
new(d + 1)) = g.

Immediately note that because key(Lh−1
new(d)) = g + 1

2 ∈ [h−2, h] by Observa-
tion 4, it follows that g < h. It suffices to show that key(Lh

new(d)) ≥ g + 1 ≥
key(Lh

new(d + 1)). Lemma 3.4 immediately implies that key(Lh
new(d + 1)) ≤

g+1. Lh−1
new(d) and Lh−1

new(d+1) have key values g or more and the key value of
Lh−1

new(d−1) (if it exists) is also > g (by the first key property). If Lh−1
new(d−1)

does not exist, then Lg
old(d) does not exist either, (Observation 3), and it

follows from Observation 5 that key(Lh
new(d)) ≥ g + 1.

Subcase 1(d). key(Lh−1
new(d))=g+ 1

2 and key(Lh−1
new(d+1))≤g− 1

2 (or doesn’t exist).
It suffices to show that key(Lh

new(d)) ≥ g + 1
2 > key(Lh

new(d + 1)). Clearly
Lh

new(d) > Lh−1
new(d) and hence key(Lh

new(d)) ≥ g + 1
2 . The first key property

on wave h − 1 implies that key(Lh−1
new(d + 2)) ≤ g − 1 (if it exists); hence

key(Lh
new(d + 1)) ≤ g if it was obtained from above. Similarly, key(Lh

new(d +
1)) ≤ g if it was obtained diagonally, as key(Lh−1

new(d + 1)) ≤ g − 1
2 . Lastly,

the second part of Lemma 3.4 also implies key(Lh
new(d + 1)) ≤ g if it was

obtained from Lh−1
new(d), whose key value is g + 1

2 . Thus, regardless of how it
was obtained, key(Lh

new(d + 1)) ≤ g.
Case 2. Diagonal d is the leftmost (lowest) diagonal on Lh

new, i.e., d = −h − 1.
This case is not covered by Table 1, since Lh−1

new(d) does not exist. We need

D
ow

nl
oa

de
d

05
/0

9/
20

 to
 1

15
.4

3.
30

.2
35

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

570 G.M. LANDAU, E.W. MYERS, AND J.P. SCHMIDT

to prove that bkey(Lh
new(−h − 1))c ≥ key(Lh

new(−h)). The key value of the point
Lh−1

new(−h), (the leftmost point on Lh−1
new), is strictly greater than h − 1, since Lh−2

old

and Lh−1
old do not have a point on diagonal −h, (Observation 3), and obviously ≤ h

by Observation 4; hence key(Lh−1
new(−h)) ∈ {h, h − 1

2}.
Subcase 2(a). key(Lh−1

new(−h)) = h.
Lh−1

new does not have a point on either diagonal −h − 1 or −h − 2; hence
Lh

new(−h − 1) was obtained from Lh−1
new(−h) which is the same point as

Lh
old(−h) since key(Lh−1

new(−h)) = h. Lh
old does not have points on these two

diagonals either; hence Lh+1
old (−h− 1) was obtained from Lh

old(−h). It follows
that Lh

new(−h−1) = Lh+1
old (−h−1), or equivalently key(Lh

new(−h−1)) = h+1.
Since all key values on the new h wave are less or equal to h + 1, (Observa-
tion 4), key(Lh

new(−h)) ≤ h + 1, which proves the required inequality.
Subcase 2(b). key(Lh−1

new(−h)) = h − 1
2 .

In this case key(Lh−1
new(−h+1))(if it exists) ≤ h−1, (by the first key property),

(while Lh−1
new(−h − 1) does not exist), and hence if Lh

new(−h) was obtained
from above, then key(Lh

new(−h)) ≤ h. On the other hand, if Lh
new(−h) was

obtained diagonally, we also have key(Lh
new(−h)) ≤ h, since Lh−1

new(−h) <
Lh

old(−h), and Lh
old(−h) is a furthest point. On the other hand, (as noted

earlier), the key value of the lowest diagonal on the new h wave (Lh
new(−h−1))

is always strictly greater than h, which proves that key(Lh
new(−h− 1)) > h ≥

key(Lh
new(−h)). This terminates the proof of this last subcase and hence the

proof of Lemma 3.5.
In summary, Observation 4 says that all key values on Lh

new are between h−1 and
h+1, and Lemma 3.5 shows that for all diagonals −h−1 ≤ d < h−1, bkey(Lh

new(d))c ≥
key(Lh

new(d+1)). The key values are hence nondecreasing and Lh
new has at most two

in-between points. It follows that Theorem 3.2 holds: Lh
new can be pasted together

from a prefix of Lh+1
old , a sublist of Lh

old, and a suffix of Lh−1
old and at most two additional

points, which may occur between sublists. Any individual piece may be empty.

3.1. Formal presentation of algorithm. We now show how Theorem 3.2 and
the lemmas and observations of the previous subsection directly lead to an efficient
algorithm for computing L0

new . . . Lk
new from L0

old . . . Lk
old.

Suppose the wave Lh
new has been constructed, and let Lh

new[a . . . b] denote the
sublist 〈Lh

new(a), Lh
new(a + 1), . . . , Lh

new(b)〉 of Lh
new, (when b < a Lh

new[a . . . b] de-
notes the empty list). Let δ1 ∈ {0, 1} be the number of points on Lh

new with key
value h + 1

2 , and let δ2 ∈ {0, 1} be the number of points with key value h − 1
2 .

Define ph
1 to be the largest (rightmost) diagonal for which key(Lh

new(ph
1)) = h +

1, or let ph
1 be −h − 2 if no such diagonal exists. Similarly, let ph

2 = max{d :
(key(Lh

new(d)) = h) or (d = ph
1 + δ1)}. Theorem 3.2 says that Lh

new[−h − 1 . . . ph
1]

= Lh+1
old [−h − 1 . . . ph

1], Lh
new[ph

1 + 1 + δ1 . . . ph
2] = Lh

old[p
h
1 + 1 + δ1 . . . ph

2], and that
Lh

new[ph
2 + 1 + δ2 . . . h − 1] = Lh−1

old [ph
2 + 1 + δ2 . . . h − 1]. Notice that the above equal-

ities hold even if individual pieces are empty. By Observation 2 it follows that if
Lh

new[a . . . b] = Lg
old[a . . . b], then Lh+1

new[a + 1 . . . b − 1] = Lg+1
old [a + 1 . . . b − 1]. In ad-

dition, if g = h + 1, we also have Lh+1
new[a] = Lg+1

old [a], and if g = h − 1 we also have
Lh+1

new[b] = Lg+1
old [b]. Thus, all of Lh+1

new is determined by these equalities except for the
two or three points on the diagonals in the interval [ph

