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1. INTRODUCTION

Let T = nto-- -1 be astring over a finite aphabet set X,
where |T| denotesthelength of T and 7; € T for integer i with
1<i <|T|. Substring #;t;41---t; of T with1 <i < j < |T|
isrepresented by 7; ;. For simplicity, wealso use T'; to represent
T; jwheni = 1. Measuring thesimilarity or difference between
two strings is fundamental to many applications. For this
purpose, many measures are defined, and the longest common
subsequence (abbreviated as LCS) is possibly the most popular
one. A subsequence of a string is obtained by deleting zero or
some (not necessarily consecutive) characters from this string.
A common subsequence of strings X and Y isasubsequencein
both X andY,where|X| =mand |Y| = n.AnLCSof X andY
is a common subsequence with the maximum length. The LCS
problemisto find an LCS between X and Y.

In [1], Tsai introduced the constrained longest common
subsequence problem (the CLCS problem for short) which
is described as follows: Given two strings X and Y and a
constraining string P, a string Z is called a CLCS of X and
Y with respect to P if Z isaLCSof X and Y containing P
as a subsequence. The CLCS problemisto find a CLCS for X
and Y with respect to P. In [1], Tsai gave an O (m?n®r)-time
agorithm for solving the CLCS problem, where m, n and r

are the lengths of X, Y and P, respectively. In [2], Chin et al.
(andindependently, Arslan et al. [3]) proposed an O (mnr)-time
algorithm for solving this problem. Iliopoulos and Rahman [4]
proposed an algorithm for solving the CLCS problemin O (m +
n + rgloglog(m + n)) time, where ¢ is the total number of
ordered pairs of positions at which X and Y match.

Run-length-encoding strings are a simple technique to
compress strings. It divides a string into several runs and each
run consists of maximal consecutive identical letters. A run-
length-encoded string (RLE string for short) X is represented
by ritrs?---ri¥, where r; for 1 < j < M is the repeated
character of run j and ¢; isits corresponding run-length. For
example, the RLE string of string bdcccaaaaaa is b*d*c3a®.
The reader isreferred to [5] for the details of RLE strings.

The string alignment problem with RLE strings has been
widely studied [6-17]. Ann et al. [7] proposed an O (r(mN +
nM))-time agorithm for solving the CLCS problem with
RLE strings, where M and N are the numbers of runs in
X and Y, respectively. In this paper, we propose an O(r x
min{m N, nM})-time algorithm for solving the problem.

The remaining part of this paper is organized as follows. In
some preliminaries are introduced in Section 2. In this section,
we aso explain the reason why our algorithm is better than
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the algorithm in [7]. In Section 3, we introduce the recurrence
formula introduced in [2] for solving the CLCS problem.
Some properties of CLCS with RLE strings are introduced in
Section 4. We also introduce our O(r x min{mN, nM})-time
algorithminthis section. Finally, concluding remarks and open
problems are given in Section 5.

2. PRELIMINARIES

In this section, we introduce some terms which are used in
the rest of this paper. We also use examples to illustrate the
algorithms proposed in[2, 7]. Note that the al gorithm proposed
in [7] iswith RLE strings while the algorithm proposed in [2]
is used to solve the CLCS problem when strings are not
encoded. After that, we use an example to illustrate our result
S0 that the reader can understand what we want to improve the
algorithmin [7].

We assume that |X| = m,|Y| = n and |P| = r and the
numbers of runsin X, Y and P are M, N and R, respectively.
Wealso assumethat X = rilréz .. -rﬁgf,whereri fori<i<Mm
isthe repeated character of run i and /; isits run-length.

Let ¢; ; « stand for the length of a CLCS of X; and Y; with
constraining string P. By using the recurrence formuladefined
in[2], ¢; j « can be computed as follows:

licgj—1k—1+1 ifk>0andx; =y; = pr,
0. = E,‘,]_,jflyk +1 if Xi =Yj, and either
e k=00rx # pi,
max{l; 1 ;i Cij—1x} iFx; #yj,
D
wherel <i <m,1 < j <nand0 < k < r with boundary
conditions £; 00 = £oj0 = 0and £g jx = €iox = —oo for

0<i<mO0<j<nand0<k<r.

We call the above formulathe standard formula of an CLCS
agorithm. Thevaluesof ¢; ; , forma3D dynamic programming
(DP) lattice. We use (i, j, k) to denote an element in a 3D
DP lattice. Let X,;,Y.q and P, r bearunin X,Y and P,
respectively. All elements (i, j, k) in a 3D DP lattice with
a<i<bc<j<dade <k < f formacuboid[7].
Thus, thereare N x M x (R + 1) cuboidsina3D DP lattice. A
horizontal slice of a 3D DP lattice containing al of the values
;i forafixed k, 0 < k < r, iscaled the kth CLCS table.
Note that, for simplicity, we neglect xo and yo. However, the
zeroth CLCS tableis necessary in our algorithm.

ExampLE 2.1. InFig. 1, X = ddaaadddd,Y = adaadddd
and P = ddd. Wecanfindthat M = 3N =4and R = 1L
Thus, thereare M x N x (R + 1) = 24 cuboids. Since pg = €
and r = 3, there are four CLCS Tables, i.e. the zeroth—third
CLCS tables (see Fig. 2). For brevity, we use ' —’ to represent
‘—o0’ inFig. 2. The zeroth CLCStable contains 12 cuboids and
the thickness of each cuboid is 1 since pg = €. The thickness
of the other 12 cuboidsis3since p; = po = p3 =d.

