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ABSTRACT

The sine cosine algorithm (SCA), a recently proposed population-based optimization algorithm, is based
on the use of sine and cosine trigonometric functions as operators to update the movements of the search
agents. To optimize performance, different parameters on the SCA must be appropriately tuned. Setting
such parameters is challenging because they permit the algorithm to escape from local optima and avoid
premature convergence. The main drawback of the SCA is that the parameter setting only affects the
exploitation of the prominent regions. However, the SCA has good exploration capabilities. This article
presents an enhanced version of the SCA by merging it with particle swarm optimization (PSO). PSO ex-
ploits the search space better than the operators of the standard SCA. The proposed algorithm, called
ASCA-PSO, has been tested over several unimodal and multimodal benchmark functions, which show its
superiority over the SCA and other recent and standard meta-heuristic algorithms. Moreover, to verify the
capabilities of the SCA, the SCA has been used to solve the real-world problem of a pairwise local align-
ment algorithm that tends to find the longest consecutive substrings between two biological sequences.
Experimental results provide evidence of the good performance of the ASCA-PSO solutions in terms of
accuracy and computational time.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In the past two decades, nature-inspired optimization meth-
ods, also called meta-heuristic algorithms (MAs), have attracted the
attention of researchers from a variety of fields (Boussaid, Lep-
agnot, & Siarry, 2013). MAs search for optimal solutions based
on a search strategy that imitates a natural behavior. In this
sense, different metaphors are created in MAs, such as genetic
algorithms (GAs) (Holland, 1992) and differential evolution (DE)
(Storn & Price, 1997), which are based on evolutionary theory. Ad-
ditionally, physically based algorithms include methods such as
the sine cosine algorithm (SCA) (Mirjalili, 2016), the ions mo-
tion optimization (IMO) (Javidy, Hatamlou, & Mirjalili, 2015) and
the gravitational search algorithm (GSA) (Rashedi, Nezamabadi-
Pour, & Saryazdi, 2009). Another group of methods is based on
insects and other animals and includes particle swarm optimiza-
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tion (PSO) (Kennedy, 1995), artificial bee colony (ABC) (Karaboga &
Akay, 2009) and moth-flame optimization (MFO) (Mirjalili, 2015).
Other algorithms imitate human concepts (or creations), such as
the mine blast algorithm (MBA) (Sadollah, Bahreininejad, Eskan-
dar, & Hamdi, 2013) and teaching learning-based algorithm (TLBO)
(Rao, Savsani, & Vakharia, 2011).

Two contradictory factors must be considered in designing new
MAs: the exploration of the search space (diversification) and the
exploitation of prominent regions (intensification). Exploration is
used to diversify the regions of the search space to ensure that all
regions of the search space are evenly explored and that the search
is not confined to a limited number of regions and, in addition, to
avoid becoming trapped in local minima. Exploitation is the pro-
cess of analyzing the bounded search area around the best solution
in order to improve it. Balancing between exploration and exploita-
tion is essential to enhancing the efficiency of a meta-heuristic al-
gorithm.

In the related literature, a substantial number of meta-
heuristics can be attributed to the no-free-lunch (NFL) theo-
rem (Wolpert & Macready, 1997), which states that the success
of an optimization technique in addressing a specific problem
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does not guarantee success in different optimization problems
with different natures and types. Hence, according to NFL, the
research in meta-heuristics has three main directions: (1) the
improvement of current methods, (2) the creation of new al-
gorithms, and (3) the combination of different meta-heuristics.
The first direction modifies the operators to enhance the perfor-
mance of the existing approaches, such as chaotic maps (Wang,
Guo, Gandomi, Hao, & Wang, 2014; Petrovi¢, Miti¢, Vukovi¢, &
Miljkovic, 2016), local searches (Cao, Li, & Chaovalitwongse, 2017;
Premalatha & Natarajan, 2008) and evolutionary operators (Wang,
Guo, Duan, Liu, & Wang, 2012; Wang, Deb, Gandomi, & Alavi,
2016). The second direction proposes new optimization mecha-
nisms inspired by different behaviors, such as the slap swarm
algorithm (SSA) (Mirjalili et al., 2017), whale optimization algo-
rithm (WOA) (Mirjalili & Hatamlou, 2016) and multi-verse opti-
mizer (MVO) (Mirjalili & Lewis, 2016). The most recent direction
for meta-heuristics is hybridizing different optimization algorithms
to benefit from each of their advantages (Garg, 2016; Giicyetmez
& Cam 2016; Santra, Mukherjee, Sarker, & Chatterjee, 2016; Yang,
Wang, Lin, & Chen, 2016).

