
© The British Computer Society 2014. All rights reserved.
For Permissions, please email: journals.permissions@oup.com

doi:10.1093/comjnl/bxu012

Constrained Longest Common
Subsequences with

Run-Length-Encoded Strings

Jia-Jie Liu
1,∗

, Yue-Li Wang
2

and Yu-Shan Chiu
1

1Department of Information Management, Shih Hsin University, 1 Lane 17 Sec.1, Mu-Cha Rd.,
Taipei 10607, Taiwan

2Department of Information Management, National Taiwan University of Science and Technology,
Taipei, Taiwan

∗Corresponding author: jjliu@cc.shu.edu.tw

Given two strings X and Y and a constraining string P , a string Z is called a constrained longest
common subsequence of X and Y with respect to P if Z is the longest common subsequence of X and Y

such that P is a subsequence of Z. In this paper, we propose an O(r×min{mN, nM})-time algorithm
for solving this problem, where m, n and r are the lengths of X, Y and P , respectively, and M and N

are the number of runs of the run-length-encoded strings of X and Y , respectively.

Keywords: longest common subsequence; constrained longest common subsequence; run-length-encoding;
string compression

Received 12 June 2013; revised 23 January 2014
Handling editor: Fionn Murtagh

1. INTRODUCTION

Let T = t1t2 · · · t|T | be a string over a finite alphabet set �,
where |T | denotes the length of T and ti ∈ � for integer i with
1 � i � |T |. Substring ti ti+1 · · · tj of T with 1 � i � j � |T |
is represented by Ti,j . For simplicity, we also use Tj to represent
Ti,j when i = 1. Measuring the similarity or difference between
two strings is fundamental to many applications. For this
purpose, many measures are defined, and the longest common
subsequence (abbreviated as LCS) is possibly the most popular
one. A subsequence of a string is obtained by deleting zero or
some (not necessarily consecutive) characters from this string.
A common subsequence of strings X and Y is a subsequence in
both X and Y , where |X| = m and |Y | = n. An LCS of X and Y

is a common subsequence with the maximum length. The LCS
problem is to find an LCS between X and Y .

In [1], Tsai introduced the constrained longest common
subsequence problem (the CLCS problem for short) which
is described as follows: Given two strings X and Y and a
constraining string P , a string Z is called a CLCS of X and
Y with respect to P if Z is a LCS of X and Y containing P

as a subsequence. The CLCS problem is to find a CLCS for X

and Y with respect to P . In [1], Tsai gave an O(m2n2r)-time
algorithm for solving the CLCS problem, where m, n and r

are the lengths of X, Y and P , respectively. In [2], Chin et al.
(and independently,Arslan et al. [3]) proposed an O(mnr)-time
algorithm for solving this problem. Iliopoulos and Rahman [4]
proposed an algorithm for solving the CLCS problem in O(m+
n + rq log log(m + n)) time, where q is the total number of
ordered pairs of positions at which X and Y match.

Run-length-encoding strings are a simple technique to
compress strings. It divides a string into several runs and each
run consists of maximal consecutive identical letters. A run-
length-encoded string (RLE string for short) X is represented
by r

�1
1 r

�2
2 · · · r�M

M , where rj for 1 � j � M is the repeated
character of run j and �j is its corresponding run-length. For
example, the RLE string of string bdcccaaaaaa is b1d1c3a6.
The reader is referred to [5] for the details of RLE strings.

The string alignment problem with RLE strings has been
widely studied [6–17]. Ann et al. [7] proposed an O(r(mN +
nM))-time algorithm for solving the CLCS problem with
RLE strings, where M and N are the numbers of runs in
X and Y , respectively. In this paper, we propose an O(r ×
min{mN, nM})-time algorithm for solving the problem.

The remaining part of this paper is organized as follows. In
some preliminaries are introduced in Section 2. In this section,
we also explain the reason why our algorithm is better than

Section A: Computer Science Theory, Methods and Tools

The Computer Journal, 2014

 The Computer Journal Advance Access published March 5, 2014
 by guest on M

arch 6, 2014
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/
http://comjnl.oxfordjournals.org/

2 J.-J. Liu et al.

the algorithm in [7]. In Section 3, we introduce the recurrence
formula introduced in [2] for solving the CLCS problem.
Some properties of CLCS with RLE strings are introduced in
Section 4. We also introduce our O(r × min{mN, nM})-time
algorithm in this section. Finally, concluding remarks and open
problems are given in Section 5.

2. PRELIMINARIES

In this section, we introduce some terms which are used in
the rest of this paper. We also use examples to illustrate the
algorithms proposed in [2, 7]. Note that the algorithm proposed
in [7] is with RLE strings while the algorithm proposed in [2]
is used to solve the CLCS problem when strings are not
encoded. After that, we use an example to illustrate our result
so that the reader can understand what we want to improve the
algorithm in [7].

We assume that |X| = m, |Y | = n and |P | = r and the
numbers of runs in X, Y and P are M, N and R, respectively.
We also assume that X = r

l1
1 r

l2
2 · · · rlM

M , where ri for 1 � i � M

is the repeated character of run i and li is its run-length.
Let �i,j,k stand for the length of a CLCS of Xi and Yj with

constraining string Pk . By using the recurrence formula defined
in [2], �i,j,k can be computed as follows:

�i,j,k =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
�i−1,j−1,k−1 + 1 if k > 0 and xi = yj = pk,

�i−1,j−1,k + 1 if xi = yj , and either

k = 0 or xi �= pk,

max{�i−1,j,k, �i,j−1,k} if xi �= yj ,

(1)
where 1 � i � m, 1 � j � n and 0 � k � r with boundary
conditions �i,0,0 = �0,j,0 = 0 and �0,j,k = �i,0,k = −∞ for
0 � i � m, 0 � j � n and 0 � k � r .