FIGURE 1. A 3D DP lattice.

In[7],Annetal. classified cuboidsinto thefollowing classes:
(&) fully matched cuboidsif x; = y; = px, (b) partially matched
cuboid if x; = y; # px, and mismatched cuboids if x; # y;,
where (i, j, k) is an element in the cuboid. The prism of a
cuboid contains the elements (i, j, k) with i and j maximal
in the cuboid (see Fig. 3(a)). The face of a cuboid contains the
elements (i, j, k) with i maximal in the cuboid (see Fig. 3(b)).
The surface of acuboid containsthe elements (i, j, k) inwhich
oneof i, j and k iszero or maximal in the cuboid (seeFig. 3(c)).
They aso showed that

(i) for amismatched cuboid, we need only to compute the
elementsin its prism,
(i) forapartially matched cuboid, we need only to compute
the elementsin its face and
(i) for a fully matched cuboid, we need only to compute
the elementsin its surface.

ExaMmpPLE 2.2. Figure4 depictsthe valueswhich are computed
by the algorithm proposed in [7]. Note that an empty element
in the CLCS table means that it is not necessary to compute
the value of the element. The upper-left blocks in the first—
third CLCS tables form a mismatched block since x; = 4 and
y;j = a. The lower-right blocks in the first—third CLCS tables
form afully matched block sincex; = y; = pr = d. Theblock
in the second row and the third column in the first—third CLCS
tables form a partially matched block since x; = y; = a and
pr=d.

From Example 2.2, we can find that the most time-consuming
step in the algorithm proposed in [ 7] isto compute the val ues of
the surfaces of matched cuboids. Thus, the time complexity of
their algorithmis O (r imN + nM)). In our agorithm, we need
only to compute the values in the faces of matched cuboids as
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the Oth CLCS table the 1st CLCS table
Y Y
p=¢c|la d a a d d d|p=d d a a d d d
difol [1][1 11 1 1 dll[-] 1]t 1]t 1 1
dlo 1|1 1|2 2 2 dij|=) 1)1 _1][2 2 2
all[1)[1][2 2[[2 2 2 all[=] 1] ]2 2][2 2 2
alfl 1f|1}12 33 3 3 all|l—[1111]2 3|3 3 3
Xlael| |12 313 3 3| X|al|l=][1)[2 313 3 3
dif1[2][2 3[4 4 4 d|[-]]2][2 3][4 4 4
di| 11122 3114 5 5 dl||—| 122 3|4 5 5
dil 1|22 3[4 5 6 dll|—| 12|12 3||4 5 6
d|lL1 2|2 3|4 5 6 dill=]12]2 _3|/[4 5 6
the 2nd CLCS table the 3rd CLCS table
Y Y
p=d|a d a a d d d|lps=d|a d a a d d d
dij—|-1|- |- — - dil-{1-l1- -lI- - =
dil-[-]= 2 2 2 dlll=] =] = =] |- = =
all4 - 2 2 2 alll[-11-1~ =1 = =
all—|-1|— 412 2 2 alll=||-||- —||—- — -
Xlalld|ldl— 412 2 2| X|al|l=ll——|—— —
dif 47 [- 4[4 4 4 d\\[-1-1- =][- 3 3
d || - - /4 5 5 d - —/|- 5 5
di|—-|-l|—- 414 5 6 di|l-||-I|- —-||- 5 6
dild |- |l=—_ 414 5 6 di|l=l =] ==l |-—_5 6

FIGURE 2. Anillustration for Equation (1) with X = ddaaadddd, Y = adaaddd and P = ddd.

the prism of a cuboid

the surface of a cuboid

the face of a cuboid

FIGURE 3. Prisms, faces and surfaces. (a) The prism of a cuboid. (b) The face of a cuboid. (c) The surface of a cuboid.

well as partially matched cuboids. Figure 5 depicts the values
in each cuboid which are computed by our algorithm.

3. A RECURRENCE FORMULA FOR COMPUTING
CLCS

Inour algorithm, weusetheinvertedindex techniqueto compute
£; j.x. Sinceour algorithmonly computes/; ; x inthefaceof each
cuboid, we shall derive a recurrence formulafor them. Before

introducing therecurrenceformula, weneed thefollowing terms
and properties which will be used in our algorithm.

Let T beastringand t € X asymbol in 7. The position
of theithz inT for 1 < i < |T| isdenoted by T, (i), where
|T| denotes the length of 7. In particular, let 7,(0) = 0. The
inverse function of T, isdenoted by 7,7X. That is, if 7, (i) = j,
then 7.71(j) = i. Let pre’(T;(i)) denote the position just
preceding the i — u + Dthz in 7T for 1 < u < i. When
u = 1, pre’(T; (i)) is simply written as pre(7; (i)). Note that
pre! (T, (i) = pre (T, (i —u + 1)) = pre(T. (i — u + 1)). In
particular, let pre® (T, (i)) = T, (i). For example, if u = 1, then
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the Oth CLCS table

