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Abstract

Nature-inspired algorithms such as Particle Swarm Optimization and Fire-
fly Algorithm are among the most powerful algorithms for optimization. In
this paper, we intend to formulate a new metaheuristic algorithm by combin-
ing Lévy flights with the search strategy via the Firefly Algorithm. Numerical
studies and results suggest that the proposed Lévy-flight firefly algorithm is
superior to existing metaheuristic algorithms. Finally implications for further
research and wider applications will be discussed.
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timization”, in: Research and Development in Intelligent Systems XXVI (Eds
M. Bramer, R. Ellis, M. Petridis), Springer London, pp. 209-218 (2010).

1 Introduction

Nature-inspired metaheuristic algorithms are becoming powerful in solving mod-
ern global optimization problems [2, 3, 5, 7, 9, 18, 17], especially for the NP-
hard optimization such as the travelling salesman problem. For example, par-
ticle swarm optimization (PSO) was developed by Kennedy and Eberhart in
1995 [8, 9], based on the swarm behaviour such as fish and bird schooling in
nature. It has now been applied to find solutions for many optimization ap-
plications. Another example is the Firefly Algorithm developed by the author
[18] which has demonstrated promising superiority over many other algorithms.
The search strategies in these multi-agent algorithms are controlled random-
ization, efficient local search and selection of the best solutions. However, the
randomization typically uses uniform distribution or Gaussian distribution.

On the other hand, various studies have shown that flight behaviour of many
animals and insects has demonstrated the typical characteristics of Lévy flights
[4, 13, 11, 12]. A recent study by Reynolds and Frye shows that fruit flies
or Drosophila melanogaster, explore their landscape using a series of straight
flight paths punctuated by a sudden 90ø turn, leading to a Lévy-flight-style
intermittent scale free search pattern. Studies on human behaviour such as the
Ju/’hoansi hunter-gatherer foraging patterns also show the typical feature of
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Lévy flights. Even light can be related to Lévy flights [1]. Subsequently, such
behaviour has been applied to optimization and optimal search, and preliminary
results show its promising capability [11, 13, 15, 16].

This paper aims to formulate a new Lévy-flight Firefly Algorithm (LFA)
and to provide the comparison study of the LFA with PSO and other relevant
algorithms. We will first outline the firefly algorithms, then formulate the
Lévy-flight FA and finally give the comparison about the performance of these
algorithms. The LFA optimization seems more promising than particle swarm
optimization in the sense that LFA converges more quickly and deals with global
optimization more naturally. In addition, particle swarm optimization is just a
special class of the LFA as we will demonstrate this in this paper.

2 Firefly Algorithm

2.1 Behaviour of Fireflies

The flashing light of fireflies is an amazing sight in the summer sky in the
tropical and temperate regions. There are about two thousand firefly species,
and most fireflies produce short and rhythmic flashes. The pattern of flashes is
often unique for a particular species. The flashing light is produced by a process
of bioluminescence, and the true functions of such signaling systems are still
debating. However, two fundamental functions of such flashes are to attract
mating partners (communication), and to attract potential prey. In addition,
flashing may also serve as a protective warning mechanism. The rhythmic flash,
the rate of flashing and the amount of time form part of the signal system that
brings both sexes together. Females respond to a male’s unique pattern of
flashing in the same species, while in some species such as photuris, female
fireflies can mimic the mating flashing pattern of other species so as to lure and
eat the male fireflies who may mistake the flashes as a potential suitable mate.

The flashing light can be formulated in such a way that it is associated with
the objective function to be optimized, which makes it possible to formulate new
optimization algorithms. In the rest of this paper, we will first outline the basic
formulation of the Firefly Algorithm (FA) and then discuss the implementation
as well as analysis in detail.

2.2 Firefly Algorithm

Now we can idealize some of the flashing characteristics of fireflies so as to
develop firefly-inspired algorithms. For simplicity in describing our Firefly Al-
gorithm (FA), we now use the following three idealized rules: 1) all fireflies
are unisex so that one firefly will be attracted to other fireflies regardless of
their sex; 2) Attractiveness is proportional to their brightness, thus for any two
flashing fireflies, the less brighter one will move towards the brighter one. The
attractiveness is proportional to the brightness and they both decrease as their
distance increases. If there is no brighter one than a particular firefly, it will
move randomly; 3) The brightness of a firefly is affected or determined by the
landscape of the objective function. For a maximization problem, the bright-
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ness can simply be proportional to the value of the objective function. Other
forms of brightness can be defined in a similar way to the fitness function in
genetic algorithms or the bacterial foraging algorithm (BFA) [6, 10].