We call the above formula the standard formula of an CLCS
algorithm. The values of �i,j,k form a 3D dynamic programming
(DP) lattice. We use (i, j, k) to denote an element in a 3D
DP lattice. Let Xa,b, Yc,d and Pe,f be a run in X, Y and P ,
respectively. All elements (i, j, k) in a 3D DP lattice with
a � i � b, c � j � d and e � k � f form a cuboid [7].
Thus, there are N ×M × (R + 1) cuboids in a 3D DP lattice. A
horizontal slice of a 3D DP lattice containing all of the values
�i,j,k for a fixed k, 0 � k � r , is called the kth CLCS table.
Note that, for simplicity, we neglect x0 and y0. However, the
zeroth CLCS table is necessary in our algorithm.

Example 2.1. In Fig. 1, X = ddaaadddd , Y = adaadddd

and P = ddd. We can find that M = 3, N = 4 and R = 1.
Thus, there are M × N × (R + 1) = 24 cuboids. Since p0 = ε

and r = 3, there are four CLCS Tables, i.e. the zeroth–third
CLCS tables (see Fig. 2). For brevity, we use ‘−’ to represent
‘−∞’ in Fig. 2. The zeroth CLCS table contains 12 cuboids and
the thickness of each cuboid is 1 since p0 = ε. The thickness
of the other 12 cuboids is 3 since p1 = p2 = p3 = d.

FIGURE 1. A 3D DP lattice.

In [7],Ann et al. classified cuboids into the following classes:
(a) fully matched cuboids if xi = yj = pk , (b) partially matched
cuboid if xi = yj �= pk , and mismatched cuboids if xi �= yj ,
where (i, j, k) is an element in the cuboid. The prism of a
cuboid contains the elements (i, j, k) with i and j maximal
in the cuboid (see Fig. 3(a)). The face of a cuboid contains the
elements (i, j, k) with i maximal in the cuboid (see Fig. 3(b)).
The surface of a cuboid contains the elements (i, j, k) in which
one of i, j and k is zero or maximal in the cuboid (see Fig. 3(c)).
They also showed that

(i) for a mismatched cuboid, we need only to compute the
elements in its prism,

(ii) for a partially matched cuboid, we need only to compute
the elements in its face and

(iii) for a fully matched cuboid, we need only to compute
the elements in its surface.

Example 2.2. Figure 4 depicts the values which are computed
by the algorithm proposed in [7]. Note that an empty element
in the CLCS table means that it is not necessary to compute
the value of the element. The upper-left blocks in the first–
third CLCS tables form a mismatched block since xi = d and
yj = a. The lower-right blocks in the first–third CLCS tables
form a fully matched block since xi = yj = pk = d. The block
in the second row and the third column in the first–third CLCS
tables form a partially matched block since xi = yj = a and
pk = d.

From Example 2.2, we can find that the most time-consuming
step in the algorithm proposed in [7] is to compute the values of
the surfaces of matched cuboids. Thus, the time complexity of
their algorithm is O(r(mN + nM)). In our algorithm, we need
only to compute the values in the faces of matched cuboids as

Section A: Computer Science Theory, Methods and Tools

The Computer Journal, 2014

 by guest on M
arch 6, 2014

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

http://comjnl.oxfordjournals.org/
http://comjnl.oxfordjournals.org/

CLCSs with Run-Length Encoded Strings 3

FIGURE 2. An illustration for Equation (1) with X = ddaaadddd , Y = adaaddd and P = ddd.

(a) (b) (c)

FIGURE 3. Prisms, faces and surfaces. (a) The prism of a cuboid. (b) The face of a cuboid. (c) The surface of a cuboid.

well as partially matched cuboids. Figure 5 depicts the values
in each cuboid which are computed by our algorithm.

3. A RECURRENCE FORMULA FOR COMPUTING
CLCS

In our algorithm, we use the inverted index technique to compute
�i,j,k . Since our algorithm only computes �i,j,k in the face of each
cuboid, we shall derive a recurrence formula for them. Before

introducing the recurrence formula, we need the following terms
and properties which will be used in our algorithm.

Let T be a string and τ ∈ � a symbol in T . The position
of the ith τ in T for 1 � i � |T | is denoted by Tτ (i), where
|T | denotes the length of T . In particular, let Tτ (0) = 0. The
inverse function of Tτ is denoted by T −1

τ . That is, if Tτ (i) = j ,
then T −1

τ (j) = i. Let preu(Tτ (i)) denote the position just
preceding the (i − u + 1)th τ in T for 1 � u � i. When
u = 1, preu(Tτ (i)) is simply written as pre(Tτ (i)). Note that
preu(Tτ (i)) = pre1(Tτ (i − u + 1)) = pre(Tτ (i − u + 1)). In
particular, let pre0(Tτ (i)) = Tτ (i). For example, if u = 1, then

Section A: Computer Science Theory, Methods and Tools

The Computer Journal, 2014

 by guest on M
arch 6, 2014

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

http://comjnl.oxfordjournals.org/
http://comjnl.oxfordjournals.org/

4 J.-J. Liu et al.

FIGURE 4. The elements computed by the algorithm in [7].

FIGURE 5. The elements computed by our algorithm.

Section A: Computer Science Theory, Methods and Tools

The Computer Journal, 2014

 by guest on M
arch 6, 2014

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

http://comjnl.oxfordjournals.org/
http://comjnl.oxfordjournals.org/

CLCSs with Run-Length Encoded Strings 5

FIGURE 6. An illustration of the 3D DP lattice with X in RLE form.

pre1(Tτ (i)) is the position just preceding position j inT , namely
position j −1, where j = Tτ (i). For ti in T , the largest position
j < i (respectively, the smallest position j > i) with tj �= ti is
denoted by δT (i) (respectively, �T (i)). If Tj is ended with s τ ’s,
i.e. tj = τ and s = j − δT (j), then Tj is also represented as
Tj‖τ s . Note that Tj‖τ 0 implies that tj �= τ . For brevity, T|T |‖τ s

is simply written as T ‖τ s .