the 1st CLCS table

Y
p=¢|la d a a d d d|pi=d|a d a a d d d
alf 17 ] a|ll ]]1] 1 1 1
d || o |1 1112 2 2 d||[=] [1] 1 2 2
all 11 ] a |[[=] [ ]
a a |||—
X|a|l 1 |12 3 3 X |al||l=]) 1] [2_3 3
all 171 dl||] ] [2] 4 4 4
d d 2 4 5 5
d d 2 4 5 6
d || 1] | 2] 3|4 5 6 d|l|—=] 2] 3114 5 6
the 2nd CLCS table the 3rd CLCS table
Y
p=d|a d a a d d d|ps=d|a d a a d d d
d - - d - - -
dll 4 [ — 12 2 dl=) 1= - = - - -
al[d7] ] a||[-] ] ]
a || — a |||—
Xlall4d - [— 200 X |a |||I=] =] |/ — - =
dll 11 4 4 4 d |l ][] - 3 3
d - 4 5 d — - 5 5
d — 4 6 d — - 5 6
d||l - |- 14 5 6 d\[|=] =] -l |= 5 6
FIGURE 4. The elements computed by the algorithm in [7].
the Oth CLCS table the 1st CLCS table
Y Y
p=€la d a a d d d|p=d|a d a a d d d
dl|[l T[] ] d [
d{[|0]|1] 1 2 2 2 d|=] [1] 1112 2 2
a ] alll ][ 1
a a
X lal|ll]|1]]2 3 3| X |a|l—= 1] [2 3 3
d\|ll 17 ] dli[ 11 ]
d d
d d
d|||1]]|2] 3l 4 5 6 dll|=] 2] 3|14 5 6
the 2nd CLCS table the 3rd CLCS table
Y
p=d|a d a a d d d|ps=d|a d a a d d d
d
d||=] =] —Hl 2 2 2 dill=l =l - - |l- - -
alll 1] alll 1] ]
a a
Xlal|l=] == 4 2| X | a |||[=] =] I/ — - =
d ] 1] ] d|[ 1]
d d
d d
d||=] =] -1l 4 5 6 d|||—=] =] —||= 5 6

FIGURE 5. The elements computed by our algorithm.
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CLCSs wITH RUN-LENGTH ENCODED STRINGS 5

the 0th RCL table the 1st RCL table
Y Y
p=¢ |a d a a d d d| pp=d|a d a a d d d
o] AIL__1[2 2 2] CIE AL 12 2 2
x|t |02 & 3 x| | 02 3 0O 3]
4 || 2] 3[4 5 6 a2 3[4 5 6
the 2nd RCL table the 3rd RCL table
Y Y
pp=d|a d a a d d d|ps=d|a d a a d d d
FIOA 222 [0 0dF—2
X | |E = 2O 2| x| |H ] = =
a ||E] —][4 5 6 ¢ IEEC JE= "5 6

FIGURE 6. Anillustration of the 3D DP lattice with X in RLE form.

prel (T, (i)) istheposition just preceding position j in 7', namely
position j — 1, where j = T, (i). Fort; in T, thelargest position
Jj < i (respectively, the smallest position j > i) with¢; # ¢; is
denoted by 57 (i) (respectively, Ay (i)). If T; isended withs 7’s,
i.etj =tands = j—87(j), then T; is also represented as
T;|z*. Notethat T;||z° impliesthat t; # <. For brevity, Tir|||t*
issimply writtenas T || °.

ExampPLE 3.1. We use an example to illustrate above terms.

Suppose that T = 1t - -tg = baaaccaa. We can find that
12345678

7
,0)=2,T17,2 =3, 7,3 =4,T,(4 =7and T,(5 = 8
whileT,12) =1, 7,13 =274 =3, T,1(7) = 4and
7,71(8) = 5. Furthermore, pre®(7,,(4)) = 7, pre'(T,(4)) = 6,
pre?(T,(4)) = pre(T,(4— 2+ 1)) = pre(T,(3)) = 3and soon.
In addition, §7(2) = 67(3) = 87(4) = 1and 67 (5) = 4. The
representation 7 ||a® meansthat T is ended with two a’s.

Let Ip(r;) stand for the position of the last character of r;
in the corresponding uncompressed string. That is, Ip(r;) =
Ih+ 1+ -+ 1. Let ox(r;) denote the largest number j < i
such that r; = r;. If no such r; exists, then ox (r;) = 0. Note
that, when X is represented in RLE form, every cuboid in a
3D DP lattice becomes a face. Accordingly, we also call them
fully matched faces, partially matched faces and mismatched
faces. A horizontal slice containing all £;,,,;« for afixed k,
0 < k < r,iscdled the kth RCL table.

ExampLE 3.2. TheCLCStablesinFig. 5 can berepresented by
the RCL tablesasshownin Fig. 6. Sinceonly elements €, j «
are contained in aRCL table, we use their runsin X asindices.

In the following, we introduce some lemmas to compute the
values in the Ip(r;)th row of a CLCS table by only using the
valuesinthelp(r;)th row with j <i.

LEMMA 3.1[7]. ForO<i < M,0<j<nand0<k <r, if
ri 7% vi, then £, .k = MaX{pe.sy Gk Lipery). jk ), Where
i/ = Ux(r,').