In the firefly algorithm, there are two important issues: the variation of light
intensity and formulation of the attractiveness. For simplicity, we can always
assume that the attractiveness of a firefly is determined by its brightness which
in turn is associated with the encoded objective function.

In the simplest case for maximum optimization problems, the brightness I
of a firefly at a particular location x can be chosen as I(x) ∝ f(x). However,
the attractiveness β is relative, it should be seen in the eyes of the beholder or
judged by the other fireflies. Thus, it will vary with the distance rij between
firefly i and firefly j. In addition, light intensity decreases with the distance
from its source, and light is also absorbed in the media, so we should allow
the attractiveness to vary with the degree of absorption. In the simplest form,
the light intensity I(r) varies according to the inverse square law I(r) = Is

r2

where Is is the intensity at the source. For a given medium with a fixed light
absorption coefficient γ, the light intensity I varies with the distance r. That
is

I = I0e
−γr, (1)

where I0 is the original light intensity.
As a firefly’s attractiveness is proportional to the light intensity seen by

adjacent fireflies, we can now define the attractiveness β of a firefly by

β = β0e
−γr2 , (2)

where β0 is the attractiveness at r = 0.

3 Lévy-Flight Firefly Algorithm

If we combine the three idealized rules with the characteristics of Lévy flights,
we can formulate a new Lévy-flight Firefly Algorithm (LFA) which can be
summarized as the pseudo code shown in Fig. 1.

In the implementation, the actual form of attractiveness function β(r) can
be any monotonically decreasing functions such as the following generalized
form

β(r) = β0e
−γrm , (m ≥ 1). (3)

For a fixed γ, the characteristic length becomes Γ = γ−1/m → 1 as m → ∞.
Conversely, for a given length scale Γ in an optimization problem, the parameter
γ can be used as a typical initial value. That is γ = 1

Γm .
The distance between any two fireflies i and j at xi and xj, respectively, is

the Cartesian distance

rij = ||xi − xj || =

√

√

√

√

d
∑

k=1

(xi,k − xj,k)2, (4)

where xi,k is the kth component of the spatial coordinate xi of ith firefly. For
other applications such as scheduling, the distance can be time delay or any
suitable forms.
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Lévy-Flight Firefly Algorithm

begin

Objective function f(x), x = (x1, ..., xd)
T

Generate initial population of fireflies xi (i = 1, 2, ..., n)
Light intensity Ii at xi is determined by f(xi)
Define light absorption coefficient γ
while (t <MaxGeneration)
for i = 1 : n all n fireflies

for j = 1 : i all n fireflies
if (Ij > Ii)
Move firefly i towards j in d-dimension via Lévy flights
end if

Attractiveness varies with distance r via exp[−γr]
Evaluate new solutions and update light intensity

end for j

end for i

Rank the fireflies and find the current best
end while

Postprocess results and visualization
end

Figure 1: Pseudo code of the Lévy-Flight Firefly Algorithm (LFA).

The movement of a firefly i is attracted to another more attractive (brighter)
firefly j is determined by

xi = xi + β0e
−γr2

ij (xj − xi) + α sign[rand−
1

2
]⊕ Lévy, (5)

where the second term is due to the attraction while the third term is ran-
domization via Lévy flights with α being the randomization parameter. The
product⊕means entrywise multiplications. The sign[rand-1

2
] where rand ∈ [0, 1]

essentially provides a random sign or direction while the random step length is
drawn from a Lévy distribution

Lévy ∼ u = t−λ, (1 < λ ≤ 3), (6)

which has an infinite variance with an infinite mean. Here the steps of fire-
fly motion is essentially a random walk process with a power-law step-length
distribution with a heavy tail.

