
Theoretical Computer Science 432 (2012) 1–9

Contents lists available at SciVerse ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Fast algorithms for computing the constrained LCS of run-length
encoded strings✩

Hsing-Yen Ann, Chang-Biau Yang ∗, Chiou-Ting Tseng, Chiou-Yi Hor
Department of Computer Science and Engineering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan

a r t i c l e i n f o

Article history:
Received 29 January 2011
Received in revised form 30 October 2011
Accepted 16 January 2012
Communicated by ‘A. Apostolico’

Keywords:
Design of algorithms
Longest common subsequence
Run-length encoding
Constrained LCS

a b s t r a c t

The constrained LCS (CLCS) problem, a recent variant of the longest common subsequence
(LCS) problem, has gained much attention. Given two sequences X and Y of lengths n
and m, respectively, and the constrained sequence P of length r , previous research shows
that the CLCS problem can be solved by either an O(nmr)-time algorithm based upon
dynamic programming (DP) techniques or anO(rR log log(n+m))-timeHunt–Szymanski-
like algorithm, where R is the total number of ordered pairs of positions at which the two
strings match. In this paper, we investigate the case that X , Y and P are all in run-length
encoded (RLE) format, where the numbers of runs are N , M and R, respectively. We first
show that when the sequences are encoded, the CLCS problem can be solved by a simple
algorithm in O(nmR + nMr + Nmr) time without decompressing the sequences. Then, we
propose amore efficient algorithmwith O(NMr + r ×min{q1, q2}+q3) time, where q1 and
q2 denote the numbers of elements in the south and east faces of the matched blocks on
the first layer, respectively, and q3 denotes the number of face elements of all fullymatched
cuboids in the DP lattice.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The longest common subsequence (LCS) problem is awell-knownmeasurement for computing the similarity of two strings.
Given a sequence or string, a subsequence is formed by deleting zero ormore elements arbitrarily. The LCS problemmeasures
the length of the longest subsequence which is contained in the both given sequences. For example, let X = badbcacd and
Y = adacbdbc be the two input strings. The LCS of X and Y is adacd. It can be widely applied in diverse areas, such as file
comparison, pattern matching and computational biology. For example, if two DNA sequences are given, the longer the LCS
is, the more similar the two DNA sequences are. The most referred algorithm to solve the LCS problem was proposed by
Wagner and Fischer [24], which employs the dynamic programming (DP) technique. Other advanced algorithms have been
proposed. Hirschberg reduced the space requirement from quadratic to linear space [13]. Hunt and Szymanski considered
the smaller number of matching elements rather than the whole DP lattice [14]. Yang and Lee solved this problem with
parallelism [25]. When the number of input sequences increases to k, k ≥ 3, the problem is defined as themultiple-sequence
longest common subsequence (k-LCS) problem. Since the k-LCS problem has been proved as NP-hard [17], Shyu and Tsai
solved this problem by using ant colony optimization [21], and Blum et al. employed beam search to solve this problem
heuristically [7].

✩ A preliminary version of this paper was presented at the International Conference on Bioinformatics and Computational Biology, Las Vegas, USA, July,
2009.
∗ Corresponding author. Tel.: +886 7 5252000; fax: +886 7 5254301.

E-mail address: cbyang@cse.nsysu.edu.tw (C.-B. Yang).

0304-3975/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2012.01.038

http://dx.doi.org/10.1016/j.tcs.2012.01.038
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:cbyang@cse.nsysu.edu.tw
http://dx.doi.org/10.1016/j.tcs.2012.01.038

2 H.-Y. Ann et al. / Theoretical Computer Science 432 (2012) 1–9

a

b

Fig. 1. An example of the RLE format in bioinformatics. (a) The sequence and secondary structure of protein 1XFK chain A that is downloaded from PDB [6].
(b) The compressed string in RLE format.

1.1. Constrained LCS (CLCS)

Recently, the constrained LCS (CLCS) problem, a variant of the LCS problem, has gained much attention. Given two input
sequences X , Y and a constrained sequence P , the CLCS problem is to find a common subsequence Z of X and Y such that P is a
subsequence of Z and the length of Z is maximized. Tsai [22] first addressed the CLCS problem and proposed an algorithm to
solve it in O(n2m2r) time, where n,m and r denotes the lengths of X , Y and P , respectively. Two improved algorithms [4,10]
based on the DP technique were presented independently for solving this problemwith O(nmr) time and space complexity.
Iliopoulos and Rahman [15] proposed a Hunt–Szymanski-like algorithm [14] and employed a special data structure, van
Emde Boas tree [23], to solve this problem in O(rR log log(n + m)) time, where R is the total number of ordered pairs of
positions at which the two strings match. The Hunt–Szymanski-like algorithm is very efficient when R is small. However,
it should be noted that R = O(nmr) in the worst case. A more generalized version of the CLCS problem was presented by
Peng et al. [19]. In the generalized version, some of the constraints might be ignored according to the constraint weights.

