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1. Introduction

The problem of finding a longest increasing circular
subsequence (LICS) [1] in a sequence of integers is to
find a longest subsequence of any rotation of a given se-
quence (a subsequence is obtained by removing zero or
more elements) such that each integer of the subsequence
is smaller than the integer that follows it. The LICS prob-
lem is a generalization of a classic longest increasing sub-
sequence (LIS) problem, with applications in several ar-
eas, e.g., research on genomes [5] and as a tool for solv-
ing the widely known longest common subsequence prob-
lem [6]. The proved worst-case time lower bound for LIS
is Ω(n log n) in the comparison model [6]. When the se-
quence is a permutation of all integers from the range
[1,n], in the RAM model this result can be improved to
Ω(n log logn) by using van Emde Boas trees [4].

In this paper, a hybrid algorithm solving the longest in-
creasing circular subsequence problem is presented. It is
based on a cover representation of the sequence and on
two observations. First, it is sufficient to compute an LIS
only for some rotations. Second, merging two precomputed
covers of subsequences is faster than computing the cover
from scratch. Two efficient cover merging techniques are
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introduced, which allow to construct the LICS computing
algorithm of complexity competitive to the best known.
The worst case time complexity of the presented algorithm
is O (min(n�,n log n + �3 logn)), where n is the sequence
length and � is the LICS length.

The paper is organized as follows. Section 2 contains
the definitions and the problem background. In Section 3,
an algorithm solving the LIS problem based on a concept
of cover of a sequence, important for further discussion, is
described. The proposed algorithm solving the LICS prob-
lem is given in Section 4. The last section concludes the
paper.

2. Definitions and background

Let S = s1s2 . . . sn be a sequence composed of unique
symbols over an integer alphabet Z. A sequence S ′ is a
subsequence of S if it can be obtained from S by removing
zero or more symbols. The longest increasing subsequence
(LIS) problem for S is to find a longest possible subse-
quence of S such that its symbols increase monotonically,
i.e., si1 < si2 < · · · < sik for i1 < i2 < · · · < ik . S j

i denotes
s f (i) . . . s f ( j) , if f (i) � f ( j), and s f (i) . . . sns1 . . . s f ( j) oth-
erwise, where f (x) = ((x − 1) mod n) + 1. In a longest
increasing circular subsequence problem (LICS), the goal is
to find an LIS among Si−1, for each 1 � i � n.
i
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Fig. 1. Example of the algorithm finding the greedy cover of S = 4,6,2,8,1,3,12,9,5,7,11,10. The just placed elements are gray. The lists are vertical.
Note that the most recent (the lowest) cells of each list are increasing.
It is convenient to assume that sequence S is a per-
mutation of all integers from the range [1,n]. The general
problem can be transformed to fit this assumption by rela-
beling the elements of S in such a way that each element
is replaced by its position in a sorted sequence of S . This
relabeling can be done in O (n log n) time and is neglected
in further calculations.

The simplest way of finding LICS is to execute an
O (n log log n)-time LIS-computing algorithm n times, i.e.,
for Sn

1, S1
2, . . . , Sn−1

n and take a longest subsequence,
which needs O (n2 log log n) time. Albert et al. [1] proposed
two faster algorithms. The first one is of time complex-
ity O (n� log n), where � is the length of LICS (LLICS). The
second one needs O (n3/2 log n) time, but can yield erro-
neous results with a tiny probability. Another possibility
is to adapt the algorithms for related problems. The LISW
problem [2] is to find the LIS among all fixed-size win-
dows over the base sequence. If the base sequence is S S
(two concatenated S sequences) and the window size is n,
it is equivalent to the LICS problem. The LISW solving
algorithms applied for the LICS problem work in time
O (n log log n + n�) [2] and O (n�) [3]. Very recently, Tiskin
proposed a set of new techniques to solve the longest com-
mon subsequence (LCS) and several related problems [7].
In particular, he managed to achieve O (n3/2) time for the
LICS problem. His technique is based on the alignment di-
rected acyclic graphs and so-called highest-score matrices
representing the matches between two sequences in the
LCS problem.

3. The algorithm for finding a longest increasing
subsequence

Gusfield [6, pp. 287–290] presents a simple algorithm
computing an LIS. The algorithm splits the elements of se-
quence S into an ordered set of decreasing subsequences
(lists) called a cover C(S). There are many possible cov-
ers of the sequence, but the algorithm produces the one of
the smallest size, when the size of the cover, |C(S)|, is the
number of lists in it.