Example 3.1. We use an example to illustrate above terms.
Suppose that T = t1t2 · · · t8 = b

1
a
2
a
3
a
4
c
5
c
6
a
7
a
8
. We can find that

Ta(1) = 2, Ta(2) = 3, Ta(3) = 4, Ta(4) = 7 and Ta(5) = 8
while T −1

a (2) = 1, T −1
a (3) = 2, T −1

a (4) = 3, T −1
a (7) = 4 and

T −1
a (8) = 5. Furthermore, pre0(Ta(4)) = 7, pre1(Ta(4)) = 6,

pre2(Ta(4)) = pre(Ta(4−2+1)) = pre(Ta(3)) = 3 and so on.
In addition, δT (2) = δT (3) = δT (4) = 1 and δT (5) = 4. The
representation T ‖a2 means that T is ended with two a’s.

Let lp(ri) stand for the position of the last character of ri

in the corresponding uncompressed string. That is, lp(ri) =
l1 + l2 + · · · + li . Let σX(ri) denote the largest number j < i

such that rj = ri . If no such rj exists, then σX(ri) = 0. Note
that, when X is represented in RLE form, every cuboid in a
3D DP lattice becomes a face. Accordingly, we also call them
fully matched faces, partially matched faces and mismatched
faces. A horizontal slice containing all �lp(ri),j,k for a fixed k,
0 � k � r , is called the kth RCL table.

Example 3.2. The CLCS tables in Fig. 5 can be represented by
the RCL tables as shown in Fig. 6. Since only elements �lp(ri),j,k

are contained in a RCL table, we use their runs in X as indices.

In the following, we introduce some lemmas to compute the
values in the lp(ri)th row of a CLCS table by only using the
values in the lp(rj)th row with j � i.

Lemma 3.1 [7]. For 0 < i � M, 0 < j � n and 0 � k � r, if
ri �= yj , then �lp(ri),j,k = max{�lp(ri),δY (j),k, �lp(ri′),j,k}, where
i ′ = σX(ri).

Proposition 3.1. Assume that Z‖τu is a CLCS of Xlp(ri),

Yj and Pk with 0 < u � li . If ri = τ, then �lp(ri),j,k =
�lp(ri)−1,j,k = · · · = �lp(ri)−li+u,j,k .

Proof. If ri = τ and 0 < u � li , then we can use the first u

τ ’s in r
li
i to form Z. This implies that �lp(ri),j,k = �lp(ri)−1,j,k =

· · · = �lp(ri)−li+u,j,k .

Lemma 3.2. Assume that yj = τ, v = Y−1
τ (j) and

w = min{v, li}. If ri = yj �= pk, then �lp(ri),j,k =
max1�u�w{�lp(ri−1),preu(Yτ (v)),k + u}.
Proof. Assume that Z‖τu with 0 < u � v is a CLCS of Xlp(ri),
Yj and Pk . If u � �i , then we can assume that the last �i τ ’s
of Yj and those τ ’s in r

li
i are used to construct Z. By the non-

decreasing property of the values in each row of a CLCS table,
the length of Z, i.e. �lp(ri),j,k , is equal to �lp(ri−1),pre�i (Yτ (v)),k +�i .
If 1 < u < �i , then, by Proposition 3.1 and the second formula
in Equation (1), we can have the following derivation.

�lp(ri),j,k = �lp(ri)−li+u,j,k

= �lp(ri)−li+u−1,pre1(Yτ (v)),k + 1

= �lp(ri)−li+u−2,pre2(Yτ (v)),k + 2

...

= �lp(ri−1),preu(Yτ (v)),k + u.

As a consequence, by examining all possible values
of �lp(ri−1),preu(Yτ (v)),k + u for 1 � u � w =
min{v, �i}, the maximum value among them is the value of
�lp(ri),j,k (see Fig. 7 for an illustration). Thus, �lp(ri),j,k =
max1�u�w{�lp(ri−1),preu(Yτ (v)),k +u} and the lemma follows.

Lemma 3.3. Assume that yj = τ, v = Y−1
τ (j) and w =

min{v, li}. If ri = yj = pk, then

�lp(ri),j,k = max
1�u�w

{�lp(ri−1),preu(Yτ (v)),du
+ u}, where

du = max{k − u, δP (k)}.

Section A: Computer Science Theory, Methods and Tools

The Computer Journal, 2014

 by guest on M
arch 6, 2014

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

http://comjnl.oxfordjournals.org/
http://comjnl.oxfordjournals.org/

6 J.-J. Liu et al.

FIGURE 7. Computing �lp(r2),4,1 for illustrating Lemma 3.2.

Proof. Let α = k − δP (k). Assume that Z‖τu with u � v is a
CLCS of Xlp(ri), Yj and Pk . According to the relation between
u and li , we consider the following two cases.
Case 1. li � u.

In this case, by Proposition 3.1, �lp(ri),j,k = �lp(ri)−li+u,j,k .
If α � u, then, by applying the first formula in Equation (1) u

times, we can obtain

�lp(ri)−li+u,j,k = �lp(ri−1),preu(Yτ (v)),k−u + u.

For the case where α < u, we can apply the first formula in
Equation (1) α times. By Lemma 3.2 and the non-decreasing
property of the values in each row of a CLCS table, we can
obtain

�lp(ri)−li+u,j,k = �lp(ri)−li+u−α,preα(Yτ (v)),k−α + α

= �lp(ri)−li+u−α−(u−α),preα+u−α(Yτ (v)),k−α

+ α + (u − α)

= �lp(ri−1),preu(Yτ (v)),δP (k) + u.

Thus, in this case, �lp(ri),j,k = �lp(ri−1),preu(Yτ (v)),du
+ u where

du = k − u if α � u; otherwise, du = δP (k).
Case 2. u > li .