1.2. Run-length encoding (RLE)

Run-length encoding (RLE) is a well-known and simple method for compressing strings [20]. It divides a string into a
sequence of runs where each run is a maximal repetitive substring of an identical symbol and it can be represented as a
pair, the symbol and the length. For example, a string aaaddccccbbbbbb is encoded as a3d2c4b6 in the RLE format. Since the
secondary structure of a protein usually repeats in a small region, the protein secondary structure sequence can be highly
compressed [11] in the RLE format. For example, Fig. 1(a) shows the sequence and secondary structure of protein 1XFK chain
A of length 346 that is downloaded from Protein Data Bank (PDB) [6]. The compressed sequence of the secondary structure in
RLE format is shown in Fig. 1(b). It is mentionable that there are seven runs containing ten or more symbols and the length
of the longest run is 23.

1.3. The LCS problem of RLE strings

Some researchers proposed the algorithms to solve the LCS problem for RLE strings efficiently without decompressing
the strings [2,8,12,16,18]. Bunke and Csirik [8] first illustrated the concept that splits the DP lattice into blocks and they
proposed an algorithm with O(nM + Nm) time for solving this problem, where N and M represent the numbers of runs in
the two given strings, respectively. Apostolico et al. [2] proposed an algorithm with O(NM logNM) time by maintaining the
collection of forced paths. Liu et al. [16] proposed the concept of processing the elements of the DP lattice run by run rather
than row by row, and the time complexity of their algorithm is O(min{nM,Nm}). Ann et al. [1] proposed an efficient DP
algorithm which combines the forced path of Apostolico et al. [2], run-by-run processing of Liu et al. [16] and optimal range
minimum query (RMQ) algorithm of Bender and Farach-Colton [5]. Their algorithm outperforms the previous works [2,8,16]
and requiresO(NM+min{p1, p2}) time,where p1 and p2 denote the numbers of elements in the bottom and right boundaries
of the matched blocks, respectively.

1.4. Our results

In this paper, we study how to compute the CLCS of the strings which are in RLE format. Similar to the concept of
Section 1.3, our goal is to develop the algorithms which depend on the parameters such as the numbers of runs rather

H.-Y. Ann et al. / Theoretical Computer Science 432 (2012) 1–9 3

than the lengths of the uncompressed strings. We first propose a simple algorithm, which extends the concepts of dividing
the DP lattice into blocks [8,12] and requires O(nmR + nMr + Nmr) time. Then we propose a more efficient algorithm by
invoking the RMQ technique. Its time complexity is O(NMr + r × min{q1, q2} + q3), where q1 and q2 denote the numbers
of elements in the south and east faces of the matched blocks on the first layer, respectively, and q3 denotes the number of
face elements of all fully matched cuboids in the DP lattice.

The rest of this paper is organized as follows. In Section 2, we present the preliminaries about solving the CLCS problem
of RLE strings. In Section 3, we first propose a simple algorithm to solve this problem, and then a more efficient algorithm is
presented. And finally, the conclusion goes in Section 4.

2. Preliminaries

2.1. Notations

Let X , Y denote the two input strings and P denote the constrained sequence, where X = x1x2 · · · xn, Y = y1y2 · · · ym
and P = p1p2 · · · pr over a finite alphabet Σ . The lengths of X , Y and P are denoted as n, m and r , respectively. If a string
is of zero length, it is denoted by an empty string φ. The string X is run-length-encoded into N runs, RX1, RX2, . . . , RXN ,
where the lengths of the runs are denoted by n1, n2, . . . , nN , respectively. Similarly, the RLE strings of Y and P are encoded
as RY1RY2 · · · RYM and RP1RP2 · · · RPR, whose lengths are denoted by m1,m2, . . . ,mM and r1, r2, . . . , rR, respectively. A
substring xixi+1 · · · xj ofX is denoted asXi..j. A prefixX1..i ofX is simply denoted asXi. The consecutive runs RXi, RXi+1, . . . , RXj
is denoted as RXi..j, which is also a substring of X . We denote the longest common subsequence Z of X and Y as LCS(X, Y),
whose length is denoted as L(X, Y). We also denote the CLCS of X and Y with respect to P as CLCS(X, Y , P), whose length
is denoted as CL(X, Y , P). For example, suppose that X = badbcacd, Y = adacbdbc and P = bbc. Then, LCS(X, Y) = adacd,
L(X, Y) = 5, CLCS(X, Y , P) = bdbc , and CL(X, Y , P) = 4.

The symbol of a given run RXi is denoted by σ(RXi). For convenient algorithm description, let σ(RX0) = σ(RY0) =

σ(RP0) = x0 = y0 = p0 = ϵ, where ϵ is a dummy character that does not appear in X , Y , or P . A pointer of the
prefix of string X which ends at the i′th element of the ith run is denoted by the couple X(i; i′). For easy representation,
let X(i; 0) = X(i − 1; ni−1). That is, X(i; 0) and X(i − 1; ni−1) point to the same position with different notations.

2.2. The properties of the CLCS problem

The traditional LCS problem (without any constraint) was solved with a DP algorithm on a 2-dimensional (2D) lattice by
Wagner and Fischer [24]. The time and space complexities of their algorithm are both O(nm). The algorithm is illustrated in
Lemma 1.

