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Abstract In this paper, we revisit a recent variant of the longest common subsequence
(LCS) problem, the string-excluding constrained LCS (STR-EC-LCS) problem, which
was first addressed by Chen and Chao (J Comb Optim 21(3):383–392, 2011). Given
two sequences X and Y of lengths m and n, respectively, and a constraint string P of
length r, we are to find a common subsequence Z of X and Y which excludes P as a
substring and the length of Z is maximized. In fact, this problem cannot be correctly
solved by the previously proposed algorithm. Thus, we give a correct algorithm with
O(mnr) time to solve it. Then, we revisit the STR-EC-LCS problem with multiple
constraints {P1, P2, . . . , Pk}. We propose a polynomial-time algorithm which runs in
O(mn R) time, where R = ∑k

i=1 |Pi |, and thus it overthrows the previous claim of
NP-hardness.

Keywords Design of algorithms · Longest common subsequence · Constrained
LCS · NP-hard · Finite automata

1 Introduction

Computing the similarity of two sequences is one of the most important fundamental
techniques in computer science. Let X = x1x2 . . . xm be a sequence(string) of length
m over some fixed alphabet �, where xi ∈ �. Let Xi ... j = xi xi+1 . . . x j denote a
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substring of X, where 1 ≤ i ≤ j ≤ m. A substring Xi ... j is called a prefix or a suffix
of X if i = 1 or j = m, respectively. A subsequence of X is obtained by deleting zero
or more symbols from X arbitrarily. A sequence is called a common subsequence of
two sequences X and Y if it is a subsequence of both X and Y. Given two sequences X
and Y, the longest common subsequence (LCS) problem is to find a subsequence of X
and Y whose length is the longest among all common subsequences of the two given
sequences. The LCS problem is a well-known measurement for computing the simi-
larity of two strings. It can be widely applied in diverse areas, such as file comparison,
pattern matching and computational biology. The most referred algorithm, proposed
by Wagner and Fischer (1974), solves the LCS problem in quadratic time with the
dynamic programming (DP) technique. Other advanced algorithms were proposed in
the past decades (Hirschberg 1977; Hunt and Szymanski 1977; Yang and Lee 1987;
Apostolico and Guerra 1987; Ann et al. 2008, 2010; Iliopoulos and Rahman 2009;
Iliopoulos et al. 2010). When the number of input sequences is not fixed, finding the
LCS of multiple sequences has been proved to be NP-hard (Maier 1978), and there-
fore some approximate and heuristic algorithms were proposed (Shyu and Tsai 2009;
Blum et al. 2009).

Applying the constraints to the LCS problem is meaningful for some biological
applications (Tang et al. 2003). Therefore, the constrained LCS (CLCS) problem, a
recent variant of the LCS problem which was first addressed by Tsai (2003), has
received much attention. Given two input sequences X and Y of lengths m and n,

respectively, and a constrained sequence P of length r, the CLCS problem is to find
the common subsequences Z of X and Y such that P is a subsequence of Z and the
length of Z is the maximum. In the following, without loss of generality, we assume
that r ≤ n ≤ m. The most referred algorithms were proposed independently (Arslan
and Eǧecioǧlu 2005; Chin et al. 2004) which solve the CLCS problem based on the
DP technique in O(mnr) time and space. Some improved algorithms have also been
proposed (Deorowicz and Obstoj 2010; Iliopoulos and Rahman 2008). Iliopoulos et al.
(2009) discussed the LCS and CLCS problems on the indeterminate strings. Deorowicz
(2010) gave a bit-parallel algorithm for solving the CLCS problem. Ann et al. (2012)
considered the sequences which are in run-length encoding (RLE) format, a linear-
time compressing technique, and greatly reduced the number of elements required to
be evaluated in the DP lattice. Moreover, Peng et al. (2010) extended the problem to the
one with weighted constraints, a more generalized problem. Referring to the variant
of multiple constraints, the multiple CLCS problem was also proved to be NP-hard
(Gotthilf et al. 2008).