ProrosiTioN 3.1. Assume that Z||t" is a CLCS of X,
Yj and P, with0 < u < [;. If r; = 7, then le(r;),j,k =
bpe-1jk = -+ = Lipei)—li+u,j k-

Proof. If , = T and 0 < u < [;, then we can use the first u
7’sin ril" toform Z. Thisimpliesthat ;¢ j.x = Lipriy—1,j.k =
= Lip(r)—ti+u.j k-

LEmMva 32. Assume that y; = 7, v = Y (j) and
w = minfv, L} If i = y; # pr, then L0 =
maxlgugw{glp(rifl),pl’e“(Yr(U))vk + l/t}

Proof. Assumethat Z||7* withO < u < visaCLCSof X,
Y; and Py. If u > ¢;, then we can assume that the last ¢; ©’s
of ¥; and those t’sin r/" are used to construct Z. By the non-
decreasing property of the valuesin each row of a CLCStable,
thelengthof Z,i.e. €1y, j k. is€qUA 1O €, 1) oreti (v, o).k T Li-
If 1 <u < ¢;,then, by Proposition 3.1 and the second formula
in Equation (1), we can have the following derivation.

Ciper),je = Lip(rjy—ti+u, j.k

= Lipr)—t+u—1pret (v, .k + 1
= Lip(ri)—li+u—2,p@ (¥ ).k T2

= Lip(ri_y).pre (v, ).k T U-

As a consequence, by examining all possible values
of Lo pperops +u for 1 < u < w =
min{v, ¢;}, the maximum value among them is the value of
Liper), ik (see Fig. 7 for an illustration). Thus, £,¢,),jx =
MaX 1 <u<w {€ipri_1).pree (v, ),k + 1} ardthelemmafollows. [

Lemma 3.3 Assumethat y; = 7, v = Y 1(j) and w =
min{v, ;}. Ifr; = y; = px, then

Cperyy,jk = MAX {Lip(r,_q),pre(v, )4, + U}, Where
1<u<w

d, = max{k —u, §p(k)}.
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FIGURE 7. Computing £;,(,,) 4,1 for illustrating Lemma 3.2.

Proof. Leta = k — 8p(k). Assumethat Z|t" withu < visa
CLCSof X5, Y; and Py. According to the relation between
u and [;, we consider the following two cases.
Casel.l; > u.

In this case, by Proposition 3.1, glp(ri),j,k = glp(ri)fliJru,j’k.
If o > u, then, by applying the first formulain Equation (1) u
times, we can obtain

Cipery—ti+u,jk = Lip(ri_1),prev (v, ), k—u + U

For the case where o < u, we can apply the first formula in
Equation (1) « times. By Lemma 3.2 and the non-decreasing
property of the values in each row of a CLCS table, we can
obtain

Lipeiy—titu.j.k = Lipery)—t; +u—a,pre* (¥, (v) k—a T A
= Lip(r)—li+u—a—(u—a), pre=+u— (¥, (v)).k—a
+ o+ (u—a)

= Lip(r;_1),pre* (¥ (v)),8p (k) + U-

Thus, in this case, Elp(r[),j,k = Elp(r;,l),pre"(Y,(v)),d“ + u where
d, =k —uif a > u; otherwise, d, = §p (k).
Case2.u > I;.

Inthis case, we also consider the possible relation between /;
and «. If [; > o, we can apply thefirst formulain Equation (1)
a times. Thisyields Z,p(,,.),j,k = glp(r;)fot,pre"(Y,(v)),kfa + a. By
Lemma 3.2, we can have the following derivation:

Lip(r)—a, prex (v, () k—a +
= Lip ) —a— (U —a),pre+ i) (v, () k—a T &+ (i — )
= Lipry 1) préi (vow)).0p ) + i

For the case where @« > [;, dfter applying the first
formula in Equation (1) /; times, this results in £, jx =
Cipei . prel (v ket i N _

From above cases, by examining the possible values
of u from 1 to w, we can obtain that {4« =
MaX1<u<w {€ip(i-1),prev v, ()., + u}, where d, = max{k — u,
8p(k)}. This concludes the proof of thislemma. O

We use Fig. 8 as an example to illustrate Lemma 3.3. By
using Lemma 3.3, the values in the boxes in Fig. 8 are used to
compute ¢g7,3. Note that, in computing £973,i = 3,j = 7
and k = 3. Thatis, Ip(r3) = 9, y7 =d andv = Y;*(7) = 4.
According to Lemma 3.3, £9.7,3 can be computed as follows:

lo73="Lipr3),7,3

= max {£ "
1<u<w{ p(r2). pre (Ya ) dy "+ 1}

= max {£ +u
1<M@{ 5, pret (Yq (v)) . du }

=max{lse2+ 1, €551+ 2, 0540+ 3, {510+ 4}
=max{2+1,3+2,3+3,1+4}
= 6.

Note that, in the above derivation, d, = k —u = 3 — u for
1<u<3andds = max{k —u,p(k)} = max{3—4,0} =0.

For brevity, let R; jx = Loy, jx fori = 1,2,..., M.
Combining Lemmas 3.1-3.3, we can obtain a recurrence
formula to compute R, ; as follows (see Fig. 8 for an
illustration).

THEOREM 3.1. Assume that X = rir2---ri, y; = 1,
v =Y"1(j), w=min{v,;} and i’ = ox (r;). Then
max{Risy(j).k> Rir.jk} ifr # yj,
Riji = 12f‘<><w{73i71,preu(y,(v)),k +u} ifri=y; # pr,
12}?<><w{72i—1,pre"m<v>>,du +u} ifri=y;=p
2
with boundary conditions R; 00 = Ro,jo0 = 0and Ro jx =
Riox = —cowhere0 < i < M,0< j<n, 1<k<r,

d, = max{k —u, ép(k)}.