Lemma 1 (LCS). (See [24].) Given two strings, X and Y , and two distinct symbols a and b, the following conditions hold:

1. L(X, φ) = 0.
2. L(φ, Y) = 0.
3. L(Xa, Ya) = L(X, Y) + 1.
4. L(Xa, Yb) = max{L(Xa, Y), L(X, Yb)}.

For example, it is easy to verify that L(badbca, ada) = L(badbc, ad) + 1 and L(badbca, adacb) =

max{L(badbca, adac), L(badbc, adacb)}. The two well-known DP algorithms [4,10] for the CLCS problem, which are
extended from Wagner and Fischer’s DP algorithm, require a 3-dimensional (3D) DP lattice. The properties of the CLCS
problem are presented in Lemma 2.

Lemma 2 (Constrained LCS). (See [10].) Given two input strings X and Y , a constrained sequence P, and two distinct symbols a
and b, the following conditions hold:

1. CL(φ, Y , P) = −∞ if P ≠ φ.
2. CL(X, φ, P) = −∞ if P ≠ φ.
3. CL(X, Y , φ) = L(X, Y).
4. CL(Xa, Ya, Pa) = CL(X, Y , P) + 1.
5. CL(Xa, Ya, Pb) = CL(X, Y , Pb) + 1.
6. CL(Xa, Yb, P) = max{CL(Xa, Y , P), CL(X, Yb, P)}.

We use some examples to illustrate the above lemma. For Case 4, CL(badb, adacbdb, bb) = CL(bad, adacbd, b) +

1. For Case 5, CL(badbc, adacbdbc, bb) = CL(badb, adacbdb, bb) + 1. For Case 6, CL(ba, adacb, b) =

max{CL(ba, adac, b), CL(b, adacb, b)}.

4 H.-Y. Ann et al. / Theoretical Computer Science 432 (2012) 1–9

a b c

Fig. 2. (See [1].) The algorithms for solving the LCS problem on RLE strings by using the DP technique. (a) Bunke and Csirik [8]. (b) Liu et al. [16]. (c) Ann
et al. [1].

2.3. The properties of the LCS problem for RLE strings

The following lemma illustrates the properties of the LCS problem for RLE strings.

Lemma 3 (LCS for RLE). (See [1,12].) Given two strings, X and Y , and two distinct symbols a and b, the following conditions hold:

1. L(Xas, Yas) = L(X, Y) + s.
2. L(Xas1 , Yas2) = L(Xas1−s, Yas2−s) + s, where s = min{s1, s2}.
3. L(Xas, Ybt) = max{L(Xas, Y), L(X, Ybt)}.
4. (Merged light blocks.) L(Xas11 as22 · · · asii , Ybt11 bt22 · · · b

tj
j) = max{L(Xas11 as22 · · · asii , Y), L(X, Ybt11 bt22 · · · b

tj
j)}, where ai′ ≠ bj′

for each i′ ∈ [1, i] and j′ ∈ [1, j].

We illustrate the above lemma with some examples as follows. For Case 1, L(a3b6c4a5, b3a8c4b8a5) = L(a3b6c4,
b3a8c4b8) + 5. For Case 2, L(a3b6c4a12, b3a8c4b8a5) = L(a3b6c4a7, b3a8c4b8) + 5. For Case 3, L(a3b6c4a12, b3a8c4b8) =

max{L(a3b6c4a12, b3a8c4), L(a3b6c4 , b3a8c4b8)}. For Case 4, L(a3b6c4a12, b3a8c4b8d3) = max{L(a3b6c4a12, b3a8c4),
L(a3b6, b3a8c4b8d3)}.

According to the facts shown in Lemma 3, the concept that splits the original DP lattice into blocks was proposed [8],
where each block corresponds to a run pair of X and Y . If the symbol of run RXi is identical to the symbol of run RYj, we say
that the block is amatched (gray) block; otherwise it is amismatched (light) block. Fig. 2 shows examples for dividing the DP
lattice.

Bunke and Csirik’s algorithm [8] solves the LCS problem for RLE strings by the following recurrence formula, for any
0 ≤ i ≤ N, 0 ≤ i′ ≤ ni, 0 ≤ j ≤ M and 0 ≤ j′ ≤ mj,

L((i; i′), (j; j′)) =


L((i; i′ − s), (j; j′ − s)) + s, where s = min{i′, j′},

if σ(RXi) = σ(RYj),
max{L((i; i′), (j − 1;mj−1)), L((i − 1; ni−1), (j; j′))

if σ(RXi) ≠ σ(RYj),

(1)

with boundary conditions L((i; i′), (0; 0)) = L((0; 0), (j; j′)) = 0.
By applying the concept of block splitting, L(X, Y) can be computed according to the elements on the boundaries of the

blocks, rather than the whole DP lattice. In other words, the value of each element inside the blocks is never evaluated, as
shown in Fig. 2(a). Liu et al. proposed the concept to process the elements of the DP lattice run by run rather than row by
row [16], and the number of computed elements is reduced, as shown in Fig. 2(b). Furthermore, Ann et al. [1] proposed an
improved algorithm by extending the run-by-run concept [16] and employing an optimal RMQ algorithm [5] to find the
values of the elements on each forced path [1,2]. It is mentionable that the optimal RMQ method applied in Ann et al.’s
algorithm evaluates each required element in O(1) time. The number of elements to be computed in Ann et al.’s algorithm
is shown in Fig. 2(c).