Recently, Gotthilf et al. (2010) proposed a variant of the CLCS problem, the
restricted LCS problem, which excludes the given constraint as a subsequence of
the answer. Furthermore, they proved that the restricted LCS problem also becomes
NP-hard when the number of constraints is not fixed. Independently, Chen and Chao
(2011) addressed the more generalized forms of the CLCS problem, the general-
ized constrained longest common subsequence (GC-LCS) problem. Given two input
sequences X and Y of lengths m and n, respectively, and a constraint string P of length
r, the GC-LCS problem is a set of four problems which are to find the LCS of X and
Y including/excluding P as a subsequence/substring, respectively. Table 1 shows the
four problems. Evidently, the original CLCS problem addressed by Tsai (2003) is
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Table 1 The four GC-LCS problems defined by Chen and Chao (2011) and the time complexities of their
methods

Including P Excluding P

As a subsequence SEQ-IC-LCS SEQ-EC-LCS

O(mnr)

As a substring STR-IC-LCS STR-EC-LCS

O(mnr) O(mnr)

specified as SEQ-IC-LCS, and the restricted LCS problem addressed by Gotthilf et al.
(2010) is specified as SEQ-EC-LCS.

For the problems in Table 1 except SEQ-IC-LCS, Chen and Chao proposed the
corresponding algorithms which are all in O(mnr) time. However, as we will show
soon, their algorithm for STR-EC-LCS cannot work correctly. Besides, Chen and
Chao (2011) stated that “one can further show that the STR-IC-LCS, SEQ-EC-
LCS, and STR-EC-LCS problems with multiple constrained patterns are also NP-
hard”. We will propose an algorithm of polynomial time for solving STR-EC-LCS
with multiple constraints, thus it implies that the above statement is not correct for
STR-EC-LCS. In 2010, Farhana et al. (2010) proposed an O(r(m + n) + (m + n)

log(m +n)) time algorithm for all four variants in Table 1 by using the finite automata
with an important assumption that � is constant. In 2012, Deorowicz (2012) pro-
posed a quadratic algorithm to the STR-IC-LCS problem and also claimed that the
time complexity of Farhana et al. is wrong. Recently, Tseng (2013) proposed efficient
algorithms for solving the STR-IC-LCS problem, with single constraint and multiple
constraints.

In this paper, we focus on the STR-EC-LCS problem, with single constraint and
with multiple constraints. In Sect. 2, we review Chen and Chao’s algorithm for the
STR-EC-LCS problem with single constraint and give a counterexample which breaks
their algorithm. In Sect. 3, a correct straightforward backtracking algorithm is given,
though its time complexity is exponential. Then, we propose an efficient algorithm
with time complexity O(mnr) in Sect. 4. In Sect. 5, we consider the variant of the
STR-EC-LCS problem that multiple constraint strings are given and all of them have to
be excluded. We propose an efficient polynomial-time algorithm to solve the multiple
STR-EC-LCS problem and thus it shows that this problem is not NP-hard. And finally,
our conclusion is given in Sect. 6.

2 Counterexamples to Chen and Chao’s algorithm

Definition 1 (STR-EC-LCS problem (Chen and Chao (2011))) Given two input
sequences X and Y of lengths m and n, respectively, and a constraint string P of
length r, the STR-EC-LCS (string excluding) problem is to find the LCS Z of X and
Y excluding P as a substring.

For the STR-EC-LCS problem, based on the following theorem, Chen and Chao
(2011) proposed a dynamic programming algorithm with O(mnr) time. Their
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Fig. 1 Chen and Chao’s recurrence formula (Chen and Chao 2011) for the STR-EC-LCS problem

recurrence formula is shown in Fig. 1, where LChen(i, j, k) denotes the length of
the LCS of X1...i and Y1... j excluding P1...k as a substring.

Theorem 1 (Chen and Chao 2011) Let X = x1x2 . . . xm, Y = y1 y2 . . . yn and P =
p1 p2 . . . pr . Let Si, j,k denote the set of all LCSs of X1...i and Y1... j excluding P1...k as
a substring. If z1...l ∈ Si, j,k, the following conditions hold:

(1) If xi = y j = pk and k = 1, then zl �= xi and z1...l ∈ Si−1, j−1,k .