One of the main problems of MAs is that they commonly have
parameters that must be tuned according to the problems to be
solved. In this context, the SCA possesses several parameters that
must be tuned to maximize performance in the optimization pro-
cess. Tuning these parameters is challenging, and if they are not
correctly selected, the algorithms can become trapping in local op-
tima or premature convergence. However, the main advantage of
the SCA is its power of exploration of the search space. SCA has
been used in applications and has efficient performance on prob-
lems such as handwritten Arabic text (Mudhsh, Xiong, El Aziz,
Hassanien, & Duan, 2017), photovoltaic systems (Kumar, Hussain,
Singh, & Panigrahi, 2017) and detection of galaxies using image
retrieval (Abd ElAziz, Xiong, & Selim, 2017). However, according
to the NFL theory, the SCA would not perform well on all opti-
mization problems, including finding the longest consecutive sub-
strings between two biological sequences. This article introduces
an enhanced version of the SCA and merges it with PSO, a tradi-
tional optimization algorithm inspired by the behavior of flocking
birds or schooling fish. The main advantages of PSO are robustness,
the need for few parameters and the efficient exploitation of the
search space.

Considering the above, performance of the SCA is improved by
integrating the features of PSO to exploit the optimal solutions
with the capabilities of the SCA to explore the entire search space.
This hybridization provides a good balance between exploration
and exploitation throughout the iterative process.

The proposed algorithm is called ASCA-PSO and consists of two
layers: the bottom layer is responsible for exploration the search
space, which is performed by the search agents of the SCA; the
top layer is responsible for the exploitation of the best solution
found by the bottom layer based on the search agents of the PSO.
The proposed approach enables a good diversification of the pop-
ulation and preserves the best information on the position at each
iteration.

To verify the performance of the proposed algorithm, it was
tested over a set of mathematical optimization problems with dif-
ferent degrees of difficulty. Moreover, the local sequence alignment
(LSA) problem is used as a case of study for testing the improved
ASCA-PSO. The experimental results on both the mathematical and
LSA problem provide evidence of the accuracy of the proposed
method in complex optimization problems and show that it main-
tains balance with regard to the computational time.

The remainder of this paper is organized as follows.
Section 2 describes the preliminaries for the standard SCA
and PSO. The proposed technique is presented in Section 3.
Section 4 describes the results of the proposed algorithm com-

pared with the testing benchmark functions. Section 5 provides
the fragmentation local sequence alignment technique based
on a proposed algorithm for comparison with the SCA. Finally,
Section 6 presents the conclusions.

2. Preliminaries

This section provides a brief explanation of the basic framework
of PSO and the SCA along with some of the fundamental concepts.

2.1. Particle swarm optimization (PSO)

Swarm optimization algorithms are stochastic population-based
search methods that mimic the behavior of fish schooling, birds
flocking and other grouping behaviors. The search strategy of
these algorithms is mainly based on global communications among
the individuals of the population, where the particles adapt their
movements toward the particle that finds the best solution. PSO
generates a swarm of particles, and each particle has a position
(a solution to the problem) in the search space. All particles tune
their movements according to Eqs. (1) and (2) toward the parti-
cle (Pgbest) that has the best position (the global best solution) and
the best personal position (P;Pest) for each particle pass during the
previous iterations.

Vit +1) =w=x v;(t) + c¢; rand (PP — P(t))
+ ¢ rand (Pt — Pi(t)) (1)

R(t+1) = R+ vi(t+1) (2)

Here, v; is the velocity of the ith particle, c¢; is the best local po-
sition weight coefficient, and c, is the global best position weight
coefficient. w is the inertia coefficient that controls the effect of
the previous velocity on the new velocity. P; is the position of par-
ticle i, t is the iteration number, and rand is a uniformly distributed
random variable in the range (0-1). P;"®st is the best local position
(solution) found by particle P;, and Pgbest is the best solution found
in the whole swarm.