In this case, we also consider the possible relation between li
and α. If li > α, we can apply the first formula in Equation (1)
α times. This yields �lp(ri),j,k = �lp(ri)−α,preα(Yτ (v)),k−α + α. By
Lemma 3.2, we can have the following derivation:

�lp(ri)−α,preα(Yτ (v)),k−α + α

= �lp(ri)−α−(li−α),preα+(li−α)(Yτ (v)),k−α + α + (li − α)

= �lp(ri−1),preli (Yτ (v)),δP (k) + li .

For the case where α � li , after applying the first
formula in Equation (1) li times, this results in �lp(ri),j,k =
�lp(ri−1),preli (Yτ (v)),k−li

+ li .
From above cases, by examining the possible values

of u from 1 to w, we can obtain that �lp(ri),j,k =
max1�u�w{�lp(ri−1),preu(Yτ (v)),du

+ u}, where du = max{k − u,

δP (k)}. This concludes the proof of this lemma.

We use Fig. 8 as an example to illustrate Lemma 3.3. By
using Lemma 3.3, the values in the boxes in Fig. 8 are used to
compute �9,7,3. Note that, in computing �9,7,3, i = 3, j = 7
and k = 3. That is, lp(r3) = 9, y7 = d and v = Y−1

d (7) = 4.
According to Lemma 3.3, �9,7,3 can be computed as follows:

�9,7,3 = �lp(r3),7,3

= max
1�u�w

{�lp(r2),preu(Yd (v)),du
+ u}

= max
1�u�4

{�5,preu(Yd (v)),du
+ u}

= max{�5,6,2 + 1, �5,5,1 + 2, �5,4,0 + 3, �5,1,0 + 4}
= max{2 + 1, 3 + 2, 3 + 3, 1 + 4}
= 6.

Note that, in the above derivation, du = k − u = 3 − u for
1 � u � 3 and d4 = max{k − u, δP (k)} = max{3 − 4, 0} = 0.

For brevity, let Ri,j,k = �lp(ri),j,k for i = 1, 2, . . . , M .
Combining Lemmas 3.1–3.3, we can obtain a recurrence
formula to compute Ri,j,k as follows (see Fig. 8 for an
illustration).

Theorem 3.1. Assume that X = r
l1
1 r

l2
2 · · · rlM

M , yj = τ,

v = Y−1
τ (j), w = min{v, li} and i ′ = σX(ri). Then

Ri,j,k =

⎧⎪⎪⎨⎪⎪⎩
max{Ri,δY (j),k, Ri′,j,k} if ri �= yj ,

max
1�u�w

{Ri−1,preu(Yτ (v)),k + u} if ri = yj �= pk,

max
1�u�w

{Ri−1,preu(Yτ (v)),du
+ u} if ri = yj = pk,

(2)
with boundary conditions Ri,0,0 = R0,j,0 = 0 and R0,j,k =
Ri,0,k = −∞ where 0 � i � M, 0 � j � n, 1 � k � r,

du = max{k − u, δP (k)}.
By using a similar technique as in [7], when ri �= yj , we need

only to compute those Ri,j,k’s with j = �Y (j)−1 (see Fig. 6 as
an example). However, if some Ri−1,preu(Yτ (v)),k is not computed
when computing Ri,j,k by Equation (2) for the case where
ri = yj , then we can compute max{Ri−1,j ′,k, Ri′,preu(Yτ (v)),k}
instead, where i ′ = σX(ri−1) and j ′ = δY (preu(Yτ (v))).

Section A: Computer Science Theory, Methods and Tools

The Computer Journal, 2014

 by guest on M
arch 6, 2014

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

http://comjnl.oxfordjournals.org/
http://comjnl.oxfordjournals.org/

CLCSs with Run-Length Encoded Strings 7

FIGURE 8. Computing �lp(r3),7,3 for illustrating Lemma 3.3.

4. AN EFFICIENT WAY TO COMPUTE THE
LENGTH OF A CLCS

In Equation (2), the most time-consuming step occurs at the case
that ri = yj . It takes O(li) time for computing Ri,j,k so that the
total time complexity becomes O((l1 + l2 +· · ·+ lM)nr −ξ) =
O(mnr − ξ), where ξ is the number of mismatched elements
between ri and yj , for 1 � i � M and 1 � j � n, with
j �= �Y (j) − 1. In this section, we shall show how to compute
Ri,j,k efficiently so that the total time complexity becomes
O(min{Mn, Nm}).

In the rest of this section, we assume that ri = yj = τ ,
v = Y−1

τ (j), w = min{v, li} and α = k − δP (k) unless
otherwise stated. We also call α the thickness of the kth RCL
table. The total number of τ ’s in Y is denoted by μτ .An element
(i, j, k) in an RCL table is called a critical element if Ri,j,k is
computed by using the second or third formula in Equation (2).
For consistency, the second formula in Equation (2) is rewritten
as Ri,j,k = max

1�u�w
{Ri−1,preu(Yτ (v)),du

+ u} with du = k so as to

have the same description as the last formula in Equation (2).
For brevity, define

Rx(v) =

⎧⎪⎨⎪⎩
Ri−1,pre1(Yτ (x)),dv−x+1

+ li if 1 � x � v − w,

Ri−1,pre1(Yτ (x)),dv−x+1

+v − x + 1 if v − w + 1 � x � v,

with respect to critical element (i, Yτ (v), k), where dv−x+1 = k

for 1 � x � v when ri = yj �= pk .When context is clear,Rx(v)

is simply written as Rx . Element (i − 1, prex(Yτ (v)), dv−x+1)

and Rx for 1 � x � v are called an originating element and an

originating value, respectively, of critical element (i, j, k). For
example, see Fig. 6. Assume that, for critical element (1, 6, 2),
v = Y−1

τ (j) = Y−1
τ (7) = 3, w = min{v, li} = min{3, l1} = 2

and α = k − δP (k) = 2 − δP (2) = 2. The originating elements
of element (1, 6, 2) are (0, 1, 0), (0, 4, 0) and (0, 5, 1) whose
originating values are R1 = 0 + 2 = 2, R2 = 0 + 2 = 2 and
R3 = 0 + 1 = 1, respectively. For critical element (1, 7, 2),
v = Y−1

τ (j) = Y−1
τ (7) = 4, w = min{v, li} = min{4, l1} = 2

and α = k − δP (k) = 2 − δP (2) = 2. The originating elements
of element (1, 7, 2) are (0, 1, 0), (0, 4, 0), (0, 5, 0) and (0, 6, 1)

whose originating values are R1 = 0 + 2 = 2, R2 = 0 + 2 =
2, R3 = 0 + 2 = 2, and R4 = 0 + 1 = 1, respectively.