1 , ph
1 + 1 + δ1] and the two or

three points on the diagonals in the interval [ph
2 , ph

2 + 1 + δ2]. In addition, Lemma 3.4
implies that if key(Lh

new(ph
2 + 1)) = h − 1

2 , (i.e., δ2 = 1), then key(Lh+1
new(ph

2 + 2)) ≤ h,
and hence key(Lh+1

new(ph
2 + 2)) = h (since all key values on Lh+1

new are at least h). Simi-

D
ow

nl
oa

de
d

05
/0

9/
20

 to
 1

15
.4

3.
30

.2
35

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

INCREMENTAL STRING COMPARISON 571

larly, if key(Lh
new(ph

1 +1)) = h+ 1
2 , (i.e., δ1 = 1), then key(Lh+1

new(ph
1 +2)) ≤ h+1, and

if in addition ph
2 > ph

1 + 2, then key(Lh+1
new(ph

1 + 2)) = h + 1. Thus, the only points on
Lh+1

new that cannot be determined by merely examining the key value of the points on
Lh

new are the four points on diagonals ph
1 , ph

1 + 1, ph
2 , and ph

2 + 1.
If Lg

old is a doubly linked list so that, given a pointer to Lg
old(d), one can move

to Lg
old(d − 1) or Lg

old(d + 1) in constant time, and each diagonal across the waves
is a doubly linked list, so that given a pointer to Lg

old(d), one can move to Lg+1
old (d)

or Lg−1
old (d) in constant time, we can construct Lh+1

new from Lh
new and the old L waves

by performing at most O(1) computations and pointer changes. To do so requires
knowing the break diagonals ph

1 and ph
2 of Lh

new and determining the new break diago-
nals ph+1

1 and ph+1
2 during the computation of Lh+1

new. Notice that all but O(1) of the
diagonal links from Lh

new to Lh+1
new will be imported directly from the corresponding

diagonal links of Lh−1
old , Lh

old, and Lh+1
old so that only those for the points on diagonals

ph
1 , ph

1 + 1, ph
2 , ph

2 + 1 need to be recomputed. A formal algorithmic description is
given in Figures 5, 6, and 7, which shows that such a cross-linked structure can be
maintained to realize an incremental update in O(k) time of L0

new, . . . , Lk−1
new.

For reasons of simplicity, the explicit algorithm in Figures 5, 6, and 7 is given as if
the waves were stored in an array and O(1) access to Lh

new(d), for any d, were possible.
The cross-linked structure is clearly necessary to realize an incremental update in O(k)
time, but the description of the algorithm is much simpler in the latter form. The
reader can verify that, given the cross-linked structure and pointers to Lh

new(ph
1) and

Lh
new(ph

2), as well as to Lh+1
old (ph

1 + 1) and Lh
old(p

h
2 + 1), every pertinent wave element

in Construct new wave in Figure 6 is O(1) links away from either of these four “break
pointers,” or the first element of a completed new wave or an as yet unused old
wave. In more detail (which is not necessary to understand the explicit algorithms in
Figures 5, 6, and 7), the following elements can be accessed in O(1) time.

1. The first O(1) elements of Lh
new and Lh+2

old : Lh
new(−h−1+O(1)) and Lh+2

old (−h−
2 + O(1)).

2. All points on Lh
new within O(1) diagonals of ph

1 and ph
2 : Lh

new(ph
1 ±O(1)) and

Lh
new(ph

2 ± O(1)).
3. Points on old waves that are identical to the above points:

Lh+1
old [−h − 1 . . . ph

1] = Lh
new[−h − 1 . . . ph

1].
4. The first O(1) points on the suffixes of the relevant old L lists:

Lh+1
old (ph

1 + 1 + O(1)) and Lh
old(p

h
2 + 1 + O(1)).

5. Points accessible from any of the above points through old diagonal links:
Lh+2

old (ph
1), which is diagonally linked to Lh+1

old (ph
1) = Lh

new(ph
1), as well as

Lh+2
old (ph

1±O(1)). If Lh
new(ph

2) = Lh
old(p

h
2) (which is always true when ph

2 > ph
1+

1), then Lh+1
old (ph

2) is accessible through the diagonal link from Lh
old(p

h
2), and

hence Lh+1
old (ph

2 ±O(1)) is also accessible in O(1) time. If Lh
new(ph

2) < Lh
old(p

h
2),

(and hence ph
2 ∈ {ph

1 , ph
1 +1}), then Lh+1

old (ph
2 ±O(1)) is still accessible in O(1)

steps, as ph
2 = ph

1 + O(1).
The computation of the last wave Lk

new and its diagonal links from and to Lk−1
new

may take an additional O(k) time since the required Lk+1
old piece and its diagonal links

from Lk
old have not been computed previously and need to be computed now (see lines

6 and 7 in Figure 7). In total, the computation of the k waves requires computing
O(k) new points and updating O(k) links. The computation of each new point is done
by calling the Slide function (line 2 in Figure 6), which takes O(1) time. In total the
computation of the k waves for Dnew takes O(k) time, when given the k waves for D,
cross-linked across waves and diagonals as described above.

D
ow

nl
oa

de
d

05
/0

9/
20

 to
 1

15
.4

3.
30

.2
35

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

572 G.M. LANDAU, E.W. MYERS, AND J.P. SCHMIDT

Procedure Construct new wave(h, ph
1 , ph

2 , ph+1
1 , ph+1

2)
1. Lh+1

new[−h−2 . . . ph
1−1] ← Lh+2

old [−h−2 . . . ph
1−1]

2. Compute(Lh+1
new(ph

1))
3. Compute(Lh+1

new(ph
1 + 1))

4. ph+1
1 ←

 ph
1 − 1 if Lh+1

new(ph
1) < Lh+2

old (ph
1)

ph
1 if Lh+1

new(ph
1) = Lh+2

old (ph
1) and Lh+1

new(ph
1 + 1) < Lh+2

old (ph
1 + 1)

ph
1 + 1 otherwise

5. if ph
2 > ph

1 + 2 then
6. { Lh+1

new[ph
1+2 . . . ph

2−1] ← Lh+1
old [ph

1+2 . . . ph
2−1]