PSO has several advantages, such as robustness and information
interchange among particles, which provides a high probability of
achieving a near-optimal solution with a reasonable convergence
speed. PSO has been used to solve many optimization problems,
such as the optimization of the parameters of electrical motors
(Calvini, Carpita, Formentini, & Marchesoni, 2015), solar cell design
(Khanna, Das, Bisht, & Singh, 2015) and surgical robot applications
(Tuvayanond & Parnichkun, 2017). The steps of PSO are summa-
rized in Algorithm 1.

The time complexity of a PSO is O(T*n*cpso), where n is the
number of particles, cpso is the time cost of updating the position
of one particle and T is the number of iterations.

2.2. Sine-cosine optimization algorithm (SCA)

SCA is a population-based optimization algorithm that depends
on sine and cosine operators for updating the movement of the

Algorithm 1 Particle swarm optimization.

1: Initialize a set of population solutions (P;), initial velocity (v;) and
algorithm’s parameters (cq, ¢; and w)

2: Repeat

3: Evaluate the objective function based on population solutions

4: Update the best local solution for each particle (P;best)

5: Update the best global solution over all particles (Pgpest)

6: Update the next position of population solutions using Eqs. (1) and (2)

7: Until (T < maximum number of iterations)

8: Return the best solution (P#"¢s') obtained as the global optimum
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Fig. 1. The structure of the proposed adaptive SCA-PSO.

Algorithm 2 Sine-cosine optimization algorithm.

1: Initialize an N search agents (P;) where 1 <i <N, algorithm parameters (rq,
13, 13, and r4)

2: Repeat

3: Evaluate the objective function based on search agents

4: Update the best solution obtained so far (Pgpes;)

5: Update ry, 1, r3 and r4

6: Update the next position of each search agent solutions using Eq. (3)

7: Until (T <maximum number of iterations)

8: Return the best solution (PgP*t) obtained as the global optimum solution
found

search agents toward the best solution found according to Eq. (3).

Pt _ P!+ rysin(r3) | ry pgbest _ pf } 14 <05 3
l P+ 1ycos(ry) | ry pebest _ pt | rs> 05

where rq is the parameter responsible for determining the next
region of the search and increasing the exploration of the search
space for a higher value of it, r, defines the direction of movement
toward or away from Pgp,es and how far the movement should go,
and r3 controls the effect of the destination on the current move-
ment.

The values of ry, r, and r3 are updated at each iteration to in-
crease the diversity of the solutions. r4 is used to switch between
the sine and cosine functions, as in Eq. (3). Eq. (4) is used to bal-
ance between exploration and exploitation, where t is the current
iteration, T is the maximum number of iterations, and a is a con-
stant that should be set by the designer.

n=a (1—%) (4)

The steps of the SCA are presented in Algorithm 2. The time
complexity of the SCA is O(T*n*csca), where n is the number of
search agents, csc, is the time cost of updating the positions of the
search agent and T is the number of iterations.

3. Adaptive sine cosine integrated with particle swarm
(ASCA-PSO)

In this section, the enhanced ASCA-PSO is presented. This algo-
rithm improves the convergence and quality of solutions produced
by the standard SCA. The basic SCA has drawbacks, such as slow
convergence and the tendency to become trapped in local optima
solutions in optimization problems such as finding the longest con-
secutive substrings (Smith & Waterman, 1981). Such problems oc-
cur because the SCA has parameters that are difficult to properly
tune, and a poor configuration is reflected in a weak exploitation.

However, the exploration of the search space is not affected by
these parameters.

The structure of the proposed approach considers layers as in
Fig. 1, where the top layer contains M particles and their move-
ment is performed by the PSO operators. The bottom layer sep-
arates the population into M groups, and each group contains N
search agents; the new positions are computed using the SCA. The
best solution found by each group is kept by a particle in the
top layer. Hence, the bottom layer focuses on exploring the search
space, while the top layer focuses on exploiting the best solutions
found by the bottom layer. This hybridization scheme belongs to
the classification of high-level and co-evolutionary hybrid meta-
heuristics (Talbi, 2009).

Each search agent in the bottom layer is described as (x;),
where i=1, 2, 3,..., M, and j=1, 2, 3,..., N. i and j represent the
index of solutions in the top and bottom layer, respectively. Such
elements of the population are updated based on the SCA accord-
ing to Eq. (5) toward the best solution found by (y;), and the pa-
rameters of the SCA are tuned for the exploration phase more than
for exploitation.