(2) If xi = y j = pk and k ≥ 2, then zl = xi = y j = pk and zl−1 = pk−1 implies
z1...l−1 ∈ Si−1, j−1,k−1.

(3) If xi = y j = pk and k ≥ 2, then zl = xi = y j = pk and zl−1 �= pk−1 implies
z1...l−1 ∈ Si−1, j−1,k .

(4) If xi = y j = pk and k ≥ 2, then zl �= xi implies z1...l ∈ Si−1, j−1,k .

(5) If xi = y j and xi �= pk, then zl = xi = y j and z1...l−1 ∈ Si−1, j−1,k .

(6) If xi �= y j , then zl �= xi implies z1...l ∈ Si−1, j,k .

(7) If xi �= y j , then zl �= y j implies z1...l ∈ Si, j−1,k .

Chen and Chao did not prove the correctness of the theorem, they only stated that the
proof is similar to the previous theorem in the same article. We find that the algorithm
in Fig. 1 is not correct from two points of view. First, each answer in Si, j,k−1, k ≥ 2,

is always a common subsequence of X1...i and Y1... j excluding P1...k as a substring. It
implies that LChen(i −1, j −1, k−1) ≤ LChen(i −1, j −1, k) is always true. With this
fact, the upper max operation in Fig. 1 is no longer meaningful. Here is a very simple
counterexample, X = Y = P = ab. LChen(2, 2, 2) = max{1 + LChen(1, 1, 1),

1 + LChen(1, 1, 2)}. LChen(1, 1, 1) = LChen(0, 0, 1) = 0. LChen(1, 1, 2) = 1 +
LChen(0, 0, 2) = 1. So LChen(2, 2, 2) = 2, but the correct answer should be 1. One
may think that the formula was typed with a minor mistake. So we try to modify the
upper max operation into max{1+ LChen(i −1, j −1, k −1), LChen(i −1, j −1, k)}.
However, it is still incorrect by another counterexample X = axbc, Y = abyc
and P = ac. The correct answer is Z = abc, the original formula can get the
correct answer while the modified formula will get an incorrect answer ab or bc
as its answer. Second, condition 3 of Theorem 1 is a wrong statement. A similar
counterexample is given, X = Y = P = abc and i = j = k = 3. We have
S3,3,3 = {ab, ac, bc}, S2,2,3 = {ab}. We take z1...2 = ac from S3,3,3 and l = 2, but
z1...1 = a �∈ S2,2,3 = {ab}. Finally, we conclude that Chen and Chao’s algorithm fails
to solve the STR-EC-LCS problem.
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3 A straightforward backtracking algorithm

In this section, we give a simple straightforward backtracking algorithm which cor-
rectly solves the STR-EC-LCS problem. Although it requires exponential time, we
will show that it can be reduced to polynomial time in the next section.

Algorithm 1 shows a backtracking algorithm for solving the STR-EC-LCS problem.
We denoteL1(i, j, T ail) as the longest length of the common subsequence of X1...i and
Y1... j such that the concatenation of the common subsequence and string Tail excludes
P as a substring. For each recursive step, string Tail denotes the tail of the possible
answer subsequence obtained by the previous step. The answer of STR-EC-LCS is
obtained by invoking L1(m, n, φ) recursively, where ‘φ’ denotes the empty string.
Consider the example, X = axbc, Y = abyc and P = ac. A part of the recursive
process of invoking L1(4, 4, φ) is illustrated in Fig. 2. The bold edges constitute the
path corresponding to the answer, abc. Note that L1(0, 0, ‘ac’) = −∞ since the
constraint is violated, which means that node L1(0, 0, ‘ac’) is never considered as a
part of the answer.