7. Double Link(Lh+1
new(ph

1 + 2), Lh+1
new(ph

1 + 1))
8. }
9. if ph

2 ≥ ph
1 + 2 then Compute(Lh+1

new(ph
2))

10. if ph
2 ≥ ph

1 + 1 then Compute(Lh+1
new(ph

2 + 1))

11. ph+1
2 ←

 ph
2 − 1 if Lh+1

new(ph
2) < Lh+1

old (ph
2)

ph
2 if Lh+1

new(ph
2) = Lh+1

old (ph
2) and Lh+1

new(ph
2 + 1) < Lh+1

old (ph
2 + 1)

ph
2 + 1 otherwise

12. if ph
2 + 2 ≤ h then

13. { Lh+1
new[ph

2+2 . . . h] ← Lh
old[p

h
2+2 . . . h]

14. Double Link(Lh+1
new(ph

2 + 2), Lh+1
new(ph

2 + 1))
15. }

FIG. 5. Construction of Lh+1
new from Lh

new and auxiliary pointers.

Procedure Compute(Lh
x(d))

1. if x = new then δ ← 1 else δ ← 0

2. Lh
x(d) ← Slided

 max

 Lh−1
x (d + 1) + 1 if d < h − 1 − δ

Lh−1
x (d) + 1 if −h − δ < d < h − δ

Lh−1
x (d − 1) if d > −h + 1 − δ




3. if h > 0 and d > −h − δ then
4. { Double Link(Lh

x(d), Lh
x(d − 1))

5. if d < h − δ then Double Link(Lh
x(d), Lh−1

x (d))
6. }

FIG. 6. Computation of Lh
new(d) or Lh

old(d) and update of all relevant pointers.

Procedure New Wave
1. L0

new(−1) ← Slide−1(0)
2. p0

2 ← −1
3. if L0

new(−1) < L1
old(−1) then p0

1 ← −2 else p0
1 ← −1

4. for h ← 0 to k − 2 do
5. Construct new wave(h, ph

1 , ph
2 , ph+1

1 , ph+1
2)

6. for d ← −k − 1 to pk
1 + 1 do

7. Compute(Lk+1
old (d))

8. Construct new wave(k − 1, pk−1
1 , pk−1

2 , pk
1 , pk

2)

FIG. 7. Construction of L0
new . . . Lk

new from the corresponding old waves.

3.2. An analogous theorem for longest common subsequences. As
pointed out in the introduction, the model in which one allows insertions and dele-
tions, called indels, but not mismatches is an important variation because it is dual

D
ow

nl
oa

de
d

05
/0

9/
20

 to
 1

15
.4

3.
30

.2
35

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

INCREMENTAL STRING COMPARISON 573

to finding the longest common subsequence. A theorem similar to Theorem 3.2, but
simpler, holds in this situation. We simply sketch the result here, since the proof
method and outline remain the same.

When mismatches are not allowed, several of the preliminary lemmas of section
2 change in small ways. In Lemma 2.1, the term δai,bj should be multiplied by
two, as a substitution can now only be achieved by an insertion and deletion. In
Lemma 2.3, values increase along a diagonal by zero or two, i.e., D[i, j]−D[i−1, j−1] ∈
{0, 2}. Next note that with an even number of indels one must end in an even
numbered diagonal and an odd diagonal with an odd number of indels. Thus for this
variation of the problem, an h-wave has h + 1 points on every other diagonal, i.e., Lh

= 〈Lh(−h), Lh(−h+2), . . . , Lh(h−2), Lh(h)〉. Finally, in Lemma 2.8, one must drop
the term Lh−1(d) + 1 from the 3-way maximum as it represents the contribution of
extension via a substitution. As a consequence, a point is either obtained from the
left or from above.

We continue to define key values as in Definition 3.1. Note however that the
diagonals on a new h wave do not contain old h points, and hence an in-between
point p on Lh

new is between the old h − 1 and the old h + 1 wave. As a result of our
definitions, a key value of a point p on a new h wave will assume one of the three
values in {h − 1, h + 1

2 , h + 1}. In spirit, all the observations in section 3 continue to
hold with the obvious modifications that follow from the fact that points can only be
obtained in two ways. Theorem 3.2 becomes the following.

THEOREM 3.6. Wave h in Dnew (Lh
new) is the concatenation of (up to) three

pieces: (i) a prefix of Lh+1
old , (ii) an in-between point p with key(p) = h + 1

2 , and (iii)
a suffix of Lh−1

old . Not all pieces must be present.
The proof of Theorem 3.6 is in some sense a subset of the proof of Theorem 3.2.

So rather than prove it formally, we sketch the main elements and leave the details as
an exercise. The informal statement of the first key property remains the same, but
its formal statement becomes the following.

First key property. For d ∈ [−h+1, h−1], bkey(Lh
new(d − 2))c ≥ key(Lh

new(d)),
to account for the fact that only alternate diagonals are relevant. This first key
property can similarly be proven by induction on h using the second key property
and its immediate consequence, the analogue of Lemma 3.4.

Second key property. If key(Lh
new(d))=h+1

2 , then Lh+1
old (d) was obtained from

above.
Because the proof in this case is simpler, we combine the proof of the second key

property and of the analogue of Lemma 3.4 in Lemma 3.7.
LEMMA 3.7. If the first key property holds up to wave h, and if key(Lh

new(d)) =
h + 1

2 , then (1) key(Lh+1
old (d)) was obtained from above, and key(Lh+1

new(d + 1)) = h.
Proof (sketch). The proof is by induction.
Basis: We need to show that if key(L0

new(−1)) = 1
2 , then L1

old(−1) was obtained
from above and key(L1

new(0)) = 0. L1
old(−1) (whether it collides with L0

new(−1) or
not) was obtained from the (only) old zero point L0

old(0), i.e., from above. In addition,
if key(L0

new(−1)) = 1
2 , then L0

new(−1) must be ≤ L0
old(0); hence L1

new(0) will be equal
to L0

old(0).
Induction: Assume that Lemma 3.7 holds up to wave h. Consider an in-between

point Lh
new(d), for which key(Lh

new(d)) = h + 1
2 . We need to show that Lh+1

old (d) could
not have been obtained from the left and that key(Lh+1

new(d + 1)) = h. key(Lh
new(d)) =

h + 1
2 implies that one of the two points Lh−1

new(d − 1), Lh−1
new(d + 1) must have a key

value of h − 1
2 or h, and since key(Lh−1

new(d − 1)) ≥ key(Lh−1
new(d + 1)), it must be that

key(Lh−1
new(d − 1)) ∈ {h − 1

2 , h}. key(Lh−1
new(d − 1)) = h − 1

2 can be ruled out, since it

D
ow

nl
oa

de
d

05
/0

9/
20

 to
 1

15
.4

3.
30

.2
35

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

574 G.M. LANDAU, E.W. MYERS, AND J.P. SCHMIDT

Procedure Construct new LCS wave(h, ph, ph+1)
1. Lh+1

new[−h − 2...ph − 1] ← Lh+2
old [−h − 2...ph − 1]