3.1 Choice of Parameters

For most cases in our implementation, we can take β0 = 1, α ∈ [0, 1], γ = 1, and
λ = 1.5. In addition, if the scales vary significantly in different dimensions such
as −105 to 105 in one dimension while, say, −0.001 to 0.01 along the other, it is
a good idea to replace α by αSk where the scaling parameters Sk(k = 1, ..., d)
in the d dimensions should be determined by the actual scales of the problem
of interest.
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The parameter γ now characterizes the variation of the attractiveness, and
its value is crucially important in determining the speed of the convergence and
how the FA algorithm behaves. In theory, γ ∈ [0,∞), but in practice, γ = O(1)
is determined by the characteristic length Γ of the system to be optimized.
Thus, in most applications, it typically varies from 0.01 to 100.

3.2 Asymptotic Cases

There are two important limiting cases when γ → 0 and γ → ∞. For γ → 0,
the attractiveness is constant β = β0 and Γ → ∞, this is equivalent to say
that the light intensity does not decrease in an idealized sky. Thus, a flashing
firefly can be seen anywhere in the domain. Thus, a single (usually global)
optimum can easily be reached. This corresponds to a special case of particle
swarm optimization (PSO) discussed earlier. Subsequently, the efficiency of
this special case is the same as that of PSO.

On the other hand, the limiting case γ → ∞ leads to Γ → 0 and β(r) → δ(r)
(the Dirac delta function), which means that the attractiveness is almost zero in
the sight of other fireflies or the fireflies are short-sighted. This is equivalent to
the case where the fireflies fly in a very foggy region randomly. No other fireflies
can be seen, and each firefly roams in a completely random way. Therefore,
this corresponds to the completely random search method.

As the Lévy-flight firefly algorithm is usually in somewhere between these
two extremes, it is possible to adjust the parameters γ, λ and α so that it can
outperform both the random search and PSO. In fact, LFA can find the global
optima as well as all the local optima simultaneously in a very effective manner.

4 Simulations and Results

4.1 Validation

In order to validate the proposed algorithm, we have implemented it in Matlab.
In our simulations, the values of the parameters are α = 0.2, γ = 1, λ = 1.5,
and β0 = 1. As an example, we now use the LFA to find the global optimum
of the Ackley function

f(x) = −20 exp
[

−
1

5

√

√

√

√

1

d

d
∑

i=1

x2i

]

− exp[
1

d

d
∑

i=1

cos(2πxi)] + 20 + e, (7)

which has a global minimum f∗ = 0 at (0, 0, ..., 0). The 2D Ackley function
is shown in Fig. 2, and this global minimum can be found after about 200
evaluations for 40 fireflies after 5 iterations as shown in Fig. 3.

Now let us use the LFA to find the optima of some tougher test functions.
For example, the author introduced a forest function [19]

f(x) =
(

d
∑

i=1

|xi|
)

exp
[

−
d
∑

i=1

sin(x2i )
]

, −2π ≤ xi ≤ 2π, (8)
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Figure 2: Ackley function for two independent variables with a global minimum f∗ = 0
at (0, 0).

which has a global minimum f∗ = 0 at (0, 0, ..., 0). The 2D Yang’s forest
function is shown in Fig. 4. However, an important feature of this test function
is that it is non-smooth and its derivative is not well defined at the optima
(0, 0, ..., 0) as shown in Fig. 5.

4.2 Comparison of LFA with PSO and GA

Various studies show that PSO algorithms can outperform genetic algorithms
(GA) [7] and other conventional algorithms for solving many optimization prob-
lems. This is partially due to that fact that the broadcasting ability of the cur-
rent best estimates gives better and quicker convergence towards the optimal-
ity. A general framework for evaluating statistical performance of evolutionary
algorithms has been discussed in detail by Shilane et al. [14]. Various test
functions for optimization algorithms have been developed over many years,
and a relatively comprehensive review of these test functions can be found in
[2].