Algorithm 1 L1(i, j, Tail) {� Given X , Y and P}
1: if P is a prefix of Tail then {� boundary condition: violating the constraint}
2: return −∞
3: else if i = 0 or j = 0 then {� normal boundary condition}
4: return 0
5: else if xi = y j then {� matched}
6: New_Tail ⇐ xi ⊕ Tail {� new tail is formed by concatenation of xi and Tail}
7: return max{L1(i − 1, j − 1, New_Tail) + 1, L1(i − 1, j, Tail), L1(i, j − 1, Tail)}
8: else {� xi �= y j , mismatched}
9: return max{L1(i − 1, j, Tail), L1(i, j − 1, Tail)}
10: end if

It is not difficult to examine the correctness of Algorithm 1. The boundary conditions
are handled in Lines 1–4, where Lines 3–4 deal with the normal terminations. Lines
1–2 deal with the case that the constraint P has been contained in Tail as a substring,
or more precisely, a prefix. The constraint is violated in this case, thus −∞ is returned
which means that we will never consider this state as a part of the answer. Lines 5–7
consider the case that xi and y j are matched. In this case, we call L1 recursively to
determine whether the matched symbol xi should be chosen as a part of the answer
or not. If we choose xi as a part of the answer, xi will be inserted in front of Tail to
form a new string New_Tail, where ‘⊕’ denotes the string concatenation. Lines 8–9
consider the mismatched case that either xi or y j is to be dropped.

Each state of Algorithm 1 consists of the 3-tuple L1(i, j, T ail), where 0 ≤ i ≤ m
and 0 ≤ j ≤ n. Since the string Tail is always a common subsequence of X and Y, it
is evident that there are O(mn2n) states in the worst case.

Theorem 2 Algorithm 1 can correctly solve the STR-EC-LCS problem in exponential
time.
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Fig. 2 A part of the process of invoking L1(4, 4, φ), where X = axbc, Y = abyc and P = ac. The result
shows that L1(4, 4, φ) = 3

4 Our algorithm for the STR-EC-LCS problem

Although Algorithm 1 requires exponential time, in this section, we will show that the
required time can be reduced to be polynomial. After investigating the relationship
between the string Tail and the constraint P in Algorithm 1, we find that a property
holds when the recursive function L1 solves the STR-EC-LCS problem. The property
is given in Lemma 1.

Definition 2 (Longest prefix-suffix (Cormen et al. 2009)) Given two strings S1 and
S2, we denote LPS(S1, S2) as the longest prefix of S1 that matches a suffix of S2.

Lemma 1 For a given string S excluding P as a substring, L1(i, j, S) =
L1(i, j,LPS(S, P)) with regard to any fixed pair of X and Y.

Proof We assume L1(i, j, S) �= L1(i, j,LPS(S, P)) and prove it by contradiction.
For easy presentation, we denote S = V V ′ where V = LPS(S, P). Besides, we
denote the answer strings of L1(i, j, S) and L1(i, j, V ) as U1 and U2, respectively. In
other words, |U1| = L1(i, j, S) and |U2| = L1(i, j, V ). If L1(i, j, S) �= L1(i, j, V ),

then two possible cases should be considered as follows.
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1. L1(i, j, S) > L1(i, j, V ). By definition, U1S excludes P as a substring, since U1
is the answer string of L1(i, j, S). U1V excludes P as a substring because U1V is a
prefix of U1S. However, it implies that U1 would be a better answer for L1(i, j, V )

than U2, which is a contradiction.
2. L1(i, j, S) < L1(i, j, V ). By definition, U2V excludes P as a substring. If U2S =

U2V V ′ could contain P as a substring, the occurrence of P in U2V V ′ should start
inside U2 and end inside V ′ since S = V V ′ excludes P. Then, there would exist a
suffix of P that is also a prefix of V V ′ and its length is longer than |V |. However,
V = LPS(S, P), which is a contradiction. Thus, U2S excludes P as a substring.
But, it implies that U2 would be a better answer for L1(i, j, S) than U1, which is
a contradiction. ��

For example, if P = abc, it is clear that L1(i, j, ‘bca’) = L1(i, j, ‘bcdddee’) =
L1(i, j, ‘bc’) and L1(i, j, ‘aaaaa’) = L1(i, j, φ). According to Lemma 1, before
each call of function L1 in Algorithm 1, we can shorten the length of the third parameter
Tail by replacing it with LPS(T ail, P). Since LPS(T ail, P) is always a suffix of
P, it becomes feasible to record each state of the recursive process in Algorithm 1
with a 3-tuple (i, j, l), where l denotes the length of LPS(T ail, P). With this trick,
we define L2(i, j, l) as the longest length of the common subsequence of X1...i and
Y1... j such that the answer has to exclude P1...r−l as a substring. Based on this new
definition, we present an improved version of Algorithm 1, as shown in Algorithm 2.
The length of STR-EC-LCS is obtained by calling L2(m, n, 0) recursively, that is,
L2(m, n, 0) = L1(m, n, φ).

Algorithm 2 L2(i, j, l) {� Given X , Y and P}
1: if l = |P| then {� boundary condition: violating the constraint}
2: return −∞
3: else if i = 0 or j = 0 then {� normal boundary condition}
4: return 0
5: else if xi = y j then {� matched}
6: l ′ ⇐ |LPS(xi ⊕ P(r−l+1)..r , P)|
7: return max{L2(i − 1, j − 1, l ′) + 1,L2(i − 1, j, l), L2(i, j − 1, l)}
8: else {� xi �= y j , mismatched}
9: return max{L2(i − 1, j, l), L2(i, j − 1, l)}
10: end if

The most notable difference between Algorithms 1 and 2 locates in Lines 5–7. In
Line 6, P(r−l+1)...r represents the longest prefix of Tail which matches a suffix of P,

where |P(r−l+1)...r | = l. After a new match xi is inserted in front of P(r−l+1)...r , we
compute the new length l ′ of the longest prefix of xi ⊕ P(r−l+1)...r which matches a
suffix of P. Obviously, there are at most O(mnr) states in the recursive process when
L2(m, n, 0) is called, which are much less than O(mn2n) states by calling L1(m, n, φ).

Given two strings S1 and S2, LPS(S1, S2) can be computed in O(|S1||S2|) time by a
straightforward algorithm. By utilizing such a straightforward algorithm, Algorithm 2
achieves O(mnr) × O(r2) = O(mnr3) running time.

To improve the efficiency of Algorithm 2, we have to find a more efficient way to
compute the value of |LPS(xi ⊕ P(r−l+1)...r , P)| in Line 6. By observing the paths
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Fig. 3 An example for
illustrating the prefix function. a
The pattern S = ababbababc
and its corresponding prefix
function. b The sliding process
of S1...9 when the matching
failure occurs

(a)

(b)

in the recursive process of calling L2, the behaviors of the third parameter l can be
described as follows. When xi is equal to p(r−l), we set the new prefix-suffix length
l ′ with l + 1, which means that the length of matched suffix of P is increased by one.
On the other hand, when xi is not equal to p(r−l), the length of matched suffix of
P has to be shortened to the largest l ′ such that P(r−l+1)...(r−l+l ′−1) = P(r−l ′+2)...r
and xi = p(r−l ′+1). One can see that this process is similar to sliding a pattern when
Knuth–Morris–Pratt (KMP) algorithm (Knuth et al. 1977; Cormen et al. 2009) is used
to solved the string matching problem. KMP algorithm searches for a pattern in a
text efficiently by precomputing the prefix function of the given pattern (Cormen et al.
2009) and then sliding the pattern efficiently when the matching failure occurs.

Definition 3 (Prefix function (Cormen et al. 2009)) Given a string S, the prefix func-
tion f (i) denotes the length of the longest prefix of S1...i−1 that matches a suffix of
S1...i .

Figure 3a shows the table of the pattern S = ababbababc and its corresponding
prefix function. For example, f (9) = 4, f (4) = 2 and f (2) = 0 illustrate the sliding
process of KMP algorithm (Knuth et al. 1977; Cormen et al. 2009) when the matching
failure occurs after S1...9 was matched, as shown in Fig. 3b. Note that the constraint
P is backward matched when L1 and L2 are called recursively. Therefore, we will
precompute the prefix function of the reversed string P of P. We should also notice that
the amortized analysis of the linear-time matching, or more precisely, constant-time
sliding, of KMP algorithm would be violated since there are more than one path in the
recursive process of calling L2. To ensure the pattern sliding to be executed efficiently,
we define the next function, which achieves constant query time by precomputing a
two-dimensional table.