2. Compute LCS(Lh+1
new(ph + 1))

3. ph+1 ←
{

ph − 1 if Lh+1
new(ph + 1) < Lh+2

old (ph + 1)
ph + 1 otherwise

4. Lh+1
new[ph + 3..h] ← Lh

old[p
h + 3...h]

5. Double Link(Lh+1
new(ph + 3), Lh+1

new(ph + 1))

FIG. 8. Construction of Lh+1
new from Lh

new and auxiliary pointers.

Procedure Compute LCS(Lh
x(d))

1. if x = new then δ ← 1 else δ ← 0

2. Lh
x(d) ← Slided

(
max

{
Lh−1

x (d + 1) + 1 if d < h − δ
Lh−1

x (d − 1) if d > −h − δ

})
3. if h > 0 and d > −h − δ then
4. { Double Link(Lh

x(d), Lh
x(d − 2))

5. if d < h − δ then Double Link(Lh
x(d), Lh−1

x (d + 1))
6. }

FIG. 9. Computation of Lh
new(d) or Lh

old(d) and update of all relevant pointers.

contradicts the inductive hypotheses, which says that in this case key(Lh
new(d)) = h−1.

If Lh+1
old (d) was obtained from Lh−1

new(d−1) (i.e., the left) and key(Lh−1
new(d−1)) = h, we

would have key(Lh
new(d)) = h+1; again a contradiction. Hence Lh+1

old (d) was obtained
from Lh

old(d + 1) (i.e., from above). This in turn implies that Lh
old(d + 1) ≥ Lh

new(d).
If Lh+1

new(d + 1) was obtained from Lh
new(d), then the above inequality would imply

that Lh+1
new(d + 1) ≤ Lh

old(d + 1), but since Lh+1
new(d + 1) ≥ Lh

old(d + 1) (always), it
follows in this case that Lh+1

new(d + 1) = Lh
old(d + 1). On the other hand by the first

key property on wave h, key(Lh
new(d + 2)) = h − 1; hence if Lh+1

new(d + 1) was obtained
from Lh

new(d + 2), we also have Lh+1
new(d + 1) = Lh

old(d + 1). Hence regardless of how
Lh+1

new(d + 1) was obtained, key(Lh+1
new(d + 1)) = h.

Given the second key property and Lemma 3.7, the proof of the first key property,
and hence Theorem 3.6, is outlined in a nutshell as follows. Given a pair of consecutive
points on wave h, Lh

new(d − 2) and Lh
new(d), we consider the point Lh−1

new(d − 1).
If key(Lh−1

new(d − 1)) = g, (g ∈ {h − 2, h}), then key(Lh
new(d − 2)) ≥ g + 1, while

key(Lh
new(d)) ≤ g +1. If Lh−1

new(d− 1) is an in-between point, then key(Lh−1
new(d− 1)) =

h − 1
2 , and by Lemma 3.7 key(Lh

new(d)) = h − 1, while key(Lh
new(d − 2)) is always

greater than or equal to h − 1.

3.3. Explicit algorithm for LCS. The explicit algorithm given in Figures 8, 9,
and 10 is similar to and simpler than the one for edit distance. Waves are still doubly
linked lists, with Lh(d) doubly linked to Lh(d − 2) and Lh(d + 2). Diagonal-links will
be slightly different in that Lh(d + 1) is linked to Lh+1(d) (as Lh+1 does not have a
point on diagonal d + 1). ph is defined as the largest (rightmost) diagonal on Lh

new

for which key(Lh
new(ph)) = h + 1 and is set to −h − 2 if there is no such diagonal.

4. Four applications. The power of the incremental algorithm of the proceed-
ing section is that it delivers an encoding of the dynamic programming solution for
each and every problem so obtained. In the context of the four applications of this
section, this feature of the method allows the algorithm to completely explore the
space of solutions to each subproblem. In the case of some of the applications, this

D
ow

nl
oa

de
d

05
/0

9/
20

 to
 1

15
.4

3.
30

.2
35

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

INCREMENTAL STRING COMPARISON 575

Procedure New LCS Wave
1. L0

new(−1) ← Slide−1(0)
2. if L0

new(−1) < L1
old(−1) then p0 ← −2 else p0 ← −1

3. for h ← 0 to k − 2 do
4. Construct new LCS wave(h, ph, ph+1)
5. for d ← −k − 1 to pk

1 + 1 by 2 do
6. Compute LCS(Lk+1

old (d))
7. Construct new LCS wave(k − 1, pk−1, pk)

FIG. 10. Construction of L0
new . . . Lk

new from the corresponding old waves.

is essential to their efficient solution, and in others it provides leverage not found in
previous algorithms that can only keep track of the best solution to a set of sub-
problems. For each application, we show how to apply the incremental algorithm as
a subprocedure and focus on how its wave structure is processed at each stage to
provide the desired solutions.

Before proceeding with the description of the applications, we introduce a no-
tation for the wave structure that is different from the one introduced in section 3
but is convenient for the discussion of applications. In section 3 we showed how to
compute the k + 1 waves L0

new, . . . , Lk
new of the edit-distance matrix Dnew[i, j] of A

and bB, when given the k + 1 waves L0
old, . . . , L

k
old of the matrix Dold[i, j] of A versus

B. In all of our applications the overall outline of the algorithm is to start with a
k-thresholded solution for A versus some suffix Bs of B. (Recall that Br

l is the sub-
string bl+1bl+2 . . . br, and that Bl = Bn

l and Br = Br
0 .) When s = n this is the trivial

solution of A versus the empty string, and when s < n the initial solution can be com-
puted with the standard O(n + k2) algorithm. Thereafter, the application algorithm
incrementally computes the solutions to A versus Bl for l = s − 1, s − 2, . . . , 0 using
the incremental algorithm of section 3 as a subroutine.