The cover-making (CM) algorithm for S works as fol-
lows. Each successive element of S (starting from s1) ex-
tends the leftmost possible decreasing list of the cover or
starts a new list if no list can be extended (Fig. 1). As
list tails are increasing, the appropriate lists can be found
with a binary search (O (n log �) time) or van Emde Boas
trees [4] (O (n log log n) time).
The obtained cover, called a greedy cover, has several
important properties (all proved in [6]):

(1) the position of the list in the ordered set which each
symbol belongs to is the length of an LIS ending at
this symbol,

(2) it is unique, i.e., there is no other cover satisfying
property (1),

(3) its size is the length of a longest increasing subse-
quence of S , LLIS(S).

Our algorithms for determining an LICS deal with greedy
covers, but for brevity we will write “cover” instead of
“greedy cover” in the remainder of this paper. The cover
read of the sequence S , denoted by R(S), is the con-
catenation of the successive decreasing sequences forming
the cover of the sequence, e.g., the cover read of the se-
quence S = 4,6,2,8,1,3,12,9,5,7,11,10 is R(S) = 4,2,

1,6,3,8,5,12,9,7,11,10 (cf. Fig. 1). C(S)[i] denotes the
ith decreasing list of cover C(S), e.g., C(S)[4] in Fig. 1
is 12,9,7.

4. Algorithms for finding an LICS

4.1. The foundations of the proposed algorithms

The algorithms developed in this paper work on a cover
representation of the sequence and its rotations, since such
a representation immediately gives the length of an LIS
of the sequence and is sufficient to compute LIS in linear
time [6]. Now, we prove some necessary lemmas.

Lemma 1. Let sequence S be a concatenation of S ′ and S ′′ ,
i.e., S = S ′ S ′′ . The cover of S ′ S ′′ is identical to the covers of
R(S ′)R(S ′′) and of S ′R(S ′′).

Proof. The CM algorithm works on the successive sym-
bols of sequence S , so it computes at first C(S ′), which
is obviously the same as C(R(S ′)). Now, we proceed by re-
currence on the length of sequence S ′′ , denoted by m. The
lemma is valid for m = 1 since S ′′ = R(S ′′) then.

Let now m > 1 and the second sequence is S ′′x. If x is
the last symbol of R(S ′′x), the lemma is valid, so let us
assume otherwise. We have:

R(S ′′) = C(S ′′)[1] . . . C(S ′′)[p] C(S ′′)[p + 1] . . . C(S ′′)[k],
and
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R(S ′′x) = C(S ′′)[1] . . . C(S ′′)[p] x C(S ′′)[p + 1] . . . C(S ′′)[k].
The tail of C(S ′′)[p], denoted t for short, is larger than x
and all the symbols from lists C(S ′′)[p + 1], . . . , C(S ′′)[k]
are larger than t . Therefore, when the CM algorithm
processes R(S ′)R(S ′′x) and arrives at x, it places x at
the end of some list not to the right of the list t was
placed. Then, the CM algorithm inserts the symbols from
C(S ′′)[p + 1], . . . , C(S ′′)[k] into the cover, but all they must
be placed to the right of the list containing t , so their
positions are unaffected by the prior insertion of x. There-
fore, C(R(S ′)R(S ′′)x) and C(R(S ′)R(S ′′x)) are the same, so
processing S ′′ in a cover-read order does not change the
resulting cover. �

In the LICS problem, all rotations are checked, so with-
out loss of generality we assume in the remainder of the
paper that s1 is the largest symbol in S . (The pre-rotation
cost is O (n).) The LLIS of the pre-rotated sequence is de-
noted by �′ and it is known that �′ � � � 2�′ [1].

Lemma 2. Let the elements heading the lists of C(Sn
1) be called

stop points and s1 be the largest symbol of S. If the sequence is
rotated to the left by 1 � i < n symbols then the head of the last
list in the corresponding cover C(Sn−i

n+1−i) is some stop point.

Proof. From Lemma 1: C(Sn−i
n+1−i) = C(Sn

n+1−i R(Sn−i
1 )). The

CM algorithm builds the cover C from Sn
n+1−i . Then, it ex-

tends it with successive lists of C(Sn−i
1 ). A head of each of

these lists is a stop point and it can extend some list of C
or start a new one. The symbols in each list are monotoni-
cally decreasing, so only the head can start a new list in C .
However, at least stop point s1 (the maximal value in S)
from C(Sn−i

1 ) must start a new list in C , so the last list of
the final cover must be headed with a stop point. �
Lemma 3. The LLICS(S) is equal to the maximal value of LLIS
for rotations of S (s1 is the largest symbol of S) ending at stop
points.