3. Our algorithms

Fig. 3 shows an example of the CLCS problem, where X = a3b6c4a12, Y = b3a8c4a5b8c4a4 and P = ab. In the lowest (first)
layer, L0, the operations on the DP lattice are the same as those for the traditional LCS problem (without any constraint).
However, things change in the higher layers. In each higher layer, if the current symbols in X , Y and P are identical, the value
of an element (a position on the DP lattice) depends on a corresponding element on the next lower layer. Otherwise, the
value only depends on some elements on the same layer. Note that each element in the 3D DP lattice represents a 3-tuple
(Xi, Yj, Pk), where 0 ≤ i ≤ n, 0 ≤ j ≤ m and 0 ≤ k ≤ r . Therefore, the constrained LCS length CL(Xi, Yj, Pk) can be denoted
asCL(v) for an element v. For example, the values of elements u0, u1 and u2 depend on the values of elements v0, v1 and v2,
respectively. That is, CL(u0) = CL(v0) + 1, CL(u1) = CL(v1) + 1 and CL(u2) = CL(v2) + 1.

In the following, we first propose a simple algorithm, which extends the concept of the previous works [8,12]. Then we
will propose an improved algorithm, which employs the RMQ algorithm.

H.-Y. Ann et al. / Theoretical Computer Science 432 (2012) 1–9 5

a b c

Fig. 3. An example of the DP lattice for solving the CLCS problem. (a) The lowest (first) layer, L0 . (b) LayerL1 , where p1 = a. (c) Layer L2 , where p2 = b.

3.1. A simple algorithm: algorithm CLCS1

Some additional properties of the CLCS problem for RLE strings can be easily deduced by combining Lemmas 2 and 3 as
follows.

Corollary 1 (Constrained LCS of RLE Strings). Given two input strings X and Y , a constrained sequence P, and two distinct
symbols a and b, the following conditions hold:

1. CL(Xas1 , Yas2 , Pas3) = CL(Xas1−s, Yas2−s, Pas3−s) + s, where s = min{s1, s2, s3}.
2. CL(Xas1 , Yas2 , Pbt) = CL(Xas1−s, Yas2−s, Pbt) + s, where s = min{s1, s2}.
3. CL(Xas, Ybt , P) = max{CL(Xas, Y , P), CL(X, Ybt , P)}.
4. (Merged light blocks.) CL(Xas11 as22 · · · asii , Ybt11 bt22 · · · b

tj
j , P) = max{CL(Xas11 as22 · · · asii , Y , P), CL(X, Ybt11 bt22 · · · b

tj
j , P)},

where ai′ ≠ bj′ for each i′ ∈ [1, i] and j′ ∈ [1, j].

According to the facts shown in Corollary 1, we propose a simple algorithm by directly extending the concept of block
splitting proposed by Bunke and Csirik [8]. The recurrence formula of Algorithm CLCS1 is given as follows.

CL((i; i′), (j; j′), (k; k′)) =


CL((i; i′ − s), (j; j′ − s), (k; k′

− s)) + s, where s = min{i′, j′, k′
},

if σ(RXi) = σ(RYj) = σ(RPk),
CL((i; i′ − s), (j; j′ − s), (k; k′)) + s, where s = min{i′, j′},
if σ(RXi) = σ(RYj) ≠ σ(RPk),

max{CL((i; i′), (j − 1;mj−1), (k; k′)), CL((i − 1; ni−1), (j; j′), (k; k′))},
if σ(RXi) ≠ σ(RYj)

(2)

for 1 ≤ i ≤ N, 1 ≤ j ≤ M, 1 ≤ k ≤ R, and that at least one of i′ = ni, j′ = mj and k′
= rk holds, and with boundary

conditions,
CL((i; i′), (0; 0), (0; 0)) = L((0; 0), (j; j′), (0; 0)) = 0
and
CL((i; i′), (0; 0), (k; k′)) = L((0; 0), (j; j′), (k; k′)) = −∞,
for 0 ≤ i ≤ N, 0 ≤ i′ ≤ ni, 0 ≤ j ≤ M, 0 ≤ j′ ≤ mj, 1 ≤ k ≤ R, and 0 ≤ k′

≤ rk.
Note that the the DP lattice to be divided for the traditional LCS problem [8] is in 2D space, but the DP lattice for solving

the CLCS problem is in 3D space. In our new algorithm, a 3D DP lattice is divided into N × M × R cuboids, where each
cuboid corresponds to a tuple of runs of X , Y and P . For example, cuboid Ci,j,k is denoted as the tuple of RXi, RYj and RPk.
We call Ci,j,k a fully matched cuboid (black cuboid) if σ(RXi) = σ(RYj) = σ(RPk), and a partially matched cuboid (gray cuboid)
if σ(RXi) = σ(RYj) ≠ σ(RPk). Otherwise, Ci,j,k is called a mismatched cuboid (light cuboid). Meanwhile, the boundary of a
cuboid is called a face in 3D space.