Definition 4 (Next function) Given a string S and a symbol σ ∈ �, the next function
π(i, σ ) denotes the length of the longest prefix of S1...i+1 that matches a suffix of
S1...i ⊕ σ.

Figure 4a shows the precomputed table for the next function of S = ababbababc.
Figure 4b shows the sliding result after appending each symbol in alphabet � to S1...9.

For example, after appending symbol ‘c’ to S1...9, the matched prefix of pattern S
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Fig. 4 An example for
illustrating the next function. a
The precomputed table for the
next function π of the pattern
S = ababbababc. b The sliding
results corresponding to π (9,
‘a’), π (9, ‘b’) and π (9, ‘c’)

(a)

(b)

extends to S1...10. However, after appending symbol ‘a’ or ‘b’ to S1...9, the length of
the matched prefix is shortened to π (9,‘a’) = 3 or π (9, ‘b’) = 5, respectively.

Algorithm 3 shows how to compute the table of next function π when a pattern
S and its precomputed prefix function f are given. Clearly, each element can be
computed in constant time and the whole table can be built in O(|S||�|) time. Now
go back to our aim, to improve the efficiency of Algorithm 2 One can easily see that
the value of |LPS(xi ⊕ P(r−l+1)...r , P)| in Line 6 of Algorithm 2 can be answered in
constant time after the next function π of the reversed string P is precomputed. That
is, |LPS(xi ⊕ P(r−l+1)...r , P)| = π(l, xi ).We summarize the result in the following
theorem.

Algorithm 3 Next-Function {� Given S}
1: for σ ∈ � and σ �= s1 do
2: π(0, σ ) ⇐ 0
3: end for
4: π(0, s1) ⇐ 1
5: for i = 1 to |S| − 1 do
6: for σ ∈ � do
7: if σ = si+1 then
8: π(i, σ ) ⇐ i + 1
9: else
10: π(i, σ ) ⇐ π( f (i), σ )

11: end if
12: end for
13: end for

Theorem 3 Algorithm 2 solves the STR-EC-LCS problem in O(mnr) time.

Proof The correctness of Algorithm 2 has been discussed above. Now we consider its
time complexity. The computation of the next function π of P takes O(r |�|) time,
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and it is clear that |�| = O(m + n + r). Remind that we have assumed r ≤ n ≤ m in
the beginning of this paper. Therefore, the overall time complexity is simplified from
O(mnr + r |�|) to O(mnr). ��

5 Our algorithm for the multiple STR-EC-LCS problem

In this section, we will show that the multiple STR-EC-LCS problem, in which an
arbitrary number of constraints should be excluded, can be solved in polynomial
time. The LCS problem of multiple sequences (Maier 1978), the CLCS problem with
multiple constraints (multiple SEQ-IC-LCS; Gotthilf et al. 2008), and the multiple
SEQ-EC-LCS (restricted LCS) problem (Gotthilf et al. 2010) have been proved to
be NP-hard. In addition, Chen and Chao (2011) said that the multiple STR-IC-LCS,
SEQ-EC-LCS and STR-EC-LCS problems can be proved to be NP-hard, but they did
not give the proof. They also presented exponential-time algorithms for solving the
latter two problems by simply extending their algorithms for one constraint. We will
extend Algorithm 2 to solve the multiple STR-EC-LCS problem in polynomial time,
and thus it also shows that the multiple STR-EC-LCS problem is not NP-hard. The
formal definition of the multiple STR-EC-LCS problem is given as follows.

Definition 5 (Multiple STR-EC-LCS problem (Chen and Chao 2011)) Given two
sequences X and Y of lengths m and n, respectively, and a set of k constraints
P = {P1, P2, . . . , Pk}, the multiple STR-EC-LCS problem is to find the longest
common subsequence Z of X and Y excluding each constraint Pi ∈ P as a substring.