Proposition 4.1. For 2 � v � μτ , Rx(v) = Rx(v − 1)

for 1 � x � v − w, while Rx(v) = Rx(v − 1) + 1 for
v − w + 1 � x � v − 1.

Since Rx for 1 � x � v − w is always ≤ Rv−w+1,
Theorem 3.1 can be rewritten as follows:

Theorem 4.1. Assume that X = r
l1
1 r

l2
2 · · · rlM

M , yj = τ ,
v = Y−1

τ (j), w = min{v, li} and i ′ = σX(ri). Then

Ri,j,k =
⎧⎨⎩max{Ri,δY (j),k, Ri′,j,k} if ri �= yj ,

max
1�x�v

{Rx} otherwise, (3)

with boundary conditions Ri,0,0 = R0,j,0 = 0 and R0,j,k =
Ri,0,k = −∞ where 0 � i � M, 0 � j � n, and 1 � k � r .

Section A: Computer Science Theory, Methods and Tools

The Computer Journal, 2014

 by guest on M
arch 6, 2014

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

http://comjnl.oxfordjournals.org/
http://comjnl.oxfordjournals.org/

8 J.-J. Liu et al.

Note that if ri = yj �= pk , then all Rx for 1 � x � v are
in the kth RCL table. However, when ri = yj = pk , all Rx

for 1 � x � v may not be in the same table. We call the set
containing all Rx with du = k the base set of (i, j, k), when
ri = yj �= pk . For ri = yj = pk , the set containing all Rx

with du = δP (k) is also called the base set of (i, j, k) while the
set containing all other Rx is called the stripe set of (i, j, k).
Accordingly, the kth (respectively, δP (k)th) RCL table is called
the base table of (i, j, k) when ri = yj �= pk (respectively,
ri = yj = pk). For the previous example, see Fig. 6. Assume
that, for critical element (3, 7, 3), v = Y−1

τ (j) = Y−1
τ (7) = 4,

w = min{v, li} = min{4, l3} = 4 and α = k − δP (k) =
3 − δP (3) = 3. The originating elements of element (3, 7, 3)

are (2, 1, 0), (2, 4, 0), (2, 5, 1) and (2, 6, 2) whose originating
values are R1 = 1 + 4 = 5, R2 = 3 + 3 = 6, R3 = 3 + 2 = 5,
and R4 = 2 + 1 = 3, respectively (see the square boxes
in Fig. 8). The base and stripe sets of element (3, 7, 3) are
{R1, R2} and {R3, R4}, respectively. The base table of (3, 7, 3)

is the zeroth RCL table. Similarly, for critical element (3, 6, 3),
v = Y−1

τ (6) = Y−1
τ (6) = 3, w = min{v, li} = min{3, l3} = 3

and α = k−δP (k) = 3−δP (3) = 3. Its base and stripe sets are
{R1} = {R2,1,0} and {R2, R3} = {R2,4,1, R2,5,2}, respectively.

Lemma 4.1. Assume that ri = yj = pk = τ, v = Y−1
τ (j),

w = min{v, li} and α = k − δP (k). If α = 1, then the stripe set
of (i, j, k) is an empty set. If v < α, then the base set of (i, j, k)

is an empty set and all values in the stripe set are −∞.

Proof. If α = 1, then, by the third formula of Equation (2),
du = max{k − u, δP (k)} for 1 � u � w, where w = min{v, li}
and δP (k) = k−1. This means that du = δP (k) for 1 � u � w.
By the definition of base sets, all originating elements of (i, j, k)

are in its base table, and the stripe set of (i, j, k) is an empty
set. For the case where v < α, it is obvious that no subsequence
of Yj is the same as Pk and Ri,j,k = −∞. This further implies
that the base set of (i, j, k) is empty and all values in the stripe
set are −∞.

Assume that a1, a2, . . . , an are a list of numbers. An index is
called the ω-index of ai , denoted by ωi , for 1 � i � n if ωi =
max{j |aj = max{ai, ai+1, . . . , an}, i � j � n}, i.e. ωi � i

is the largest index such that aωi
= max{ai, ai+1, . . . , an}.

Let {ω1, ω2, . . . , ωn} be the set of ω-indices of a1, a2, . . . , an.
Merging the same ω-indices as an interval, which is represented
by their starting and ending indices, results in a set of intervals
{[f1, h1], [f2, h2], . . . , [fλ, hλ]} in which [fi, hi] is called anω-
interval. Note that fi � hi for 1 � i � λ, and fi+1 = hi +1 for
1 � i � λ−1. For example, let (3, 7, 4, 6, 2, 1, 6, 4) be a list of
numbers. Their corresponding ω-indices are 2, 2, 7, 7, 7, 7, 7, 8
and {[1, 2], [3, 7], [8, 8]} is the set of their ω-intervals.

Proposition 4.2. If {[f1, h1], [f2, h2], . . . , [fλ, hλ]} is the set
of ω-intervals of numbers a1, a2, . . . , an, then ah1 > ah2 >

· · · > ahλ
.