At any moment we will have k + 1 waves L0, L1 . . . Lk modeling the solution to
a comparison between some suffix Bl of B and A. Let the origin diagonal for this
problem be l, and denote by Dl the dynamic programming matrix of the comparison
of A with Bl. Further let Ch(d) = Lh(l+d) denote the wave value that is at diagonal
d of the matrix Dl. In this way Lh = 〈Ch(−h), Ch(−(h − 1)), . . . , Ch(h − 1), Ch(h)〉
regardless of the suffix of B at hand. Recall from the preliminaries that, in order to
be compliant with the recursion for computing Lh in terms of Lh−1, it was convenient
to sometimes set Lh(d) to ∞ even though the extreme point on diagonal d in D had
value h. But in the context of our applications, it is now convenient to reset these ∞
values so that Ch always holds the furthest h point on the corresponding diagonal,
within the boundary of D, if such an h point exists. Formally if Lh(l + d) = ∞ while
Lh−1(l + d) 6= plast(d), where plast(d) = min{m, n − l − d} is the row number of the
last point on diagonal d in matrix D, then set Ch(d) = plast(d). Note that the D
value of plast(d) on diagonal d is indeed equal to h in this case. It is easy to see that
this “adjustment” of values can be done O(k) time per Dl matrix.

Recall from the previous section that each wave is implemented as a doubly linked
list so that given a pointer to Ch(d) one can move to Ch(d−1) or Ch(d+1) in constant
time, and each diagonal across the waves is in a doubly linked list so that given a
pointer to Ch(d) one can move to Ch+1(d) or Ch−1(d) in constant time.

4.1. Approximate string matching and longest prefix. The approximate
string matching problem was used in the introduction as an example of how our
incremental alignments algorithm could be used to find all matching substrings in
O(nk) time. We begin by exploring in greater detail how our incremental algorithm

D
ow

nl
oa

de
d

05
/0

9/
20

 to
 1

15
.4

3.
30

.2
35

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

576 G.M. LANDAU, E.W. MYERS, AND J.P. SCHMIDT

is applied to the following slightly more general problem and the leverage it provides
over other algorithms. Consider first finding for each position l ∈ [0, n] of a text B
the length m(l) of the longest prefix Am(l) of A that can be matched to some prefix
of Bl with no more than k differences. Formally, m(l) = max{p ∈ [0, m] : ∃r ∈
[l, n], ED(Ap, Br

l) ≤ k}. Further consider finding for each l the set of all r such that
the substring Br

l of the text B and the prefix Am(l) are within edit distance k of each
other. When m(l) = m we call such a substring of the text a k-match, and otherwise
a longest prefix k-match. In summary, the longest prefix approximate match problem
is, given strings A, B, and threshold k, to find for each l the length m(l) and the
set of indices r such that ED(Am(l), Br

l) ≤ k. The problem obviously generalizes the
approximate string matching problem which seeks all (l, r) for which m(l) = m.

We start by building the trivial k-thresholded solution for A versus Bn (= ε)
and then proceed incrementally. First observe that constructing the trivial solution
for A versus Bn simply requires building an initial cross-linked wave structure and
setting Ch(d) to h if d = −h and to ∞ otherwise. The algorithm then proceeds to
produce solutions for A versus progressively longer suffixes of B taking O(k) time per
incremental shift using our central result. The only remaining detail is to show how,
given the k-thresholded solution for A versus some suffix Bl, one finds the longest
prefix of A and all r and h such that ED(Am(l), Br

l) = h ≤ k. Note that when
m(l) < m the corresponding edit distance is always k, since we would otherwise
choose a longer prefix of A. Even when m(l) = m there is at least one diagonal d
for which Ck(d) is exactly m. This is easily seen by observing that the least possible
number of differences on diagonal −k is k; hence Dl[m, m − k] is always ≥ k, and
hence Ck(−k) ≤ m. For d < 0, Ck(d) < m implies that Ck−1(d + 1) < m and hence
Ck(d + 1) ≤ m. Hence even if Ck(d) = ∞ for some d ≤ 0, we have Ck(d′) = m for
some diagonal d′ between −k and d. We can therefore determine m(l) by examining
all non-∞ values on wave k; hence m(l) = maxd{Ck(d) | Ck(d) ≤ m}, and we wish to
find d and h such that Ch(d) = m(l), for this will give us all points (m(l), m(l) + d)
for which Dl[m(l), m(l) + d] = h.

It suffices to first traverse wave Ck to determine m(l) and thereafter traverse
the wave structure in order of diagonals, moving up or down along a diagonal list
to find the entry on that diagonal equal to m(l), if any. The algorithm fragment
in Figure 11 gives the details. Note that we start by looking for a match with k
differences on diagonal −k. Thereafter d and h are advanced in unit increments to
suggest the pointer-based traversal of the cross-linked structure. The traversal again
takes advantage of the fact that adjacent D-values never differ by more than one,
implying that if we move from a best point on wave h and diagonal d to the adjacent
wave point on the next diagonal, at most one move up or down to wave h+1 or wave
h − 1 along that diagonal will reach a point on row m(l) if there is one.

Figure 11 clearly takes O(k) time which is no more expensive than the time to
produce the wave structure for the given index l. Thus the overall algorithm takes
O(nk) time. Note that a corollary is that there are at most O(nk) k-matches to
A. While there are other algorithms for approximate string matching that take only
O(nk) time, none delivers or can be trivially extended to deliver the longest prefix
of A that can be matched with k differences to some substring of B and to deliver
all the k-matching substrings and their associated edit distances. Finding the longest
prefix that can be matched to a given string turns out to be crucial in an algorithm
for finding approximate repeats, i.e., adjacent substrings whose edit distance is no
more than k [LS-93] and is almost certain to find additional applications. Finding
all matching substrings is crucial if one has some secondary criteria that is a non-
linear function of match length and edit distance. In this case one needs to examine

D
ow

nl
oa

de
d

05
/0

9/
20

 to
 1

15
.4

3.
30

.2
35

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

INCREMENTAL STRING COMPARISON 577

1. m(l) ← maxd{Ck(d) | Ck(d) ≤ m}
2. h ← k
3. for d = −k to k by 1 do
4. { if h < k and Ch+1(d) ≤ m(l) then
5. h ← h + 1
6. else if Ch(d) = ∞ then
7. h ← h − 1
8. if Ch(d) = m(l) then
9. Report Am(l) matches B

l+m(l)+d
l with h differences

10. }

FIG. 11. Reporting matching substrings.

all matches and not simply the best one ending or beginning at a given index. For
example, if A = aaaacbbbbccccc and B = xxxxxaaaaccccccbbbbcccccxxxx . . ., then
both B15

5 and B24
14 match A (of length 14) with 4 differences but B24

5 matches with
5 differences. The last match is conceivably more significant than the two others,
(involving 14 identical symbols versus 10), but would not be revealed by previous
algorithms. These algorithms can only determine the match(es) with the minimum
number of differences ending at a given character of B, or (in a backward solution)
the match(es) with the minimum number of differences starting at a given character
of B. That is, previous algorithms only detect the difference 4 match B24

14 to the suffix
of B24 when run left-to-right over B, and the difference 4 match B15

5 to the prefix
of B5 when run right-to-left over B. The difference 5 match B24

5 is missed in both
directions.