£41 X,’j[+ rq sin (Tz) | I3 yit - X,‘jt | rg <0.5 (5)
xij =
X;jt + T1€0S (12) | r3 yit — xijt | r4>0.5

In the same context, each solution from the top layer is repre-
sented by (y'), where i=1, 2, 3,..., M, and y' also represents the
best solution found by each i group in the bottom layer. The ele-
ments of the top layer update their positions in the local region of
the best solution found from the bottom layer based on the PSO
and move toward the best solution (y8Pst) from all search agents
of the top and bottom layers.

This process is performed using Eqs. (6) and (7), where (y; Pbest)
represents the best single solution for y; over all previous itera-
tions. Here, y&best is the best global solution for all individuals and
is determined as the best solution in the top layer.

v =wx v + ¢ rand (PP — ¥ + ¢ rand (yBPS— yit)
(6)

yirt' =yt + v (7)

Hence, the individuals in the bottom layer (x;) are influenced
by the best solution of the group in the top layer (y;). Moreover,
(y;) is influenced by the best solution found between the whole
set of individuals in the top layer (ygbest). This fact increases the
diversity of the search space. Additionally, performing exploration
and exploitation together in each iteration enhances the chance of
finding the global optimum solution. Algorithm 3 shows the pro-
posed ASCA-PSO optimization algorithm.
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Algorithm 3 ASCA-PSO optimization.

1: Initialize M x N search agents (x;) in the bottom layer and M particles (y;) in
the top layer, SCA parameters (rq, 3, r3 and r4), PSO parameters (w, ci, C3).
2: Evaluate the objective function based on search agents (x).

3: Update each particle (y;) by the best solution found by the related group in

bottom layer

4: Update ysbest by the solution produce best fit from the particles in the top

layer
5: Repeat
6: fori=1: M
7. forj=1:N

(Jamil & Yang, 2013), to measure its performance compared to the
SCA with regard to the quality of solution and convergence speed.

4.1. Evaluation criteria

In each run of the individual optimizer, the following measures

are calculated to test the mathematical benchmark functions:

8: Update (x;) according to Eq. (5)
9: If (x;; <y;) Then y; =x;

10:

11: end for j

Update rq, 15, 3 and 14

12: Update (y;) according to Eqs. (6) and (7)
13: Update ygbest by the solution produce best fit from the particles in the top

layer
14: end for i

15: Until (T < maximum number of iterations)
16: Return the best solution (y&Pst) obtained as the global minimum solution

The

time

complexity of the ASCA-PSO algorithm is

O(TM(Ncsca + Cpso)), where M and N are the sizes of the search
agents in the top and bottom layers, respectively, and csc; and
Cpso are the time costs of updating all of the search agents per
iteration for the SCA and PSO, respectively, while T is the number

of iterations.

4. Experimental results and discussion

ASCA-PSO has been tested on several unimodal and multi-

« Statistical mean is the average of the solutions (S;) that are
produced by executing the optimization algorithm M times and
is calculated according to Eq. (8).

1

Mean = —
ean M -

S (8)
=1

where §; is the obtained solution of the run time i.

Statistical standard deviation (Std) is an indicator of the vari-
ation of the best fitness values found when running the opti-
mization algorithm for M run times. Additionally, it represents
the robustness and stability, and it is computed as shown in Eq.

(9):

1 X 5

o Wilcoxon rank sum test (Higgins, 2003) is a non-parametric
test description of the t-test for two independent groups and is
used to test the null hypothesis that two data points, x and y
vectors, are acquired from continuous distributions with equal