Let {R1, R2, . . . ,Rβ} and {Rβ+1, Rβ+2, . . . ,Rv} be the
base set and stripe set, respectively, of critical ele-
ment (i, j, k). Let {[f1, h1], [f2, h2], . . . , [fb(v), hb(v)]} and
{[f ′

1, h
′
1], [f ′

2, h
′
2], . . . , [f ′

s(v), h
′
s(v)]} be the sets of ω-intervals

of the base set and stripe set, respectively, of critical element
(i, j, k). That is, there are b(v) and s(v) ω-intervals in the base
set and stripe set, respectively, of critical element (i, j, k). Let
a(v) = b(v) + s(v). For simplicity, we use [fb(v)+x, hb(v)+x]
to represent [f ′

x, h
′
x] for 1 � x � s(v). In particular, an ω-

interval [ft , ht] is called a base ω-interval (b-interval for short)
if 1 � t � b(v) and is called a stripe ω-interval (s-interval
for short) if b(v) + 1 � t � a(v). Moreover, an ω-interval
[ft , ht] is called a critical ω-interval if Ri,j,k = Rht

, and, in
this case, ht is called the critical ω-index of (i, j, k). Collect-
ing all b-intervals (respectively, s-intervals) of critical element
(i, j, k) forms the b-interval set (respectively, s-interval set)
of (i, j, k). Let Bi(v, k) and Si(v, k) stand for the b-interval
and s-interval, respectively, sets of (i, Yτ (v), k). We use crit-
ical element (3, 7, 3) in Fig. 6 to illustrate the above terms.
Since δP (3) = 0, the 0th RCL table is the base table. Thus
{R1, R2} = {5, 6} and {R3, R4} = {5, 3} are the base and
stripe, respectively, sets. Furthermore, ω1 = ω2 = 2 for the base
set and ω3 = 3 and ω4 = 4 for the stripe set, where wx stands for
the ω-index of Rx for 1 � x � 4. Consequently, there are three
ω-intervals of element (3, 7, 3) which are [1, 2], [3, 3] and [4, 4]
in which B3(4, 3) = {[1, 2]} and S3(4, 3) = {[3, 3], [4, 4]}.
Thus, b(v) = 1, s(v) = 2 and a(v) = 3. Furthermore, since
R3,7,3 = R2 = 6, [1, 2] is the critical interval and h1 = 2 is the
critical ω-index of (3, 7, 3).

By using the concept of critical ω-indices, Theorem 4.1 can
be rewritten as Theorem 4.2.

Theorem 4.2. For critical element (i, j, k) with yj = τ,

v = Y−1
τ (j), i ′ = σX(ri), and critical ω-index ht ,

Ri,j,k =
{

max{Ri,δY (j),k, Ri′,j,k} if ri �= yj ,

Rht
otherwise,

with boundary conditions Ri,0,0 = R0,j,0 = 0 and R0,j,k =
Ri,0,k = −∞ where 0 � i � M, 0 � j � n, and 1 � k � r .

By inspection on Theorem 4.2, the time complexity on
computing Ri,j,k depends on the time for computing Rht

.
Clearly, we can compute Rht

for each critical element and it
takes O(li) time. In the following, we show that the critical ω-
index of element (i, j, k) can be found in O(1) amortized time.
Lemmas 4.2 and 4.3 describe how to find Bi(v, k) for the cases
ri = yj �= pk and ri = yj = pk with k > δP (k), respectively.

Lemma 4.2. For the case where ri = yj �= pk with j = Yτ (v),

Bi(v, k) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{[1, 1]} if v = 1,

{[f1, h1], [f2, h2], . . . ,
[ft , ht], [ft+1, v]} if v > 1 and t exists,

{[f1, v]} otherwise,

Section A: Computer Science Theory, Methods and Tools

The Computer Journal, 2014

 by guest on M
arch 6, 2014

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

http://comjnl.oxfordjournals.org/
http://comjnl.oxfordjournals.org/

CLCSs with Run-Length Encoded Strings 9

(a) (b)

FIGURE 9. Illustrations of b-interval sets. (a) ri = yj �= pk , (b) ri = yj = pk with k > δP (k).

where Si(v − 1, k) = {[f1, h1], [f2, h2], . . . , [fλ, hλ]} and t is
the largest index in [1, λ] such that Rht

(v) > Rv(v).

Proof. Clearly, Bi(1, k) = {[1, 1]} when ri = yj �= pk and v =
1. Assume that Bi(v −1, k) = {[f1, h1], [f2, h2], . . . , [fλ, hλ]}
for some 2 � v < μτ . By Proposition 4.1, Rx(v − 1) = Rx(v)

for 1 � x � v − w while Rx(v − 1) + 1 = Rx(v) for
v − w + 1 � x � v − 1. Furthermore, by Proposition 4.2,
Rhx

> Rhx+1 for 1 � x � λ. Let t be the largest index in
[1, λ] such that Rht

(v) > Rv(v) is satisfied. Thus, Rht
(v) >

Rv(v) � Rht+1(v) > Rht+2(v) > · · · > Rv−1(v). This results
in Bi(v, k) = {[f1, h1], [f2, h2], . . . , [ft , ht], [ft+1, v]}. If no
such t exists, then it is clear that Bi(v, k) = {[1, v]}. This
completes the proof.

Lemma 4.3. For the case where ri = yj = pk with k > δP (k)

and j = Yτ (v),

Bi(v, k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∅ if v < α,

{[1, 1]} if v = α,

{[f1, h1], [f2, h2], . . . ,
[ft , ht], [ft+1, v − α + 1]} if v > 1 and

t exists,

{[1, v − α + 1]} otherwise,

where Bi(v − 1, k) = {[f1, h1], [f2, h2], . . . , [fλ, hλ]} and t is
the largest index in [1, λ] such that Rht

(v) > Rv−α+1(v).

Proof. By Lemma 4.1, Bi(v, k) = ∅ when v < α. For the other
cases, by using a similar argument as in Lemma 4.2, the lemma
follows.

Figure 9(a) and (b) is used to illustrate Lemmas 4.2 and 4.3,
respectively.

Lemma 4.4. If Bi(v, k) = {[f1, h1], [f2, h2], . . . , [fλ, hλ]},
then h1 � v − w + 1.