The next application treats this issue in more detail.

4.2. Approximate overlap. Our second example comes from a problem in
molecular biology that arises in sequencing DNA. Current methods for determining
sequence allow the direct determination of the DNA sequence of a string of length less
than 1,000. To determine the sequence of a very long DNA strand, say 50,000 symbols
in length, an experimentalist employing the “shotgun” sequencing method randomly
extracts fragments of sufficiently small length from the subject strand and determines
the sequence of these fragments via a direct experimental method. The resulting
fragment assembly problem is to determine the subject strand given the collected set
of fragments.

The first step in solving the fragment assembly problem is to compare every
sequence against every other sequence to see if a suffix of one matches a prefix of
another.4 Such detected overlaps indicate the possibility (but not the certainty) that
the two fragments came from overlapping regions of the subject stand. Detecting the
overlaps is complicated by the fact that direct sequencing experiments are imperfect
and so do not produce the exact sequence. Typically, the error rate runs at about a
1–10% difference between the reported string and the true fragment sequence. Thus,
fragments must be compared to determine if there is an approximate overlap between
them. A fast method is essential for this fundamental subproblem since it must be
solved for a quadratic number of fragment pairs.

More precisely, given a threshold k (reflective of the length of the fragments and
the error rate of the sequencing method), and two fragments A and B, we say A

4[GLS-92] describes an algorithm that finds the exact (0 differences) matches between prefixes
and suffixes of a set of strings.

D
ow

nl
oa

de
d

05
/0

9/
20

 to
 1

15
.4

3.
30

.2
35

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

578 G.M. LANDAU, E.W. MYERS, AND J.P. SCHMIDT

approximately overlaps B within threshold k if either (a) a prefix of A aligns with a
suffix of B with not more than k differences, or (b) A aligns with a substring of B with
not more than k differences. Matches of type (a) are called dovetail matches and those
of type (b) are containment matches. Unfortunately, whenever A and B approximately
overlap within k-difference, there are typically a number of possible ways to do so. One
way to compare the significance of different alignments is to choose the overlap which
is the least likely to occur by chance, as suggested in [KM-94]. Let PrΣ(m, n, k) be
the probability, or some approximation thereof, that two strings of respective lengths
m and n formed by random Bernoulli trials over a Σ symbol alphabet can be aligned
with k-or-less differences. For this discussion, let us assume a precomputed table
containing values PrΣ[m, n, k] between 0 and 1 for the relevant range of m, n, and k
(e.g., 0 ≤ m, n ≤ 2,000, and 0 ≤ k ≤ 400 for most DNA sequencing projects). Note
that PrΣ is typically a nonlinear function of m, n, and k.

Given a threshold k and strings A and B of length m and n, the approximate
overlap problem can now be stated as finding three indices l, r, and p such that

(a) r = n or p = m, and
(b) ED(Ap, Br

l) = h ≤ k, and
(c) PrΣ[p, r − l, h] is minimal.

When r = n the approximate overlap is of the dovetail variety (prefix Ap versus suffix
Bl), and when p = m it is of the containment type (A versus substring Br

l).
As for the approximate match problem, the approximate overlap problem is solved

by incrementally computing the solution for A versus Bl for l = n, n − 1, . . . , 0. As
before, the initial solution for Bn versus A is easy to compute and O(k) time is spent
thereafter incrementally delivering each additional k-thresholded solution as cross-
threaded lists of the k + 1 waves, L0, L1, . . . , Lk. For each suffix Bl, one traverses
the wave structure finding all p and r that satisfy conditions (a) and (b) above. We
term such a triple, (l, r, p), a candidate. As each candidate is discovered, its PrΣ
“score” is compared against the minimum scoring triple (L, R, P) of probability score
S encountered thus far in the algorithm and entered as the new best if its score is
lower. Thus, at the end of the algorithm the indices delimiting a minimum scoring
approximate overlap and its probability score are delivered. The algorithm is shown
in Figure 12.

As for approximate match, the tricky detail is the discovery of the candidates
within a given solution. Suppose we have the k-thresholded solution for A versus
Bl. Like approximate match, containment candidates correspond to those d and h
for which Ch(d) = m for this implies ED(A, Bl+m+d

l) = h. Dovetail candidates
correspond to those furthest points in the structure that reach the extreme column
n − l of Dl, the dynamic programming matrix for the problem of comparing A and
Bl. That is, we seek d and h for which Ch(d) = n − l − d and is therefore a point
on the extreme column of Dl, for this implies Dl[n − l − d, n − l] = h which in turn
implies ED(An−l−d, Bl) = h.

Observe that the algorithm given in Figure 12 has exactly the same wave-traversal
logic as the one given in Figure 11. The modifications are related to differences
between the applications: lines 1 and 8–9 in Figure 11 versus lines 2, 11–14, and 17
in Figure 12. As a consequence, it is clear the algorithm takes O(nk) time.

The algorithm can be further refined to deliver not only the indices of the best
approximate overlap in O(nk) time but an alignment achieving it as well. An align-
ment can of course be produced in all applications but it is particularly appealing
here since we output only the “best matching substring” with respect to our scoring
function, and we can produce O(1) alignments per substring Bl in the desired time

D
ow

nl
oa

de
d

05
/0

9/
20

 to
 1

15
.4

3.
30

.2
35

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

INCREMENTAL STRING COMPARISON 579

1. Compute initial solution for A versus Bn.
2. (L, R, P, S) ← (n, n, 0, 1) # Bn

n overlaps A0 with 0 errors with probability 1.
3. for l = n − 1 downto 0 by 1 do
4. { Incrementally compute solution for A versus Bl.
5. h ← k
6. for d = −k to k by 1 do
7. { if h < k and Ch+1(d) < ∞ then
8. h ← h + 1
9. else if Ch(d) = ∞ then
10. h ← h − 1
11. if Ch(d) = m or Ch(d) + d = n − l then
12. s ← PrΣ[Ch(d), d + Ch(d), h]
13. if s < S then
14. (L, R, P, S) ← (l, l + d + Ch(d), Ch(d), s)
15. }
16. }
17. Best overlap is AP with BR

L with score S.