modal mathematical benchmark functions, listed in Table 1 medians against the alternative that they are not.
Table 1
Benchmark of test functions.
Function Dimension Range of bounds Finin
d d
-02,/1 > x2 -02 /1 (27x;)
F _20e J,,;x —e \/“gms ™ 1204 e 30 [-32, 32] 0
d
F, 10 d+ Y [x? —10 cos(2 7 x;)] 30 [-5.12, 5.12] 0
i=1
d d
F3 l; —- - il=_[1 cos(%) +1 30 [ - 600, 600] 0
d
F4 i xg 30 [-1.28, 1.28] 0
i=1
d
Fs 32 30 [-512, 512] 0
i=1
D
Fs |x +0.5]> 30 [ - 100, 100] 0
i=1
Fy oz ) 2 [-512, 512] -1.00
sin? (x;2-x,2)-0.5 _
Fg 05 + it 2 [-100, 100] 0
d i
Fy > )P 30 [-65, 65] 0
=1
d
Fio (X =12+ i (2x2 - x9)? 30 [-10, 10] 0
i=2
d d
Fn >xi+ [ 30 [—10, 10] 0
i=1 i=1
Fiz 4x12 =21 %12 4033 %8+ % X, +4 %2 — 4 x* 2 [-5, 5] -1.03
Fi3 max{Jx|,1 <i < D} 30 [-100,100] 0
D
Fiq > |xisin(x;) + 0.1 x4 30 [-10,10] 0
i=1
D .
Fis Yosin(x) * (sin(122))20 30 [0.7] 0
i=1
E [1+ X1+ %2 +1)% (19 — 14x; + 3%;2 — 14x; + 6x1%3 + 3x52)] 5
16 2 5 [-22] 3.00
X [30 + (2x1 —3x1) (18 — 32x; + 12%;2 + 48X, — 36X1X; + 27%,%)]
Fi7 (15— X1 +x1 %)%+ (2.25— X1+ X X22)2 + (2.625 — X +x;1 X3%)? 2 [—4.5, 4.5] 0
D
Fis (X x2)? 30 [-100,100] 0
i=1
D
D —sin(x?)
Fio (z |x,~\)(e§1 s ) 30 (=27, 271] 0
i=1
D D
D ~Yx2] -yt /]
Fao [Zsinz(xi)— e & } (e & f) 30 [-10,10] 0
i=1
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Table 2
The parameters of the algorithm and their values.
Algorithm  Parameter Value
GA Cross over percentage 0.7
Mutation percentage 0.3
Mutation rate 0.1
SCA A 2.0
r 10
o) random (0, 27)
T3 15
PSO Maximum velocity (Vimax) 1.0
Minimum velocity (Viin) -1.0
Cognitive coefficient (C1) 0.5
Cognitive coefficient (C2) 0.5
MFO B 1.0
L [-11]
ABC The maximum cycle number 100
modification rate (MR) 0.8
WOA a 2
r 1
MVO Minimum of wormhole existence probability 0.2
Maximum of wormhole existence probability 1.0
Maximum inertia weight (Wnax) 0.9
Minimum inertia weight (W) 0.4
SSA (= 2
Cy, C3 Random (0.1)
GWO a 2
T [-1.1]

4.2. Comparison between ASCA-PSO, SCA and other similar
algorithms

ASCA-PSO has also been compared with the standard SCA and
nine recent and standard optimization algorithms, namely, moth-
flame optimization (MFO) (Mirjalili, 2015), the slap swarm al-
gorithm (SSA) (Mirjalili et al.,, 2017), artificial bee colony (ABC),
PSO, the genetic algorithm (GA), the whale optimization algo-
rithm (WOA) (Mirjalili & Hatamlou, 2016), the multi-verse opti-
mizer (MVO) (Mirjalili & Lewis, 2016) and grey wolf optimization
(GWO) (Mirjalili, Mirjalili, & Lewis, 2014).

Table 2 shows the parameter settings of these algorithms in the
experimental test over the benchmark functions. The number of
populations was 500 with 300 iterations. All tests were done on
Matlab R2015a on a computer machine has the following spec-
ification: Intel processor with I3 core each one has speed 2.27
GHz with 4 GB RAM. The experimental tests were implemented
on a CPU Core I3 with 4 GB RAM on Matlab 2015b software. All

the algorithms were executed with 50 independent runs over each
benchmark function for statistical analysis. Tables 3 and 4 show
the average optimal values of the test functions and standard de-
viations for all of the algorithms over 50 independent runs. As
shown in Table 3, ASCA-PSO outperformed all of the other algo-
rithms with regard to the quality of the solutions for all functions.