Proof. By the non-decreasing property of the values in each
row of a CLCS table and Rx = Ri−1,pre1(Yτ (x)),dv−x+1

+ li for
1 � x � v − w, this lemma follows directly.

TABLE 1. S3(v, k).

k

v 1 2 3

1 ∅ [1, 1] [1, 1]
2 ∅ [2, 2] [2, 2]
3 ∅ [3, 3] [2, 2][3, 3]
4 ∅ [4, 4] [3, 3][4, 4]

Corollary 4.1. For the case where ri = yj �= pk or
ri = yj = pk with k = δP (k) + 1, the critical ω-index of
critical element (i, Yτ (v), k) is h1, where Bi(v, k) = {[f1, h1],
[f2, h2], . . . , [fλ, hλ]}.

Lemma 4.5 describes how to find Si(v, k) for the case where
ri = yj = pk with k > δP (k).

Lemma 4.5. For the case where ri = yj = pk with k > δP (k)

and j = Yτ (v),

Si(v, k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∅ if α = 1,

{[v, v]} if α = 2 or v < α,

{[f1, h1], [f2, h2], . . . ,
[ft , ht], [ft+1, v]} if v � α > 2 and

t exists,

{[f1, v]} otherwise,

where Si(v − 1, k − 1) = {[f1, h1], [f2, h2], . . . , [fλ, hλ]} and
t is the largest index in [1, λ] such that Rht

(v) > Rv(v).

Proof. By Lemma 4.1, Si(v, k) = ∅ when α = 1. Since all
originating values of (i, j, k) are −∞ when v < α, we can
obtain all its originating values through {[v, v]}. For the other
cases, by using a similar argument as in Lemma 4.2, the lemma
follows.

Table 1 is used to illustrate Lemma 4.5 for finding S3(v, k).

Lemma 4.6. For critical element (i, Yτ (v), k), if both b(v) and
s(v) are >0 and Rh1 < Rhb(v)+1 , then hb(v)+1 is its critical
ω-index; otherwise, h1 is its critical ω-index.

Section A: Computer Science Theory, Methods and Tools

The Computer Journal, 2014

 by guest on M
arch 6, 2014

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

http://comjnl.oxfordjournals.org/
http://comjnl.oxfordjournals.org/

10 J.-J. Liu et al.

Proof. By Proposition 4.2, Rh1 > Rh2 > · · · > Rhb(v)

and Rhb(v)+1 > Rhb(v)+2 > · · · > Rha(v)
. Clearly, if either

b(v) or s(v) is equal to 0, then h1 is the critical ω-index
of (i, Yτ (v), k). For the case where both b(v) and s(v) are
>0, Ri,j,k = max{Rh1 , Rh2 , . . . ,Rha(v)

} = max{Rh1 , Rhb(v)+1}.
Thus, if Rh1 > Rhb(v)+1 , then h1 is the critical ω-index of
(i, Yτ (v), k); otherwise, hb(v)+1 is the critical ω-index. This
completes the proof.

Lemma 4.7. The b- and s-interval sets of critical element
(i, j, k) can be constructed in O(1) amortized time.

Proof. We prove only that constructingBi(v, k) for 1 � v � μτ

can be done in O(1) amortized time. The case for constructing
Si(v, k) can be handled similarly.

Let Bi(v − 1, k) = {[f1, h1], [f2, h2], . . . , [fλ, hλ]}. Note
that, initially, Bi(1, k) = {[1, 1]} when ri = yj �= pk or
Bi(α, k) = {[1, 1]}when ri = yj = pk and k > δP (k). Let� be
the potential function of Bi(v, k) which represents the number
of intervals in Bi(v, k). It is obvious that �(Bi(1, k)) = 1. Since
the number of intervals in Bi(v, k) is never empty for v � 1,
�(Bi(v, k)) � �(Bi(1, k)). To find Bi(v, k) from Bi(v−1, k),
either a comparison or merging a subset of intervals to be a
new interval will be applied. If only a comparison is applied,
i.e. Rhλ

(v) > Rv(v), then a new interval [v, v] is appended to
Bi(v − 1, k) and we say that its cost is 1, denoted by cv = 1.
That is, �(Bi(v, k))−�(Bi(v−1, k)) = 1. If merging a subset
of m intervals to obtain Bi(v, k) is applied, then we say that its
cost is cv = m + 1, i.e. m comparisons plus one merging. This
results in �(Bi(v, k)) − �(Bi(v − 1, k)) = −m + 1. For the
former case, the amortized cost ĉv on constructing Bi(v, k) is
ĉv = cv + �(Bi(v, k)) − �(Bi(v − 1, k)) = 1 + 1 = 2. For
the latter case, the amortized cost on constructing Bi(v, k) is
ĉv = cv +�(Bi(v, k))−�(Bi(v−1, k)) = m+1−m+1 = 2.
It can be seen that the amortized costs of both operations are
O(1). This completes the proof.

Now we are at a position to describe our algorithm as follows.

Algorithm A
Input: An RLE string X and uncompressed strings Y and P in

which |Y | = n, |P | = r , and X has M runs.
Output: The length of a CLCS of X, Y , and P .

1 begin
2 Step 1. /* Initialization */
3 Ri,0,0 = R0,j,0 = 0 and R0,j,k = Ri,0,k = −∞ for

0 � i � M , 0 � j � n, and 1 � k � r;
4 Step 2. /* computing Ri,j,k*/
5 Compute Ri,j,k for 1 � i � M , 1 � j � n, and 1 � k � r

by using Theorem 4.2.
6 Step 3. Output RM,n,r ;
7 end

We summarize our result as the following theorem.

Theorem 4.3. Given strings X and Y, and a constraining
string P, the CLCS of X and Y with respect to P can be found
in O(NMr + r min{mN, nM}) time.