By using asimilar techniqueasin[7], whenr; # y;, weneed
only to computethoseR; j «'swith j = Ay (j)—1(seeFig.6as
anexample). However, if SOme R, _1 pre (v, (v)).k iSNOt computed
when computing R; ; » by Equation (2) for the case where
ri = y;, then we can compute max{R;_1 j’ x, Ri’ pret (v, ).k}
instead, wherei’ = ox(r;_1) and j = 8y (pre (Y, (v))).
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Y

po=¢ d d‘plzd a d a a d d
d 1 1 dil— 1 1 1 1 1
d 2 2 dil—- 1 1 1 2 2
a 2 2 all—- 1 2 2 2 2
a 3 3 all—- 1 2 3 3 3

X |a 3 3| X]all—-— 1 2 3 3 3
d 4 4 dil— 2 2 3 4 4
d 5 5 dil— 2 2 3 5 5
d 6 dil-— 2 2 3 5 6
d 5 dil—-— 2 2 3 5 6

Y Y

p=d| a d a a d dXd|ps=d|a d a a d \d d
- - - - - - - 7 R — —
il - - — — 2 2 2 -
a - - = = 2 2 2 a
a - - = = 2 2 2 a —

Xlal|l - - - - 2 X a -
dif - - — — 4 4 ~ d 3
S R a 5
d - - - - 4 5 6 d 6
di|f - —-— — — 4 5 6 d 6

FIGURE 8. Computing £;p(,4),7,3 for illustrating Lemma 3.3.

4. AN EFFICIENT WAY TO COMPUTE THE
LENGTH OFA CLCS

In Equation (2), themost time-consuming step occursat the case
that r; = y;. Ittakes O (I;) timefor computing R; ; x so that the
total time complexity becomes O ((Iy+ 2+ -+ - +1y)nr — &) =
O(mnr — &), where £ is the number of mismatched el ements
between r; and y;, for 1 < i < M and1 < j < n, with
Jj # Ay(j) — 1. Inthis section, we shall show how to compute
Ri . efficiently so that the total time complexity becomes
o(min{Mn, Nm}).

In the rest of this section, we assume that r;, = y; = t,
v = Y74j), w = min{v,l;} and o = k — 8p(k) unless
otherwise stated. We also call « the thickness of the kth RCL
table. Thetotal number of t’sinY isdenoted by 1. Anelement
(i, j, k) inan RCL tableis called acritical lement if R, ; x is
computed by using the second or third formulain Equation (2).
For consistency, the second formulain Equation (2) isrewritten
SR k= 1r<Tla<Xw{Ri_1,preu(yt(v)),du + u} withd,, = k soasto

have the same description as the last formula in Equation (2).
For brevity, define
Ri—tpretveendy o T Fl<x <v—w,
Ra(0) = ) Ri-1,prel (v, (x)).dysa
+v—x+1 ifv—w+1<x<,
with respect to critical element (i, Y, (v), k), whered, _, 1 =k
forl < x < vwhenr; = y; # pr. Whencontextisclear, R (v)
issimply written as R.. Element (i — 1, pre* (Y; (v)), dy_x+1)
and R, for 1 < x < v arecaled an originating element and an

originating value, respectively, of critical element (i, j, k). For
example, see Fig. 6. Assume that, for critical element (1, 6, 2),
v=Y1j) =YX 7) =3, w =min{v,;} = min{3,/;} = 2
anda =k —8p(k) = 2—6p(2) = 2. The originating elements
of element (1, 6, 2) are (0, 1, 0), (0, 4, 0) and (0, 5, 1) whose
originating valuesare Ry = 0+2=2,R, =0+2=2and
R3 = 04 1 = 1, respectively. For critical element (1, 7, 2),
v=Y 1) =Y 7)) = 4, w = min{v, ;} = min{4, [} = 2
anda = k —ép(k) = 2— 8p(2) = 2. Theoriginating elements
of element (1, 7, 2) are (0, 1, 0), (0, 4, 0), (0,5,0)and (0, 6, 1)
whose originating valuesare R; = 0+2=2, R, =0+2 =
2,R3=0+2=2and R4 =0+ 1 =1, respectively.

ProposITION 4.1. For 2 < v < g, Ry(v) = Ry(v — 1)
forl1 < x < v—w, while R,(v) = R,(v — 1) + 1 for
v—w+l<x<v—-1

Since R, for 1 < x < v — wisaways < Ry_ypi1,
Theorem 3.1 can be rewritten as follows:

THEOREM 4.1. Assume that X = rilr2---rid, y; = t,
v =Y 1(j), w =min{v, ;} and i’ = ox(r;). Then