Fig. 3 shows an example of the CLCS problem of RLE strings, where X = a3b6c4a12, Y = b3a8c4a5b8c4a4 and P = ab.
If only one layer of the DP lattice is considered, the black blocks, gray blocks and light blocks represent the slices of the fully
matched cuboids, partially matched cuboids and mismatched cuboids, respectively. The behaviors of the gray blocks and
light blocks in Fig. 3 are the same as the matched blocks and mismatched blocks in Bunke and Csirik’s algorithm [8]. That
is, the elements in these blocks only depend on the other elements on the same layer. However, the elements in the black
blocks depend on the lower layers.

For a convenient description of the calculation in our algorithm, we show the directions of the six faces of one cuboid,
north, south, east, west, top and bottom in Fig. 4(b), and the three axes X , Y and P in 4(c). In Eq. (2), only the elements on the
south, east and top faces of each cuboid have to be evaluated. The combination of these three faces with the faces of three
neighboring cuboids form a hollow cuboid with thickness 1, as shown in Fig. 4(a). It is clear that under the random access
machine (RAM) model, we can easily apply the technique proposed by Bunke and Csirik [8] to prevent the allocation and
initialization of the elements which are never evaluated. Fig. 5 shows the elements that need be calculated in these three
kinds of cuboids. The time complexity of Algorithm CLCS1 is shown in the following theorem.

6 H.-Y. Ann et al. / Theoretical Computer Science 432 (2012) 1–9

a b c

Fig. 4. The 3D view of one cuboid. (a) The elements that should be calculated in each hollow cuboid. (b) The directions of the six faces of one cuboid. (c)
The directions of the three axes.

a b c

Fig. 5. Time complexity analysis of Algorithm CLCS1. (a) The elements calculated in a mismatched cuboid, which form a hollow cuboid with thickness 1.
(b) The elements calculated in a partially matched cuboid, which form a hollow cuboid with thickness 1. (c) The elements calculated in a fully matched
cuboid, which form a hollow cuboid with thickness 1.

Theorem 1. Given two input sequences X, Y and a constrained sequence P with lengths n, m and r, respectively, which are
encoded in RLE format into N, M and R runs, respectively, Algorithm CLCS1 computes the length of CLCS of X and Y with respect
to P in O(nmR + nMr + Nmr) time.

Proof. In Eq. (2), for Case 1, at lease one of i′ − s, j′ − s and k′
− s has value of 0, which means that a certain face element

of the previous run in X , Y or P is used. Similarly, in the other two cases, only face elements are used for calculation. Thus,
the calculation of the elements on the south, east and top faces is enough for solving the CLCS problem. The total number
of these face elements is O(nmR + nMr + Nmr). Besides, each calculation requires only constant time. This leads to the
correctness of the theorem. �

3.2. An improved algorithm: algorithm CLCS2

By observing the 3D DP lattice, the following facts can be found.

Lemma 4 (Two Kinds of Paths). Given a layer of the DP lattice for the CLCS problem of RLE strings, the following conditions hold:

1. If the symbol of the current run RXi in X is different from the current symbol in P, the blocks corresponding to the current run
RXi are either partially matched or mismatched.

2. If the symbol of the current run RXi is identical to the current symbol in P, the blocks corresponding to the current run RXi are
either fully matched or mismatched.

Fig. 6(a) illustrates an example for Case 1 of the above lemma, where the current symbol of P is b. The blocks
corresponding to RX4 = a12 are either partially matched or mismatched. When the property of merged light blocks (Case 4
of Corollary 1) is applied, the destination u1 of the big leap from u0 is also on the boundary of a partially matched block,
but never a fully matched block. Furthermore, the calculation of the south boundary elements of RX4 never depends on the
lower layer. That is, only the elements on the same layer are used for the calculation. In this situation, the computation job
is completely the same as a 2D lattice. Thus, the optimal RMQ technique used in Ann et al.’s work [1] for the traditional LCS
problem of RLE strings can be applied here.

We use the example shown in Fig. 6(a) to explain the idea of the RMQ technique used in Ann et al.’s work [1]. Suppose
element v0 is to be calculated. Conceptually, in the figure, each element is on either the east or south boundary. Here, we
also use v0 to denote the value of itself since there is no ambiguity. Only v1 is needed to calculate v0, that is v0 = v1 + d1.
To calculate v1, two values v2 and v6 are needed, that is v1 = max{v2, v6}. Similarly, v2 = v3 + d2, v3 = max{v4, v7},
v4 = max{v5, v8} and v5 = u0 + d3. The elements should be considered in the calculation of an element form a forced
path [2]. For example, the forced path of vo consists of v1, v2, v3, v4, v5 and u0.