In the previous section, we employ the KMP string matching algorithm as a building
block of Algorithm 2. Now we review Aho–Corasick algorithm (Aho and Corasick
1975), an elegant dictionary matching algorithm, which is based on the idea similar
to KMP algorithm. Here, a dictionary represents a set of patterns. Therefore, the
dictionary matching problem is a more general form of the string matching problem.
Aho–Corasick algorithm is implemented as a finite state machine, called Aho–Corasick
automaton, which consists of three functions, a goto function, an output function and
a failure function. For a constant alphabet size, in the worst case, the construction
time of Aho–Corasick automaton is linear to the total length of the given patterns and
each of the state transitions requires constant time (Aho and Corasick 1975). When
the alphabet size varies, the construction time is still expected linear if the dynamic
perfect hashing technique is applied (Dietzfelbinger et al. 1994).

Aho and Corasick gave an example as shown in Fig. 5. In Fig. 5a, the goto function
is represented as the solid edges of a trie and the output function indicates when the
matches occur and which words are output. For example, the outputs of nodes 2 and 5
are {he} and {she, he}, respectively. The failure function indicates which state to go
if there is no symbol to be further matched. It is represented by the dashed edges in
Fig. 5b. The failure list of a given node is the ordered list of the nodes which locate on
the path to the root via dashed edges. For example, both nodes 7 and 9 have the same
failure list {3 → 0}, and the failure list of node 8 is {0}.

The main difference between KMP algorithm and Aho–Corasick algorithm is the
extension of the goto function, which forms a list in KMP algorithm and forms a trie
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(a) (b)
Fig. 5 Aho and Corasick’s example (Aho and Corasick 1975). a The goto function and output function.
b The failure function

in Aho–Corasick algorithm. This difference makes the movements between the states
more complex in Aho–Corasick algorithm. In the previous section, we use the next
function to identify the length of the matched prefix of the pattern after a given symbol
is appended. For Aho–Corasick algorithm, the next function will identify the new state
rather than the new length. We define the Aho–Corasick-next function as follows.

Definition 6 (Aho–Corasick-next function) Given a goto function, a failure function,
a symbol σ ∈ � and a current state q, Aho–Corasick-next function δ(q, σ ) denotes
the destination of the first node in q’s failure list which has a goto function of symbol
σ. If there exists no such node in the failure list, the function returns the root, i.e.
node 0.

Figure 6 shows the Aho–Corasick-next function corresponding to the example in
Fig. 5. We take node 4 as an example. When we receive a symbol ‘e’, the new state
is node 5. When a symbol ‘i’ is received, it fails to node 1 and the new state becomes
node 6. When symbols ‘h’ and ‘s’ are received, they fail to node 0 and the new states
become node 1 and node 3, respectively. For other symbols, the new state is the root.
It is easy to see that each element of Aho–Corasick-next function can be computed in
constant time by using an algorithm similar to Algorithm 3.

To solve the multiple STR-EC-LCS problem, we first precompute the Aho–
Corasick-next function δ with patterns {P1, P2, . . . , Pk}, the reversed strings of the
constraints. Then this problem can be solved by Algorithm 4, which is slightly mod-
ified from Algorithm 2. To get the length of the multiple STR-EC-LCS problem, we
invoke L3(m, n, 0) recursively. We summarize the result in Theorem 4.

123

Author's personal copy



J Comb Optim (2014) 28:800–813 811

Fig. 6 The Aho–Corasick-next
function δ corresponding to the
example in Fig. 5

Algorithm 4 L3(i, j, q) {� Given X , Y and δ }
1: if output[q] �= φ then {� boundary condition: violating one or more constraints}
2: return −∞
3: else if i = 0 or j = 0 then {� normal boundary condition}
4: return 0
5: else if xi = y j then {� matched}
6: q ′ ⇐ δ(q, xi )