max{R; s, ).k Rirjxb ifri # v,

Rijk =1 max (R} otherwise, ®)
1<x gy

with boundary conditions R; 00 = Ro,j0 = 0and Ro jx =
Riox=—ocowhere0<i < M,0<j<n,andl<k<r.
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Notethat if r; = y; # pr, thenal R, for 1 < x < v are
in the kth RCL table. However, when r; = y; = py, dl R,
for 1 < x < v may not be in the same table. We call the set
containing all R, with d, = k the base set of (i, j, k), when
ri =y; # px. FOrr;, = y; = py, the set containing all R,
withd, = 8p (k) isalso called thebase set of (i, j, k) whilethe
set containing all other R, is called the stripe set of (i, j, k).
Accordingly, the kth (respectively, § p (k)th) RCL tableiscalled
the base table of (i, j, k) whenr; = y; # pi (respectively,
ri = y; = px). For the previous example, see Fig. 6. Assume
that, for critical element (3,7, 3), v = Y. 1(j) = Y, 1(7) = 4,
w = min{v,;} = min{4,l3} = 4anda = k — §p(k) =
3 —8p(3) = 3. The originating elements of element (3, 7, 3)
are(2,1,0),(2,4,0), (2,5,1) and (2, 6, 2) whose originating
vauesareR; =1+4=5"R,=3+3=6,R3=3+2=25,
and R4 = 24+ 1 = 3, respectively (see the sguare boxes
in Fig. 8). The base and stripe sets of element (3,7, 3) are
{R1, Ro} and {R3, R4}, respectively. Thebasetableof (3, 7, 3)
isthe zeroth RCL table. Similarly, for critical element (3, 6, 3),
v="Y16) =Y, 1(6) = 3, w = min{v,;} = min{3, I3} = 3
anda = k—6p(k) = 3—38p(3) = 3. Itsbaseand stripe setsare
{R1} = {R2,1,0} ad {R2, R3} = {R2,4,1, R25,2}, respectively.

Lemma 4.1 Assumethatr; = y; = pry = 7, v = Y 1(j),
w=min{v,/;}anda = k —38p (k). Ifa = 1, thenthe stripe set
of (i, j, k) isanempty set. If v < «, thenthebase set of (i, j, k)
isan empty set and all valuesin the stripe set are —oco.

Proof. If @« = 1, then, by the third formula of Equation (2),
d, = max{k —u,8p(k)} for1 < u < w,wherew = min{v, [;}
andé$p(k) = k— 1. Thismeansthatd, = dp(k) forl < u < w.
By the definition of base sets, all originating elementsof (i, j, k)
arein its base table, and the stripe set of (i, j, k) is an empty
set. For thecasewherev < «, itisobviousthat no subsequence
of Y; isthesameas P, and R; j = —oo. Thisfurther implies
that the base set of (i, j, k) isempty and all valuesin the stripe
set are —oo. 0

Assumethat aq, ap, . .., a, arealist of numbers. Anindex is
called the w-index of a;, denoted by w;, for 1 < i < nif w; =
max{jla; = max{a;, aj41,...,a,}, i < j < n} i€ w =i
is the largest index such that a,, = max{a;, a1, ..., a,}.
Let {w1, wy, ..., w,} bethe set of w-indices of ay, ay, ..., a,.
Merging the same w-indicesasaninterval, which isrepresented
by their starting and ending indices, resultsin a set of intervals
([ f1, hal, [f2, h2l, ..., [ fi, hal}inwhich[ f;, h;]iscalledan w-
interval. Notethat f; < h; forl <i < A,and f;1 1 = h; +1for
1<i<A—1Forexample let(3,7,4,6,2,1,6,4) bealist of
numbers. Their corresponding w-indicesare2,2,7,7,7,7,7, 8
and {[1, 2], [3, 7], [8, 8]} isthe set of their w-intervals.

ProposITION 4.2.  If{[ f1, h1], [ f2, k2], ..., [ f+, ha]} isthe set
of w-intervals of numbers a1, az, ..., a,, then a,, > ap, >
© > dpy -

Let {R1,Ra, ..., Rp} and {Rp41, Rp42, ..., Ry} be the
base set and dtripe set, respectively, of critical ee-
ment (i, j, k). Let {[f1, h1l, [f2, hol, ..., [ fow), P ]} and
{[f1, ). (S5 B51, .., [f;(v), h;(v)]} be the sets of w-intervals
of the base set and stripe set, respectively, of critical element
(i, j, k). Thatis, thereare b(v) and s (v) w-intervalsin the base
set and stripe set, respectively, of critical element (i, j, k). Let
a() = b(v) + s(v). For simplicity, we use [ fy)+x, Mbw)+x]
to represent [f/, h'.] for 1 < x < s(v). In particular, an w-
interval [ f;, h,] iscaled abase w-interval (b-interval for short)
if 1 <t < b(v) andiscaled a stripe w-interval (s-interval
for short) if b(v) +1 < ¢t < a(v). Moreover, an w-interval
[fi, h/] is called acritical w-interval if R; jx = Ry,, and, in
this case, h, is called the critical w-index of (i, j, k). Collect-
ing al b-intervals (respectively, s-intervals) of critical element
(@i, j, k) forms the b-interval set (respectively, s-interval set)
of (i, j, k). Let B;(v, k) and S;(v, k) stand for the b-interval
and s-interval, respectively, sets of (i, Y;(v), k). We use crit-
ical element (3,7, 3) in Fig. 6 to illustrate the above terms.
Since §p(3) = 0, the Oth RCL table is the base table. Thus
{R1, Ro} = {5,6} and {R3, R4} = {5, 3} are the base and
stripe, respectively, sets. Furthermore, w; = w, = 2forthebase
setand wz = 3and w4 = 4for the stripe set, wherew, standsfor
thew-index of R, for 1 < x < 4. Consequently, there are three
w-intervalsof element (3, 7, 3) whichare[1, 2], [3, 3]and[4, 4]
in which B3(4,3) = {[1 2]} and S3(4,3) = {[3, 3], [4, 4]}.
Thus, b(v) = 1, s(v) = 2 and a(v) = 3. Furthermore, since
Raz73=TR2=06,[1, 2]isthecritical interval and h; = 2isthe
critical w-index of (3,7, 3).