By combining the above equations and removing some variables, we can get a clearer equation v0 = max{v6 + d1, v7 +

(d1+d2), v8+(d1+d2), u0+(d1+d2+d3)}. u0 can be further calculated bymax{u1, u2}. As one can see, each of {u2, v6, v7, v8}

is at the southeast corner of a certain block, and u1 locates at the south boundary of a partially matched block. In summary,

H.-Y. Ann et al. / Theoretical Computer Science 432 (2012) 1–9 7

a b

Fig. 6. The calculation of the elements on the boundaries. (a) The calculation of an element on the south boundary of a gray block, where the current symbol
of P is b. (b) The calculation of the boundary element of a black block, where the current symbol of P is a.

a b c

Fig. 7. Time complexity analysis of Algorithm CLCS2. (a) The elements calculated in a mismatched cuboid, which form a square prism with base 1 × 1. (b)
The elements calculated in a partially matched cuboid, which form the south face of the cuboid with thickness 1 on the south. (c) The elements calculated
in a fully matched cuboid, which form a hollow cuboid with thickness 1.

the elements needed to be calculated in the DP lattice for Case 1 of Lemma 4 include the south boundaries of all partially
matched blocks and the southeast corners of the other blocks.

Let C(v) denote the number of occurrences of the matched symbol in the east side of v. Then, v0 = max{v6 + C(v6) −

d0, v7 + C(v7) − d0, v8 + C(v8) − d0, u0 + C(u0) − d0} = max{v6 + C(v6), v7 + C(v7), v8 + C(v8), u0 + C(u0)} − d0. One
can see that different v0 in the south boundary will have different value of d0 and involve different range of elements on
the boundaries of the north neighbor blocks. Since the elements on the boundaries of the north neighbor blocks have been
calculated completely before they are used in the south boundary, the RMQ technique can be applied here. Thus, the above
formula can be further reduced as v0 = max{ RMQ {v6 + C(v6), v7 + C(v7), v8 + C(v8)},max{u1, u2} + C(u0)} − d0. The
calculation of each element requires only O(1) time with the RMQ technique. Readers interested in formal description of
the RMQ technique used in Ann et al.’s work can refer to their article [1].

However, as shown in Figs. 3 and 6(b), an element needs refer to the lower layer if it is located in a fully matched block
(or cuboid). Such a calculation involves two layers, so it is difficult to directly apply the RMQ technique for computing the
face elements in the fully matched cuboids. Nevertheless, we can still apply the property of merged light blocks (Case 4 of
Corollary 1). This means that, to solve this problem, we have to evaluate all face elements of the fullymatched cuboids. Fig. 7
shows the elements that need to be calculated in these three kinds of cuboids.

The formal description of Algorithm CLCS2 is given as follows.

Case 1 (southeast pillar of a light cuboid) CL((i; ni), (j;mj), (k; k′)) = max{CL((i − 1; ni−1), (j;mj), (k; k′)),
CL((i; ni), (j − 1;mj−1), (k; k′))}, if σ(RXi) ≠ σ(RYj).

Case 2 (south face of a gray cuboid) Calculate CL((i; ni), (j; j′), (k; k′)) with the RMQ technique, if σ(RXi) = σ(RYj) ≠

σ(RPk).
Case 3 (black cuboid) If σ(RXi) = σ(RYj) = σ(RPk), calculate CL((i; i′), (j; j′), (k; k′)), where i′ = 1 or i′ = ni or j′ = 1

or j′ = mj or k′
= 1 or k′

= rk.
Case 3.1 (south, east and top faces) CL((i; i′), (j; j′), (k; k′)) = CL((i; i′ − s), (j; j′ − s), (k; k′

− s)) + s, where
s = min{i′, j′, k′

} − 1, if i′ = ni or j′ = mj or k′
= rk, but i′ ≠ 1, j′ ≠ 1 and k′

≠ 1.
Case 3.2 (northwest pillar) CL((i; 1), (j; 1), (k; k′)) = CL((i − 1; ni−1), (j − 1;mj−1), (k; k′

− 1)) + 1 .
Case 3.3 (bottom face) CL((i; i′), (j; j′), (k; 1)) = CL((i; i′ − 1), (j; j′ − 1), (k − 1; rk−1)) + 1, where i′, j′ ≥ 2.

((i; i′ − 1), (j; j′ − 1), (k− 1; rk−1)) locates at the top face of a gray cuboid and its value can be obtained by the
RMQ method used in Case 2.

Case 3.4 (north face) CL((i; 1), (j; j′), (k; k′)) = CL((i − 1; ni−1), (j; j′ − 1), (k; k′
− 1)) + 1 = max{CL((i −

1; ni−1), (j − 1;mj−1), (k; k′
− 1)), CL((î; nî), (j; j

′
− 1), (k; k′

− 1))} + 1, where j′ ≥ 2, 0 ≤ î < i,
σ(RXî) = σ(RPk) and σ(RPk) /∈ {σ(RXî+1), σ (RXî+2), . . . , σ (RXi−1)}.
Note that ((î; nî), (j; j

′
− 1), (k; k′

− 1)) is located at the south face of a black cuboid when k′
≥ 2, or the south

face of a gray cuboid when k′
= 1.