7: return max{L3(i − 1, j − 1, q ′) + 1, L3(i − 1, j, q), L3(i, j − 1, q)}
8: else {� xi �= y j , mismatched}
9: return max{L3(i − 1, j, q), L3(i, j − 1, q)}
10: end if

Theorem 4 Algorithm 4 solves the multiple STR-EC-LCS problem in O(mn R) time,
where R = ∑k

i=1 |Pi |.
Proof We analyze the time complexity of Algorithm 4 as follows. The precomputation
of Aho–Corasick automaton and the Aho–Corasick-next function δ of the reversed
constraints {P1, P2, . . . , Pk} takes O(R|�|) time by using a dynamic programming
algorithm similar to Algorithm 3. There are at most O(R) states in the Aho–Corasick
automaton and thus the time required for the dynamic programming part is O(mn R).

The overall time complexity is O(mn R) + O(R|�|) = O(mn R). ��
To show the degree of similarity between two strings or files, the answer to the

length of the STR-EC-LCS is enough. However, for some practical utilization, one
may ask to show the answer string of the problem. After the value of each cell in the
L3 lattice has been obtained, we can invoke Algorithm 5 with calling LC S3(m, n, 0)

to get the answer string. In fact, Algorithm 5 is similar to the traditional LCS tracing
back technique with the slight modification on calling δ(q, xi ) during a match. The
time complexity of Algorithm 5 is obviously O(m + n), since there are at most m + n
recursive calls, each taking constant time.

6 Concluding remarks

In this paper, we study the STR-EC-LCS problems of single constraint and multi-
ple constraints. For the STR-EC-LCS problem with single constraint, we present an
algorithm which corrects Chen and Chao’s algorithm with the same time complexity.
For the STR-EC-LCS problem with multiple constraints, we show that even the num-
ber of constraints increases, the problem can still be solved efficiently in polynomial
time, which implies that the problem is not NP-hard. Our algorithm for the multiple
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Algorithm 5 LCS3(i, j, q) {� Given X , Y , δ and L3 }
1: if L3(i, j, q) = 0 then {� boundary condition: end of tracing}
2: return φ

3: else if xi = y j then
4: q ′ ⇐ δ(q, xi )

5: if L3(i, j, q) = L3(i − 1, j − 1, q ′) + 1 then {� using the match}
6: return LCS3(i − 1, j − 1, q ′) ⊕ xi
7: end if
8: end if
9: {� all remainders}
10: if L3(i, j, q) = L3(i − 1, j, q) then
11: return LCS3(i − 1, j, q)

12: else
13: return LCS3(i, j − 1, q)

14: end if

STR-EC-LCS problem requires only O(mn R) time, where R is the total length of
the constraints. To get the answer string, we also present a simple tracing algorithm,
which is similar to the traditional tracing back technique.

Another similar variant was also addressed by Chen and Chao (2011), the multiple
STR-IC-LCS problem, in which the resulting sequence has to contain all constraints as
its substrings. In fact, it is not difficult to see that this problem is complementary to the
multiple STR-EC-LCS problem, thus we can also employ Aho–Corasick automaton
to solve the multiple STR-IC-LCS problem. Two key differences should be noticed
when Aho–Corasick automaton is applied. First, in each recursive step of the multiple
STR-EC-LCS algorithm, if any constraint is violated, we return −∞ to prevent the
current step to be considered. On the other hand, in each recursive step of the multiple
STR-IC-LCS algorithm, we shall return −∞ when the normal boundary conditions
without keeping all constraints occur. Second, obtained from the first, each state in
Aho–Corasick automaton for solving the multiple STR-IC-LCS problem will be split
into 2k new states by attaching k flags to denote the combinations which constraints
have been kept. However, the number of states is still exponential and the overall
required time is O(2k · mn R).

For the STR-IC-LCS problem with single constraint, recently Tseng (2013), pre-
sented an algorithm with O(mn) time to solve it. Furthermore, for the multiple STR-
IC-LCS problem, they restricted that the constraints are given in some order. With
this restriction, they proposed an algorithm with O(mn R) time for solving it. If no
restriction is applied on the multiple constraints, there is still no efficient algorithm.
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