By using the concept of critical w-indices, Theorem 4.1 can
be rewritten as Theorem 4.2.

THEOREM 4.2. For critical element (i, j, k) with y; = r,
v =Y 1(j), i’ = ox(r;), and critical w-index i,,

Max{R; sy ).k Rirjk} ifri # yj,

Rijx = ;
R, otherwise,

with boundary conditions R; 00 = Ro jo = 0and Ro jx =
Riox=—ocowhere0<i < M,0<j<n,andl<k<r.

By inspection on Theorem 4.2, the time complexity on
computing R; j » depends on the time for computing Ry,.
Clearly, we can compute R, for each critical element and it
takes O (I;) time. In the following, we show that the critical w-
index of element (i, j, k) can befoundin O (1) amortized time.
Lemmas 4.2 and 4.3 describe how to find B; (v, k) for the cases
ri=y; # prandr; =y; = pr Withk > 8p(k), respectively.

LemMa 4.2. For thecasewherer; = y; # piwithj = Y (v),

{[1, 11

{[f1, hal, [f2, h2l, - ..,
Lfes el [fea, 01}

{{f1, v]}

ifv=1,

Bi(v, k) = ; i
i (v, k) ifv > 1andr exists,

otherwise,
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(a) (b)
critical elements | Bs(v,0) (v, k) Bs(v, k)
(3,Yy(1), ) [1,1] (1,1),(2,2),(3,3) 1,1
(3,Y4(2),0 [1,2] (2,1),(3,2),(4,3) 1,2
(3,Y4(3),0 (1,2][3, 3] (3,1),(4,2) 1,2][3,3
(3,Ya(4), 0) [1,2][3,3][4,4] (4,1) 1,2][3,3][4, 4]
ri =Y; 7# Dk r; =y; = pr with k > dp(k)

FIGURE 9. lllugtrations of b-interval sets. (a) r; = y; # pk, (0) ri = y; = pr withk > 8p (k).

Where Si(v - 11 k) = {[flv hl]a [f27 hz]a L) [f)u h}u]} andt IS
thelargest indexin [1, ] such that R, (v) > R, (v).

Proof. Clearly, B; (1, k) = {[1, 1]} whenr; = y; # prandv =
1. Assumethat B; (v —1, k) = {[f1, hal, [f2, h2l, ..., [fa, hal}
forsome2 < v < u.. By Proposition4.1, R, (v—1) = R, (v)
forl < x < v—wwhleR,(v—-1+1= R,(v) for
v—w+ 1< x < v— 1 Furthermore, by Proposition 4.2,
Rp, > R, for 1 < x < A. Let ¢ be the largest index in
[1, A] such that Ry, (v) > R,(v) is satisfied. Thus, Ry, (v) >
Ry() = Rip,41(v) > Rp,42(v) > -+ - > Ry_1(v). Thisresults
in Bi(v, k) = {[f1, hal, [ f2, h2), ..., [ fi, B, [ figas v} 1f DO
such r exists, then it is clear that B;(v, k) = {[1, v]}. This
completes the proof. d

LeEmMA 4.3. For thecasewherer; = y; = py Withk > ép (k)
and j = Y7 (v),

] ifv<a,
{[1, 1]} ifv=a,
B.(v.k) = {[f1, hal, [ f2, k2l ..., _
Lfe, hed, [ fivr, v —a+ 1]} ifv>1and
t exists,
{[1,v—oa+1]) otherwise,
where B; (v — 1, k) = {[ f1, hal, [ fo, hol, ..., [ fo, a1} and t is

thelargest index in [1, 1] such that R, (v) > Ry—_a+1(v).

Proof. By Lemma4.1, B; (v, k) = # whenv < «. For the other
cases, by using asimilar argument asin Lemma4.2, thelemma
follows. O

Figure 9(a) and (b) isused to illustrate Lemmas 4.2 and 4.3,
respectively.

Lemma 4.4. If Bi(v, k) = {[f1, h1l, [fo, h2l, ...,
thenhy > v—w+ 1.

[f)u h}»]}?

Proof. By the non-decreasing property of the values in each
row of aCLCStable and Ry = R;_1 prel(v, (x)).d,_. 2 T ki fOr
1< x < v—w,thislemmafollowsdirectly. O

TABLE 1. S3(v, k).

k
v 1 2 3
1 ] [1, 1] [1,1]
2 ] [2,2] [2,2]
3 ] [3,3] [2, 2][3, 3]
4 0 [4, 4] [3, 3][4, 4]
CoroLLARY 4.1. For the case where r; = y; # pi Or

ri = y; = px With k = 8p(k) + 1, the critical w-index of
critical element (i, Y; (v), k) ishy, where B; (v, k) = {[ f1, h1],
[f27 hz]s '7[f)\.’h)\.]}'

Lemma 4.5 describes how to find S; (v, k) for the case where

Lemma 4.5. For thecasewherer; = y; = pi withk > §p (k)
and j = Y;(v),

? ifa =1,
{[v, v]}
{Lf1, hal, [f2, h2l, ...,

ifo =20rv < «,

Si(v, k) = )
Lfes Al [figa, v]} ifv>a>2and
t exists,
{Lf1, v]} otherwise,

Where Si(v - 1’ k - 1) = {[.fla hl]? [.fZa hZ], ey [.f)\a h}\]} and
t isthelargest index in [1, A] such that Ry, (v) > R, (v).