Proof. From Lemma 2, the head of the last list is some
stop point sk for any rotated sequence Si−1

i , 1 � i � n,
which means that LLIS ending sk in this rotation is equal
to LLIS(Si−1

i ). For any stop point s j , a longest LIS ending

s j among all the rotations can be found in S j
j+1. There-

fore, LLICS(S) is equal to the maximum of the LLIS of the
rotations ending at stop points. �

Let S = S ′ S ′′ , C ′ = C(S ′) and C ′′ = C(S ′′) are known,
and C = C(S) is to be computed. According to Lemma 1,
the CM algorithm can add sequence S ′′ to cover C ′ in a
cover-read order.

Theorem 4. The cover merging algorithm presented in Fig. 2
computes the cover of S ′ S ′′ , where C ′ = C(S ′) and C ′′ = C(S ′′)
are given.

Proof. The outer loop invariant of the algorithm is C ′
stores cover for S ′C(S ′′)[1] . . . C(S ′′)[i − 1]. By convention
C(S ′′)[1] . . . C(S ′′)[0] is an empty sequence.
01 for i ← 1 to |C ′′| do
02 if C ′′[i] head is larger than C ′[|C ′|] tail then
03 Add to C ′ an empty list
04 j ← |C ′|
05 while C ′′[i] is not empty and j > 1 do
06 Find the largest symbol p of C ′′[i] smaller than C ′[ j − 1] tail
07 Move the symbols larger than p from C ′′[i] to C ′[ j]
08 j ← j − 1
09 Append the rest (if any) of C ′′[i] to C ′[1]

Fig. 2. A general scheme of the cover merging procedure. (If there is no
such a symbol p in line 06, no symbols are moved in line 07.)

01 Rotate S as s1 is the maximal symbol of S
02 C ′′ ← Compute C(Sn

1); j ← n
03 if sn is a stop point then � ← |C ′′| else � ← 0
04 Remove sn from C ′′
05 for k ← n − 1 downto 1 do
06 if sk is a stop point then
07 C ′ ← Compute C(S j

k+1)

08 C ′′ ← Compute C(Sk
k+1) by combining C ′ , C ′′

09 � ← max(�, |C ′′ |)
10 j ← k
11 Remove sk from C ′′
12 return �

Fig. 3. A general scheme of the algorithm computing the LLICS.

Before the loop, C ′ stores the cover of S ′ . Let us now
assume that for given i: C ′ stores cover for S ′C(S ′′)[1] . . .
C(S ′′)[i − 1]. List C ′′[i] is decreasing and is processed as
follows. The symbols of C ′′[i] larger than the C ′ last list
tail are moved to C ′ as a new list. For all 1 < j � |C ′|,
the symbols larger than C ′[ j − 1] tail and smaller than
C ′[ j] tail are appended to C ′[ j]. The remaining symbols
(if any) are smaller than C ′[1] tail and are appended to
C ′[1]. This procedure places the symbols exactly as the
CM algorithm, so after incrementing i, C ′ stores cover of
S ′C(S ′′)[1] . . . C(S ′′)[i − 1] and the outer loop invariant is
true.

After completing the outer loop, C ′ stores the cover of
S ′R(S ′′) and from Lemma 1 the theorem is proved. �
Lemma 5. When merging covers C ′ of r lists and C ′′ , the ele-
ments of each C ′′ list are compared to tails of at most r + 1 last
lists of C ′ .

Proof. We follow by recurrence on i being the list num-
ber of C ′′ . For i = 1 this is obvious. For i > 1, C ′′[i] tail
is placed at the end of some kth list of C ′ but not far
than r − 1 lists from the end. The last comparison was
to C ′[k − 1] tail (at most r lists from the end of C ′). The
C ′′[i + 1] tail is larger than C ′′[i] tail, so the last compar-
ison when processing C ′′[i + 1] can be at most with the
C ′[k] tail. This is one list to the right than C ′′[i] tail was
compared to. While processing a single list of C ′′ , the C ′
size increases by at most 1. Therefore, while processing
(i + 1)th list of C ′′ at most r + 1 last lists of C ′ are vis-
ited. �

A general scheme of the proposed algorithm is pre-
sented in Fig. 3. Sequence S is rotated n times by one
symbol and for some (possibly all) rotations the cover is
computed. The algorithms return the LLICS, but knowing
the largest cover it is also easy to compute an LICS.
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Fig. 4. Example of the list-based algorithm in work. The grayed cells denote the cells which are rotated in each stage. Some cells are pushed down to
indicate the place where the original sequence S starts.
Theorem 6. The algorithm presented in Fig. 3 computes the
LLICS(S).