Now we will compare the LFA with PSO, and genetic algorithms for various
standard test functions. We will use the same population size of n = 40 for
all algorithms in all our simulations. The PSO used is the standard version
without any inertia function, while the implemented genetic algorithm has a
mutation probability of 0.05 and a crossover probability of 0.95 without use
of elitism. After implementing these algorithms using Matlab, we have carried
out extensive simulations and each algorithm has been run at least 100 times
so as to carry out meaningful statistical analysis. The algorithms stop when
the variations of function values are less than a given tolerance ǫ ≤ 10−5.
The results are summarized in the following table (see Table 1) where the
global optima are reached. The numbers are in the format: average number of
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Figure 3: The initial locations of the 40 fireflies (left) and their locations after 5
iterations (right).

evaluations (success rate), so 6922± 537(98%) means that the average number
(mean) of function evaluations is 6922 with a standard deviation of 537. The
success rate of finding the global optima for this algorithm is 98%.

Table 1: Comparison of algorithm performance

Functions/Algorithms GA PSO LFA
Michalewicz (d=16) 89325± 7914(95%) 6922± 537(98%) 2889± 719(100%)
Rosenbrock (d=16) 55723± 8901(90%) 32756± 5325(98%) 6040± 535(100%)
De Jong (d=256) 25412± 1237(100%) 17040± 1123(100%) 5657± 730(100%)
Schwefel (d=128) 227329± 7572(95%) 14522± 1275(97%) 7923± 524(100%)
Ackley (d=128) 32720± 3327(90%) 23407± 4325(92%) 4392± 2710(100%)

Rastrigin 110523± 5199(77%) 79491± 3715(90%) 12075± 3750(100%)
Easom 19239± 3307(92%) 17273± 2929(90%) 6082± 1690(100%)

Griewank 70925± 7652(90%) 55970± 4223(92%) 10790± 2977(100%)
Yang 37079± 8920(88%) 19725± 3204(98%) 5152± 2493(100%)

Shubert (18 minima) 54077± 4997(89%) 23992± 3755(92%) 9925± 2504(100%)

We can see that the LFA is much more efficient in finding the global optima
with higher success rates. Each function evaluation is virtually instantaneous
on modern personal computer. For example, the computing time for 10,000
evaluations on a 3GHz desktop is about 5 seconds. Even with graphics for
displaying the locations of the particles and fireflies, it usually takes less than a
few minutes. Furthermore, we have used various values of the population size n
or the number of fireflies. We found that for most problems n = 15 to 50 would
be sufficient. For tougher problems, larger n can be used, though excessively
large n should not be used unless there is no better alternative, as it is more
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Figure 4: Yang’s forest function for two independent variables with a global minimum
f∗ = 0 at (0, 0).
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Figure 5: Non-smoothness of Yang’s forest function near the global minimum (0, 0).
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computationally extensive.

5 Conclusions

In this paper, we have formulated a new Lévy-flight firefly algorithm and anal-
ysed its similarities and differences with particle swarm optimization. We then
implemented and compared these algorithms. Our simulation results for finding
the global optima of various test functions suggest that particle swarm often
outperforms traditional algorithms such as genetic algorithms, while LFA is su-
perior to both PSO and GA in terms of both efficiency and success rate. This
implies that LFA is potentially more powerful in solving NP-hard problems
which will be investigated further in future studies.

The basic Lévy-flight firefly algorithm is very efficient. A further improve-
ment on the convergence of the algorithm is to carry out sensitivity studies by
varying various parameters such as β0, γ, α and more interestingly λ. These
could form important topics for further research. In addition, further studies
on the application of FLA in combination with other algorithms may form an
exciting area for further research in optimization.

References

[1] Barthelemy, P.: Bertolotti J., Wiersma D. S., A Lévy flight for light, Na-
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[12] Pavlyukevich, I.: Cooling down Lévy flights, J. Phys. A:Math. Theor., 40,
12299-12313 (2007).

[13] Reynolds, A. M. and Frye, M. A.: Free-flight odor tracking in Drosophila
is consistent with an optimal intermittent scale-free search, PLoS One, 2,
e354 (2007).

[14] Shilane, D., Martikainen, J., Dudoit, S., Ovaska, S. J.: A general frame-
work for statistical performance comparison of evolutionary computation
algorithms, Information Sciences: an Int. Journal, 178, 2870-2879 (2008).

[15] Shlesinger, M. F., Zaslavsky, G. M. and Frisch, U. (Eds): Lévy Flights and
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