Proof. Assume that the RCL tables are constructed with X in
RLE format. By using the formulas in Lemmas 4.2, 4.3 and
4.5, the values in the kth RCL table for k = 0, 1, . . . , r can be
computed. By Lemmas 4.4, 4.6 and 4.7, every Ri,j,k for critical
element (i, j, k) can be computed in O(1) amortized time. Let
f1 be the number of mismatched faces and f2 be the number of
elements in partially and fully matched faces. The total time to
find the length of a CLCS isO(rf1+f2). If we construct the RCL
tables with Y in RLE format and f3 is the number of elements in
partially and fully matched faces, then the total time to find the
length of a CLCS is O(rf1 +f3). Therefore, the CLCS problem
can be solved in O(rf1 + min{f2, f3}) time. Note that, in the
worst case,f1 = NM and min{f2, f3} = r min{mN, nM}.

5. CONCLUDING REMARKS

In this paper and in [7], we solve only the case where one
of X and Y is in RLE form. Our algorithm for solving the
CLCS problem can be done in O(NMr + r min{mN, nM})
time which improves the best-known result in [7]. The reason
is that the algorithm in [7] still needs to compute all Ri,j,k in
the surface of fully matched cuboids. Note that, in describing
the time complexity, the term NMr is the maximal number of
prisms in a 3D DP lattice. It occurs only when all cuboids are
mismatched cuboids. A challenge related to this problem is to
consider the case where both X and Y are in RLE form, or even
more difficult, all three strings are in RLE form.

FUNDING

This work was supported in part by the National Science Council
of Republic of China under contracts NSC 98-2221-E-128-
003-, NSC 99-2221-E-011-106-, NSC 100-2221-E-011-067-
MY3 and NSC 101-2221-E-011-038-MY3.

REFERENCES

[1] Tsai, Y.T. (2003) The constrained common sequence problem.
Inf. Process. Lett., 88, 173–176.

[2] Chin, F.Y.L., De Santis,A., Ferrara,A.L., Ho, N.L. and Kim, S.K.
(2004)A simple algorithm for the constrained sequence problem.
Inf. Process. Lett., 90, 175–179.

[3] Arslan, A.N. and Eğecioğlu, Ö. (2005) Algorithms for the
constrained longest common subsequence problems. Int. J.
Found. Comput. Sci., 16, 1099–1109.

[4] Iliopoulos, C.S. and Rahman, M.S. (2008) New efficient
algorithms for the LCS and constrained LCS problems. Inf.
Process. Lett., 106, 13–18.

Section A: Computer Science Theory, Methods and Tools

The Computer Journal, 2014

 by guest on M
arch 6, 2014

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

http://comjnl.oxfordjournals.org/
http://comjnl.oxfordjournals.org/

CLCSs with Run-Length Encoded Strings 11

[5] Sayoood, K. and Fow, E. (eds) (2000) Introduction to Data
Compression (2nd edn). Morgan Kaufmann, Los Altos, CA.

[6] Ahsan, S.B., Aziz S.P. and Rahman, M.S. (2012) Longest
Common Subsequence Problem for Run-Length-Encoded
Strings. International Conference on Computer and Infor-
mation Technology (ICCIT), Chittagong, December 22–24,
pp. 36–41.

[7] Ann, H.Y., Yang, C.B., Tseng, C.T. and Hor C.Y. (2012) Fast
algorithms for computing the constrained LCS of run-length-
encoded strings. Theor. Comput. Sci., 432, 1–9.

[8] Apostolico, A., Landau, G.M. and Skiena, S. (1999) Matching
for run-length encoded strings. J. Complexity, 15, 4–16.

[9] Arbell, O., Landau, G.M. and Mitchell, J.S.B. (2002) Edit
distance of run-length encoded strings. Inf. Process. Lett., 83,
307–314.

[10] Bunke, H. and Csirik, J. (1995) An improved algorithm for
computing the edit distance of run length coded strings. Inf.
Process. Lett., 54, 93–96.

[11] Chen, K.Y., Hsu, P.H. and Chao, K.M. (2010) Hardness of
comparing two run-length encoded strings. J. Complexity, 26,
364–374.

[12] Chen, K.Y. and Chao, K.M. (2013)A fully compressed algorithm
for computing the edit distance of run-length encoded strings.
Algorithmica, 65, 354–370.

[13] Freschi, V. and Bogliolo, A. (2004) Longest common
subsequence between run-length-encoded strings: a new
algorithm with improved parallelism. Inf. Process. Lett., 90,
167–173.

[14] Liu, J.J., Wang, Y.L. and Lee, R.C.T. (2008) Finding a longest
common subsequence between a run-length-encoding string and
an uncompressed string. J. Complexity, 24, 173–184.

[15] Sakai,Y. (2012) Computing the Longest Common Subsequence of
two Run-Length Encoded Strings, Algorithms and Computation:
Lecture Notes in Computer Science 7676, pp. 197–206. Springer
Berlin Heidelberg.

[16] Liu, J.J., Huang, G.S., Wang, Y.L. and Lee, R.C.T. (2007) Edit
distance for a run-length-encoded string and an uncompressed
string. Inf. Process. Lett., 105, 12–16.

[17] Ahsan, S.B., Moosa, T.M., Rahman, M.S. and Shahriyar, S.
(2011) Computing a longest common subsequence of two strings
when one of them is run length encoded. INFOCOMP J. Comput.
Sci., 10, 48–55.

Section A: Computer Science Theory, Methods and Tools

The Computer Journal, 2014

 by guest on M
arch 6, 2014

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

http://comjnl.oxfordjournals.org/
http://comjnl.oxfordjournals.org/

	1 Introduction
	2 Preliminaries
	3 A recurrence formula for computing CLCS
	4 An efficient way to compute the length of a CLCS
	5 Concluding remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Symbol
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /Times-Roman
 /ZapfDingbats
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 175
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50286
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG2000
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 20
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 175
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50286
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG2000
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 20
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages true
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 175
 /MonoImageDepth 4
 /MonoImageDownsampleThreshold 1.50286
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