In contrast, the other algorithms produced accurate results on
certain functions and poor results on others. Each method pro-
duced poor results on a set of functions, as follows: GA (Fy, Fs,
Fg, Fio, F13), SCA (Fy, F3, Fyg, F1a), PSO (Fy-F3, Fio, F11, F13, F1a, Fig),
MFO (F;-Fg, Fo-Fi1, Fi3, Fig, Fig), MVO (F;-Fy4, Fs, Fo-Fy1, F13, Fig,
Fig) and SSA (F;-F,, Fg, Fg, Fig, F13). ABC and WOA produced ac-
curate results on most of the functions except for (Fq3, Fig) and
(F13), respectively. This finding reflects the efficient performance of
the proposed ASCA-PSO in comparison with the other algorithms.
Hence, the order of algorithms for producing high-quality means
of solutions is as follows: (1) ASCA-PSO, (2) WOA, (3) ABC, (4) SCA,
and (5) other algorithms.

Table 4 shows the standard deviation values of 50 independent
runs, and ASCA-PSO provides the minimum standard deviation for
almost all of the functions, except for Fig and Fyq. After ASCA-PSO
is GA, which provides a minimum standard deviation for the func-
tions (Fg, F]z, FIS)- followed by SCA (F4), PSO (F]z, F]G)v MFO (F]S,
Fi6, F19), ABC (Fp, F12). WOA (Fy, Fs, Fg, Fyy, Fig), MVO (Fyg), SSA
(F7, Fis, Fig, Fyg) and GWO (Fq, Fqg). Thus, the order of the algo-
rithms for producing accurate quality means of the solutions is as
follows: (1) ASCA-PSO, (2) WOA, (3) SCA, (4) GA and MFO, and (5)
other algorithms.

Table 5 provides the average execution time for 50 indepen-
dent runs of each algorithm for all of the functions. SCA produces
the minimum execution time, followed by ASCA-PSO, PSO, GA, and
ABC.

In the Wilcoxon rank test, as the null hypothesis, it is assumed
that there is no difference among the algorithms that are com-
pared. The alternative hypothesis considers an actual difference be-
tween the values from both approaches. The results obtained by
the Wilcoxon test indicate that data cannot be assumed to be oc-
curring by coincidence (i.e., due to the typical noise contained in
the process). Thus, this test is used as proof that the results of
ASCA-PSO are different from those using the other methods. The
analysis of the values of Table 6 considers a 5% significance over
the averaged best values of the functions. Each algorithm was run
for 50 single experiments, after which the Wilcoxon rank test was
performed over the best solutions found in each experiment.

Table 3

The average minimum values for all algorithms.
F ASCA-PSO  GA SCA PSO MFO ABC WOA MVO SSA GWO
Fi 8.88E-16 0.21 1.71E-07 3.62 5.36 6.80E-14  4.50E-15 0.84 0.51 3.90E-14
F, 0.00 111 67.6 44.24 113.74 4.80E-07  0.00 93.41 25.84 1.04
Fs 0.00 0.03 0.22 11 1.67 0.00 1.30E-03  0.58 0.00 0.00
Fs4 7.8E-264 2.00E-12  5.17E-29 0.00 1.697 3.60E-16  2.00E-03  0.56 0.00 0.00
Fs 3.8E-131 8.0E-06 9.91E-15  0.05 0.191 890E-16  1.50E-71 0 1.90E-11 1.00E-35
Fe 0.00 0.82 0.00 0.00 85.98 0.00 0.00 3.78 4.92 0.00
F; -1 -0.98 -0.99 -1 -1 -1 -1 —-0.99 -1 -1
Fs 0 2.60E-17 0 0 0 240E-08 0 4.20E-06  2.90E-13  0.00
Fq 8.8E-128 0.05 5.20E-11 5.9E-178  5260.6 890E-16  7.80E-69  8.49 4.08 2.80E—32
Fio  0.00 1.88 0.66 20.38 3729.6 0.00 6.50E-01 1.7 0.8 0.66
Fn 4.94E-65 0.04 455E-08 148 27.57 1.90E-15 130E-39 031 0.09 2.30E-19
Fi2 -1.03 -1.03 -1.03 -1.03 —-1.031 -1.03 -1.03 -1.03 -1.03 -1.03
Fi3  4.33E-65 0.7 3.18E-07 11.69 319 44.5 1.14E 0.48 0.36 5.50E-09
Fiua  4.14E-66 0.00 0.31 53 2.792 140E-05  2.50E-01  2.63 0.00 0.00
Fis  0.00 140E-88  0.05 2.52E-19  100E-48 3.20E-19  0.00 1.80E-07  6.70E-34  0.00
Fes 3 3 3 3 3 3.21 3 3 3 3
Fi;  2.00E-25 5.60E-05  0.00 0.00 0.00 0.00 7.40E—14 1.80E—-08 140E-15  2.80E-08
Fis  2.6E-256 1.90E-05  1.70E-22  370.99 7216.1 1.80E-17 2.70E-90 0.2 6.20E-17  1.80E-64
Fio  194E-06 4.10E-12 3.50E-06  5.92E-12  3.30E-11 3.60E-12  3.30E-11 3.30E-11 3.30E-11 3.30E-11
Fyo  3.98E-11 6.60E-18  4.50E-11 345E-14  520E-14  190E-15 2.40E-01 6.50E-16  140E-23  2.60E-16
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Table 4
Standard deviation of testing functions for all algorithms. The bold values provides the minimum standard deviation for almost all of the
functions.