FIG. 12. Approximate overlap algorithm.

bound. During the traversal of the k-thresholded solution for A versus Bl, record the
best candidate encountered in the traversal and if it becomes the best candidate seen
thus far in the algorithm, then take O(k) additional time to record the alignment of
the overlap modeled by the candidate. In order to take only O(k) additional time,
the alignment must be recorded as the ordered sequence of its O(k) differences, often
called a ∆-encoding of the alignment. Building this encoding simply requires tracing
back from the entry Ch(d) corresponding to the candidate. Specifically, from Ch(d)
trace back to whichever entry yields the maximum of Ch−1(d − 1), Ch−1(d) + 1, or
Ch−1(d + 1) + 1 (by Lemma 2.8), and then trace back from that entry recursively
until C0(0) is reached. If u = Ch−1(d − 1) gave the maximum, then append “Insert
bl+u+d” to the ∆-encoding. If v = Ch−1(d) gave the maximum, then append “Sub-
stitute bl+v+d+1 for av+1.” Finally, if w = Ch−1(d + 1) gave the maximum, then
append “Delete aw+1.” Upon completion of the algorithm, the ∆-encoding of the
best approximate overlap will have been recorded, and one can use it to produce a
display of the alignment in O(n + m) time if desired.

4.3. Cyclic string comparison. Yet another variation of traditional string
comparison involves considering cyclic shifts of the two strings A and B in question.
Let cycle(a1a2 . . . am) = a2 . . . ama1, and let cyclep(A) be the result of applying cycle
exactly p times. The cyclic string comparison problem is to determine p and q such
that e = ED(cyclep(A), cycleq(B)) is minimal. It is quite easy to see that if the
minimum is obtained for cyclep(A) and cycleq(B), then by simply cyclically shifting
an alignment one obtains an equally good alignment between A and cycler(B) for
some r. Thus the problem really reduces to the simpler one of finding q such that
ED(A, cycleq(B)) is minimal. This problem was introduced by Mathias Maes [Ma-
90] and he gives an O(mn log m) algorithm for the problem that permits arbitrarily
weighted edit costs. Our incremental alignment algorithm leads to a more efficient
O(ne) time algorithm for the case of unit cost editing operations.

First we present an O(n2) algorithm, and later show how to refine it to give an
O(ne) algorithm. Consider comparing A and B = B ·B (B concatenated with itself).

D
ow

nl
oa

de
d

05
/0

9/
20

 to
 1

15
.4

3.
30

.2
35

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

580 G.M. LANDAU, E.W. MYERS, AND J.P. SCHMIDT

Let the threshold k = n so that for any threshold structure computed Ck(n−m) ≥ m.
Begin by computing the threshold structure for A versus Bn (=B) using the greedy
algorithm in O(n2) time. Then incrementally compute the thresholded structure for
A versus Bl, for l = n − 1, n − 2 . . . 0. We examine each threshold structure to find
ED(A, cyclel(B)) in O(k) time. Specifically, it is that h for which Ch(n − m) = m
and this is easily found by starting with Ck(n−m) and walking the diagonal list until
h is encountered. Note that because k was chosen to be n it follows that h is always
on the diagonal list. It takes O(k) time to compute each incremental solution and
O(k) additional time to find the edit distance for the given cyclic shift of B. Thus
the algorithm takes O(kn) = O(n2) time to find the minimum edit distance, e, over
all possible cyclic shifts.

To bring the complexity down to O(ne) time, consider running the algorithm with
a threshold k < n. If for a given cyclic shift, Ck(n − m) < m, then the edit distance
for that cyclic shift of B cannot be determined. On the other hand, if Ck(n−m) ≥ m
then the edit distance can be computed and k upper bounds the answer e to the
overall problem. So consider running the algorithm with k = 1, and then with k = 2,
and k = 4, and so on in geometric sequence until the edit distance for at least one
cyclic shift is determined in a given trial. Of course, in this last trial, the best edit
distance obtained in the trial is the answer, e, to the cyclic string comparison problem.
Since k is doubled with each trial, the total time complexity is bounded by the time
of the last trial and k = O(e) in that trial. Thus the algorithm takes O(ne) time.

4.4. Text screen updating. Screen oriented programs maintain a representa-
tion of an object and present a view of it on the screen. For example, screen editors
keep an internal edit buffer and display a block of lines from the buffer. The screen
must be updated when the object is changed. In one solution, procedures that modify
the object must also update the view or at least specify how the view has changed.
A cleaner approach lets an autonomous screen manager module determine how to
update the screen by comparing its record of the screen contents with views of the
modified object. The interface to the screen manager is then a single routine, refresh,
that updates the screen with respect to the current object. It is given no informa-
tion other than the object and screen contents. Unfortunately, the simplicity of the
interface requires the screen manager to solve a difficult comparison problem.

The feasibility of this design is demonstrated by the UNIX EMAC editor [Go-81]
and the Maryland Window System [Ws-85]. In a two level approach, sequences of lines
are compared to decide at the top level which lines to delete, insert, and replace. At
the bottom level, the sequences of characters in two lines are compared to appraise
and perform line or row replacements. The approach is not guaranteed to update
the screen with a minimal set of terminal commands but nonetheless performs well.
However, a number of improvements are possible at both levels. At the lower level,
Myers and Miller [MM-89] developed algorithms that account for the nonuniformity
of terminal command costs and produce optimal update command sequences for the
row replacement subproblem. At the top level, a weakness of the earlier approach is
the assumption that the screen-sized segment of buffer lines that is to replace the cur-
rent screen contents is known a priori. More realistically, the screen manager should
determine the optimal window position, i.e., the screen-sized segment of the buffer
that most closely resembles the current screen contents subject to the constraint that
the current cursor position be in this segment. A useful approximation to the theoret-
ically optimal choice can be computed economically with our incremental algorithm
by finding a window position minimizing the number of screen rows that need to be
updated, inserted, or removed.