Case 3.5 (west face) CL((i; i′), (j; 1), (k; k′)) = CL((i; i′ − 1), (j − 1;mj−1), (k; k′
− 1)) + 1 = max{CL((i −

1; ni−1), (j − 1;mj−1), (k; k′
− 1)), CL((i; i′ − 1), (ĵ;mĵ), (k; k

′
− 1))} + 1, where i′ ≥ 2, 0 ≤ ĵ < j,

8 H.-Y. Ann et al. / Theoretical Computer Science 432 (2012) 1–9

σ(RYĵ) = σ(RPk) and σ(RPk) /∈ {σ(RYĵ+1), σ (RYĵ+2), . . . , σ (RYj−1)}.
Note that ((i; i′ − 1), (ĵ;mĵ), (k; k

′
− 1)) is located at the east face of a black cuboid when k′

≥ 2. It is located
at the east face of a gray cuboid when k′

= 1 and its value can be obtained by the RMQmethod used in Case 2.
Case 4 (boundary conditions) CL((i; i′), (0; 0), (0; 0)) = L((0; 0), (j; j′), (0; 0)) = 0

and
CL((i; i′), (0; 0), (k; k′)) = L((0; 0), (j; j′), (k; k′)) = −∞,
for 0 ≤ i ≤ N, 0 ≤ i′ ≤ ni, 0 ≤ j ≤ M, 0 ≤ j′ ≤ mj, 1 ≤ k ≤ R, and 0 ≤ k′

≤ rk.

In Case 3.1, it computes the south, east and top faces, which will refer to the elements on the north, west or bottom
faces. Cases 3.3, 3.4 and 3.5 calculate the elements on the bottom, north and west faces, respectively. In Case 3.3, ((i; i′ − 1),
(j; j′ − 1), (k − 1; rk−1)) is on the top face of run RPk−1, where σ(RXi) = σ(RYj) ≠ σ(RPk−1). This top face is also a gray
block on a 2D XY -plane, thus CL((i; i′ − 1), (j; j′ − 1), (k − 1; rk−1)) can be calculated by the RMQ technique. Note that
the calculation in Case 2 is to get the values of the elements on the south face of a gray cuboid. Obviously, the same RMQ
technique can be applied to both Case 2 and Case 3.3. It is similar in Case 3.5 when k′

= 1. The time complexity of Algorithm
CLCS2 is given in the following theorem.

Theorem 2. Given two input sequences X, Y and a constrained sequence P with lengths n,mand r, respectively,which are encoded
in RLE format into N, M and R runs, respectively, Algorithm CLCS2 computes the length of the CLCS of X and Y with respect to P in
O(NMr + r ×min{q1, q2}+ q3) time, where q1 and q2 denote the numbers of elements in the south and east faces of the partially
matched blocks on the first layer L0, respectively, and q3 denotes the number of face elements of all fully matched cuboids in the
DP lattice.

Proof. In every case, the calculation for obtaining the value of one element requires O(1) time. Thus, we can focus on the
number of elements calculated in each case. For Case 1, only one element is calculated in a light block on an XY -plane.
There are O(NM) light blocks on a 2D XY -plane, and the height is r , so O(NMr) elements are calculated. Case 2 computes
the elements of the south face on the 3D view (boundary of a gray block on a 2D plane). It is clear that there are q1 such
elements. If the number of elements on the east face, denoted by q2, is less than q1, we can exchange the roles of X and Y
to make the south face have fewer elements. Thus, the calculation in Case 2 requires O(r × min{q1, q2}) time. In Case 3.4, a
matched table that can be built in advance helps us to find the previous match in string X with O(1) time. Case 3.5 is similar
to Case 3.4. In Cases 3.3 and 3.5, the RMQmethod is invoked once to calculate one element, which requires O(1) time. Case
3 computes all elements of the six faces of all fully matched cuboids, and thus it requires O(q3) time. The preprocessing time
for constructing an RMQ data structure of n elements is O(n). So, the total time required for RMQ construction do not exceed
the total time required for the element calculation. Finally, we get the time complexity in this theorem. �

It is clear that the number of calculated elements in Algorithm CLCS2 is less than that in Algorithm CLCS1. One can also
observe this fact by comparing Figs. 5 and 7.

4. Conclusion

In this paper, we study how to solve the CLCS problem more efficiently if the input strings and the constrained
sequence are compressed in RLE format. For this purpose, we propose two algorithms for solving the CLCS problem
without decompressing the encoded strings. Our algorithms calculate only the subset of the elements in the original
3D DP lattice. We first propose a simple algorithm, which requires O(nmR + nMr + Nmr) time. Then we propose an
improved algorithms by applying the RMQ technique used in Ann et al.’s work [1]. The time complexity of this algorithm is
O(NMr + r × min{q1, q2} + q3) time, where q1 and q2 denote the numbers of elements in the south and east faces of the
matched blocks on the first layer, respectively, and q3 denotes the number of face elements of all fully matched cuboids in
the DP lattice. The improvement can be obviously seen by comparing Figs. 5 and 7.

In the future, our work will be to find more properties of the cuboids, which may be useful to avoid the unnecessary
calculation of the cuboid faces. There are still various kinds of constraints thatmay be applied to the LCS problem, such as the
regular expression constraint [3], string-inclusion constraint and sequence-exclusion constraint [9]. We are also interested
in how our concepts are applied to these variants.

Acknowledgement

This research work was partially supported by the National Science Council of Taiwan under contract NSC-97-2221-E-
110-064.