Proof. Let the loop invariant be: C ′′ stores the cover of
Sk

j+1 and � stores the maximal LLIS for all stop points in range
[k + 1,n].

Before the loop, C ′′ stores the cover of Sn−1
n+1 = Sn−1

1
and � stores LLIS(Sn

1) if sn is a stop point. Let us now as-
sume the loop invariant is true for some k. Then, if sk is
not a stop point, it is removed from C ′′ (the � value is
unchanged), so decrementing k reestablishes the loop in-
variant for the next iteration. Let us now assume that sk

is a stop point. In line 07, cover C ′ of S j
k+1 is computed

while C ′′ stores the cover of Sk
j+1. Then, the cover for

Sk
k+1 is computed (line 08). After that (line 09), � is up-

dated and stores the largest LLIS value for all stop points
in range [k,n]. In line 10, j is substituted by k, so C ′′ stores
cover of Sk

j+1. Then sk is removed from C ′′ and decrement-
ing k reestablishes the loop invariant for the next iteration.
When the loop is completed, � stores the maximal value of
LLIS for all stop points. From Lemma 3, this is LLICS(S). �
4.2. List-based cover merging

The LLICS computing algorithm initially builds C = C(S)

and then cyclically, for all rotations ending at stop points,
makes use of the cover merging technique as follows.
Firstly, the symbols to the next stop point (excluding it)
are removed from C obtaining C ′′ . There is an auxiliary ar-
ray storing n pointers to all symbols in the actual cover(s),
so each symbol is located in constant time. (After initial-
ization this array need not be maintained.) Between each
(i − 1)th and ith stop point (by convention, 0th stop point
is sn) mi elements are removed in O (mi) time. Secondly,
cover C ′ of the rotated symbols is built in O (mi log�) time.
Thirdly, C ′ and C ′′ are merged to obtain the cover for the
actual rotation. For ith stop point, C ′ contains mi elements,
so it is composed of O (mi) lists. From Lemma 5, the num-
ber of constant time moves (Fig. 2, line 07) of symbols
is O (mi�). Finding the symbol p (Fig. 2, line 06) costs
O (mi� + n), since there are O (n) symbols in C ′′ and only
once each symbol can be decided to be larger than the tail
of the processed list of C ′ and if it is smaller, searching is
stopped.

There are �′ stop points, and for each of them the above
procedure is repeated, so the total cost is

∑�′
i=1(mi log � +

mi� + n) = O (n�), since m1 + · · · + m�′ = O (n). Adding the
time of the initial cover computation, the time complex-
ity O (n log � + n�) = O (n�) is obtained. Fig. 4 shows the
algorithm in operation.

4.3. Red-black-tree-based cover merging

Now we show how to trade simplicity for effectiveness.
An important part of the cover-merging algorithm com-
plexity comes from: (i) locating the split element of list
C ′′[i] and (ii) moving the elements form C ′′[i] to C ′ . Mov-
ing elements between lists takes O (1) time, but looking for
the split element is costlier. Use of a more sophisticated
data structure like red-black tree instead of list changes
the proportions between these operations, since both of
them need O (log n) time. Therefore, the time complexity
of a single cover merging is O (mi� log n). The size of C ′ can
be also bounded as O (�), so the merging takes O (�2 log n)

time. Summing it over all stop points gives O (�3 log n).
In this case, the initial cover computing takes O (n log n),

so the total worst-case time complexity of the red-black-
tree-based algorithm is O ((n + �3) log n).

Moreover, a hybrid of the two algorithms can be con-
structed. Since LLICS(S) � 2 LLIS(S) [1], one can choose,
according to LLIS(S) the cover merging procedure. This
hybrid algorithm works in O (min(n�,n log n + �3 log n))

worst-case time: This is better than the complexity of the
fastest known algorithms [3,7] if both � = ω(log n) and
� = o(n1/2/ log1/2 n), and not worse when � = O (n1/2).
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5. Conclusions

The question how far from the worst-case lower bound
we actually are remains open. At present, the worst-case
time complexities of the known algorithms are much
worse than the worst-case complexity for the LIS prob-
lem. We point out also that no faster algorithm than
Θ(n log logn) time can be constructed for the LICS prob-
lem. Otherwise, it could be used to solve the LIS problem
breaking its proved lower bound. It would suffice to find
the maximum x in S , extend S to s1 . . . sn(x + 1) . . . (x + n)

and use the LICS algorithm.
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