D
ow

nl
oa

de
d

05
/0

9/
20

 to
 1

15
.4

3.
30

.2
35

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

INCREMENTAL STRING COMPARISON 581

Suppose B is the current buffer contents, c is the current cursor position, and S
is the current screen contents, where B and S are viewed as strings over the infinite
alphabet of lines of ASCII text. Suppose B is n lines long and that the screen displays
m lines. Formally, the window positioning problem is to find a position p ∈ [c−m, c−1]
that minimizes e = ED(Bp+m

p , S). Given the cursor position c it is clear that we can
restrict our attention to the substring B = Bc+m−1

c−m of B because the window Bp+m
p

must contain line c. Now observe that this problem is very similar to the one we
solved for the cyclic string comparison problem. Namely, we compute solutions for
Bl for l = m−1, m−2, . . . 0, and for each determine ED(B

l+m

l , S) which is the value
h for which Ch(0) = m. Using the same geometric progression of threshold increases,
as in the cyclic string comparison problem, gives an O(me) algorithm for the window
positioning problem.

Acknowledgment. We would like to thank Esko Ukkonen for bringing the
Cyclic String Comparison problem to our attention.

REFERENCES

[BV-93] O. BERKMAN AND U. VISHKIN, Recursive star-tree parallel data-structure, SIAM J.
Comput., 22 (1993), pp. 221–242.

[GP-90] Z. GALIL AND Q. PARK, An improved algorithm for approximate string matching, SIAM
J. Comput., 19 (1990), pp. 989–999.

[Go-81] J. GOSLING, A redisplay algorithm, in Proc. ACM SIGPLAN/SIGOA Symposium on
Text Manipulation, ACM, New York, 1991, pp. 123–129.

[GLS-92] D. GUSFIELD, G. M. LANDAU, AND B. SCHIEBER, An efficient algorithm for the all
pairs suffix-prefix problem, Inform. Process. Lett., 41 (1992), pp. 181–185.

[HD-80] P. A. HALL AND G. R. DOWLING, Approximate string matching, Comput. Surveys, 12
(1980), pp. 381–402.

[HT-84] D. HAREL AND R. E. TARJAN, Fast algorithms for finding nearest common ancestors,
SIAM J. Comput., 13 (1984), pp. 338–355.

[Hi-77] D. S. HIRSCHBERG, Algorithms for the longest common subsequence problem, J. ACM,
24 (1977), pp. 664–675.

[HS-77] J. W. HUNT AND T. G. SZYMANSKI, An algorithm for differential file comparison,
Comm. ACM, 20 (1977), pp. 350–353.

[KM-94] J. KECECIOGLU AND E. MYERS, Exact and approximate algorithms for the sequence
reconstruction problem, Algorithmica, 13 (1995), pp. 180–210.

[LS-93] G. M. LANDAU AND J. P. SCHMIDT, An algorithm for approximate tandem repeats, in
Proc. 4th Symp. Combinatorial Pattern Matching, Lecture Notes in Comput. Sci.
648, Springer-Verlag, New York, 1993, pp. 120–133.

[LV-88] G. M. LANDAU AND U. VISHKIN, Fast string matching with k differences, J. Comput.
System Sci., 37 (1988), pp. 63–78.

[LV-89] G. M. LANDAU AND U. VISHKIN, Fast parallel and serial approximate string matching,
J. Algorithms, 10 (1989), pp. 157–169.

[Ma-90] M. MAES, On a cyclic string-to-string correction problem, Inform. Process. Lett., 35
(1990), pp. 73–78.

[Mc-76] E. M. MCCREIGHT, A space-economical suffix tree construction algorithm, J. ACM, 23
(1976), pp. 262–272.

[My-86a] E. MYERS, An O(ND) difference algorithm and its variations, Algorithmica, 1 (1986),
pp. 251–266.

[My-86b] E. MYERS, Incremental Alignment Algorithms and Their Applications, Tech. report
86-22, Dept. of Computer Science, University of Arizona, Tucson, AZ, 1986.

[MM-89] E. MYERS AND W. MILLER, Row replacement algorithms for screen editors, ACM Trans.
Prog. Lang. Systems, 11 (1989), pp. 33–56.

[NKY-82] N. NAKATSU, Y. KAMBAYASHI, AND S. YAJIMA, A longest common subsequence algo-
rithm suitable for similar text string, Acta Inform., 18 (1982), pp. 171–179.

[NW-70] S. B. NEEDLEMAN AND C. D. WUNSCH, A general method applicable to the search for
similarities in the amino acid sequence of two proteins, J. Mol. Bio., 48 (1970),
pp. 443–453.

D
ow

nl
oa

de
d

05
/0

9/
20

 to
 1

15
.4

3.
30

.2
35

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

582 G.M. LANDAU, E.W. MYERS, AND J.P. SCHMIDT

[SV-88] B. SCHIEBER AND U. VISHKIN, On finding lowest common ancestors: Simplification
and parallelization, SIAM J. Comput., 17 (1988), pp. 1253–1262.

[Se-80] P. H. SELLERS, The theory and computation of evolutionary distances: Pattern recog-
nition, J. Algorithms, 1 (1980), pp. 359–373.

[SW-81] T. F. SMITH AND M. S. WATERMAN, Identification of common molecular subsequences,
J. Mol. Bio., 147 (1981), pp. 195–197.

[Uk-85a] E. UKKONEN, Algorithms for approximate string matching, Inform. Control, 64 (1985),
pp. 100–118.

[Uk-85b] E. UKKONEN, On approximate string matching, J. Algorithms, 6 (1985), pp. 132–137.
[WF-74] R. A. WAGNER AND M. J. FISCHER, The string-to-string correction problem, J. ACM,

21 (1974), pp. 168–173.
[Wn-73] P. WEINER, Linear pattern matching algorithm, in Proc. 14th IEEE Symposium on

Switching and Automata Theory, IEEE Computer Society Press, Los Alamitos,
CA, 1973, pp. 1–11.

[Ws-85] M. WEISER, CWSH: The windowing shell of the Maryland window system, Software—
Practice and Experience, 15 (1985), pp. 515–519.

[WM-92] S. WU AND U. MANBER, Fast text searching allowing errors, Comm. ACM, 35 (1992),
pp. 83–91.

D
ow

nl
oa

de
d

05
/0

9/
20

 to
 1

15
.4

3.
30

.2
35

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