References

[1] H.Y. Ann, C.B. Yang, C.T. Tseng, C.Y. Hor, A fast and simple algorithm for computing the longest common subsequence of run-length encoded strings,
Information Processing Letters 108 (2008) 360–364.

[2] A. Apostolico, G.M. Landau, S. Skiena, Matching for run-length encoded strings, Journal of Complexity 15 (1) (1999) 4–16.
[3] A.N. Arslan, Regular expression constrained sequence alignment, Journal of Discrete Algorithms 5 (4) (2007) 647–661.

H.-Y. Ann et al. / Theoretical Computer Science 432 (2012) 1–9 9

[4] A.N. Arslan, Ö. Eğecioğlu, Algorithms for the constrained longest common subsequence problems, International Journal of Foundations Computer
Science 16 (6) (2005) 1099–1109.

[5] M.A. Bender, M. Farach-Colton, The LCA problem revisited, in: LATIN 2000: Theoretical Informatics, 4th Latin American Symposium, Punta del Este,
Uruguay, 2000, pp. 88–94.

[6] H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissing, I.N. Shindyalov, P.E. Bourne, The protein data bank, Nucleic Acids Research 28
(2000) 235–242.

[7] C. Blum, M.J. Blesa, M. López-Ibáñez, Beam search for the longest common subsequence problem, Computers and Operations Research 36 (12) (2009)
3178–3186.

[8] H. Bunke, J. Csirik, An improved algorithm for computing the edit distance of run-length coded strings, Information Processing Letters 54 (2) (1995)
93–96.

[9] Y.C. Chen, K.M. Chao, On the generalized constrained longest common subsequence problems, Journal of Combinatorial Optimization 21 (3) (2011)
383–392.

[10] F.Y.L. Chin, A.D. Santis, A.L. Ferrara, N.L. Ho, S.K. Kim, A simple algorithm for the constrained sequence problems, Information Processing Letters 90
(4) (2004) 175–179.

[11] M.Y. Eltabakh,W.K.Hon,W.A.R. Shah, J.S. Vitter, The SBC-tree: An index for run-length compressed sequences, in: Proceedings of the 11th International
Conference on Extending Database Technology, Nantes, France, 2008, pp. 523–534.

[12] V. Freschi, A. Bogliolo, Longest common subsequence between run-length-encoded strings: a new algorithm with improved parallelism, Information
Processing Letters 90 (2004) 167–173.

[13] D.S. Hirschberg, Algorithms for the longest common subsequence problem, Journal of the ACM 24 (4) (1977) 664–675.
[14] J.W. Hunt, T.G. Szymanski, A fast algorithm for computing longest common subsequences, Communications of the ACM 20 (5) (1977) 350–353.
[15] C.S. Iliopoulos, M.S. Rahman, New efficient algorithms for the LCS and constrained LCS problems, Information Processing Letters 106 (1) (2008) 13–18.
[16] J.J. Liu, Y.L. Wang, R.C.T. Lee, Finding a longest common subsequence between a run-length-encoded string and an uncompressed string, Journal of

Complexity 24 (2) (2008) 173–184.
[17] D. Maier, The complexity of some problems on subsequences and supersequences, Journal of the ACM 25 (1978) 322–336.
[18] J.S.B. Mitchell, A geometric shortest path problem, with application to computing a longest common subsequence in run-length encoded strings,

Technical Report Department of Applied Mathematics, SUNY Stony Brook, 1997.
[19] Y.-H. Peng, C.-B. Yang, K.-S. Huang, K.-T. Tseng, An algorithm and applications to sequence alignment with weighted constraints, International Journal

of Foundations of Computer Science 21 (1) (2010) 51–59.
[20] K. Sayoood, E.F. (Eds.), Introduction to Data Compression, second ed., Morgan Kaufmann, Los Altos, CA, 2000.
[21] S.J. Shyu, C.-Y. Tsai, Finding the longest common subsequence formultiple biological sequences by ant colony optimization, Computers andOperations

Research 36 (1) (2009) 73–91.
[22] Y.T. Tsai, The constrained longest common subsequence problem, Information Processing Letters 88 (4) (2003) 173–176.
[23] P. van Emde Boas, Preserving order in a forest in less than logarithmic time and linear space, Information Processing Letters 6 (3) (1977) 80–82.
[24] R. Wagner, M. Fischer, The string-to-string correction problem, Journal of the ACM 21 (1) (1974) 168–173.
[25] C.B. Yang, R.C.T. Lee, Systolic algorithm for the longest common subsequence problem, Journal of the Chinese Institute of Engineers 10 (6) (1987)

691–699.

	Fast algorithms for computing the constrained LCS of run-length encoded strings
	Introduction
	Constrained LCS (CLCS)
	Run-length encoding (RLE)
	The LCS problem of RLE strings
	Our results

	Preliminaries
	Notations
	The properties of the CLCS problem
	The properties of the LCS problem for RLE strings

	Our algorithms
	A simple algorithm: algorithm CLCS1
	An improved algorithm: algorithm CLCS2

	Conclusion
	Acknowledgement
	References