Proof. By Lemma 4.1, S;(v,k) = ¢ when o« = 1. Since al
originating values of (i, j, k) are —oo when v < «, we can
obtain al its originating values through {[v, v]}. For the other
cases, by using asimilar argument asin Lemma4.2, thelemma
follows. O

Table 1 isused to illustrate Lemma4.5 for finding S3(v, k).
LeEMmma 4.6.  For critical element (i, Y, (v), k), if bothb(v) and

s(v) are >0 and Ry, < Riyy,,q. then ke isits critical
w-index; otherwise, h4 isitscritical w-index.
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Proof. By Proposition 4.2, Ry, > Ry, > > Ry
and Ri,r > Ripase > -7 > Ry, - Clearly, if either
b(v) or s(v) is equal to O, then h; is the critical w-index
of (i, Y. (v), k). For the case where both b(v) and s(v) are
>0, R,',j,k = max{Rhl, ha, R Rha(v)} = max{Rhl, th(v>+l}'
Thus, if Ry, > Rpyy,.q, then hy is the critical w-index of
(i, Y (v), k); otherwise, hp)+1 is the critical w-index. This
completes the proof. O

LemMa 4.7. The b- and s-interval sets of critical element
(i, j, k) can be constructed in O (1) amortized time.

Proof. Weproveonly that constructing B; (v, k) forl < v < u,
can bedonein O (1) amortized time. The case for constructing
S; (v, k) can be handled similarly.

Let Bi(v — 1, k) = {[f1, h1l, [fo, h2l, ..., [ fo, hn]}. Note
that, initially, B;(1,k) = {[1,1]} when r; = y; # p; or
Bi(a, k) = {[1, 1l}whenr; = y; = prandk > §p(k).Let P be
the potential function of B; (v, k) which represents the number
of intervalsin B; (v, k). Itisobviousthat ® (B; (1, k)) = 1.Since
the number of intervalsin B; (v, k) is hever empty for v > 1,
®(B; (v, k)) > ®(B;(1, k)). Tofind B; (v, k) from B; (v — 1, k),
either a comparison or merging a subset of intervals to be a
new interval will be applied. If only a comparison is applied,
i.e. Ry, (v) > R,(v), then anew interval [v, v] is appended to
B;(v — 1, k) and we say that its cost is 1, denoted by ¢, = 1.
Thatis, ®(B; (v, k)) — ®(B;(v—1, k)) = 1. If merging asubset
of m intervalsto abtain B; (v, k) isapplied, then we say that its
costisc, = m + 1, i.e. m comparisons plus one merging. This
resultsin ®(B; (v, k)) — ®(B;(v — 1, k)) = —m + 1. For the
former case, the amortized cost ¢, on constructing B; (v, k) is
Cy = Cp +D(Bi(v, k) — ®(B;(v—1,k) =1+ 1= 2. For
the latter case, the amortized cost on constructing B; (v, k) is
Gy =+ DB, k)—d(B;(v=1Lk)=m+1-m+1=2
It can be seen that the amortized costs of both operations are
O (1). This completes the proof. O

Now we areat aposition to describe our algorithm asfollows.

Algorithm A

Input: An RLE string X and uncompressed strings Y and P in
which |Y| =n, |P| =r,and X has M runs.
Output: Thelength of aCLCSof X, Y, and P.
1 begin
2 Step 1. /* Initialization */
3 Ri,00=TRo,jo0=0andRg ;i = Riox = —oo for
0<i<MO0<j<nandl<k<r,
4 Step 2. /* computing R, x*/
5 Compute R; jrforl<i <M, 1< j<nandl<k<r
by using Theorem 4.2.
Step 3. Output Ry, r;

We summarize our result as the following theorem.

THEOREM 4.3. Given strings X and Y, and a constraining
string P, the CLCSof X and Y with respect to P can be found
in O(NMr +rmin{fmN, nM}) time.

Proof. Assume that the RCL tables are constructed with X in
RLE format. By using the formulas in Lemmas 4.2, 4.3 and
4.5, thevaluesin the kth RCL tablefor k = 0, 1, ..., r can be
computed. By Lemmas4.4, 4.6 and 4.7, every R; ; « for critical
element (i, j, k) can be computed in O (1) amortized time. Let
f1 bethe number of mismatched facesand f» be the number of
elementsin partialy and fully matched faces. The total timeto
findthelengthof aCLCSis O (r f1+ f»). If weconstruct theRCL
tableswith Y in RLE format and f3 isthe number of elementsin
partially and fully matched faces, then the total time to find the
lengthof aCLCSis O (rf1+ f3). Therefore, the CLCS problem
can be solved in O(rf1 + min{ f>, f3}) time. Note that, in the
worstcase, f1 = NM andmin{ f>, f3} = rminfmN,nM}. O

5. CONCLUDING REMARKS

In this paper and in [7], we solve only the case where one
of X and Y isin RLE form. Our agorithm for solving the
CLCS problem can be done in O(NMr + r min{fmN, nM})
time which improves the best-known result in [7]. The reason
is that the algorithm in [7] still needs to compute all R; j x in
the surface of fully matched cuboids. Note that, in describing
the time complexity, theterm N Mr is the maximal number of
prismsin a 3D DP lattice. It occurs only when all cuboids are
mismatched cuboids. A challenge related to this problem isto
consider the case where both X and Y arein RLE form, or even
more difficult, all three strings arein RLE form.
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