F ASCA-PSO  GA SCA PSO MFO ABC WOA MVO SSA GWO

F1 0 0.37 3.20E-07 121 3.41 1.50E-14 2.30E-15 0.62 0.65 3.70E-15

F, 0 0.68 82.5 11.69 30.6 230E-06 O 26.61 10.64 2.76

F3 0.09 0.03 0.28 0.26 0.37 0 0 0.08 0 0

Fy 0 2.80E-12  149E-28 0 0.34 8.50E-17 0 0.06 0 (1]

Fs 1.6E-131 7.00E-06  1.85E-14 0.08 0.07 1.90E-16 7.30E-71 0 3.12E-12 1.30E-35

Fe 0 0.71 0 0 414 0 0 2.34 2.63 0

F; 0 0.02 0.0175 0 0.48 0 0 6.10E-09 6.20E-16 (1]

Fs 0 1.80E-16 (1] 0 0 6.10E-08 0 4.50E-06  2.80E-13 (1]

Fo 4.5E-128 0.08 0 120.8 2916.32 230E-16  4.10E-68 5.73 11.07 3.30E-32

Fio  0.02 3.05E-04 0 18.71 18,300.8 0.06 0.08 177 0.29 7.80E—-06

Fn 220E-65 0.08 6.38E-08  0.88 18.18 2.50E-16  4.10E-39 0.06 0.18 1.90E-19

F, O 440E-16 0 449E-16  6.60E-16  4.40E-16  3.70E-14 7.10E-08 9.20E-15 2.60E-09

Fi3  2.64E-65 0.13 2.65E-07  2.63 7.78 6.5 20.373 0.12 0.48 3.20E-09

Fis  2.19E-66 0 1.03 431 513 3.10E-05 1.75 14 0.02 (1]

Fs O 1.00E-87  0.06 9.67E-19  730E-48 4.60E-19 0 830E-07 4.36E-33 0

Fig 025 3.21E-15 0 3.32E-15  2.60E-15 0.17 3.40E-08  6.70E-07 590E-14  4.60E-07

F17 9.20E-41 (1] (1] 0 0 0 2.05E-13 1.50E-08 1.30E-15 2.50E-08

Fs O 3.65E-05  8.84E-22 1200 6544.15 1.60E-17 1.6E-137 0.05 2.10E-17 6.30E-64

Fig 1.95E-06 340E-13  398E-06 135E-12  4.50E-26 1.30E-13 4.54E-26 4.50E-26 4.50E-26 4.50E-26

Fyo  190E-11 7.60E—18 1.45E-11 348E-14 4.80E-14  4.00E-16  0.42 1.90E-16 3.50E-24  4.80E-17
Table 5

The elapsed time of computing functions for all algorithms. The bold values means, SCA produces
the minimum execution time.

F ASCA-PSO  GA SCA PSO MFO ABC WOA MVO SSA GWO

Fi 3.35 348 198 359 705 322 867 18.35 17.42 6.73
F, 211 223 172 232 451 339  6.05 1590 1739 6.75
Fs 3.40 369 197 361 6.52 422 783 17.55 1744  6.77
Fy 3.07 299 183 330 688 1.88 780 17.40 1736  6.80
Fs 1.85 293 154 202 572 1.63 7.71 17.73 17.61 6.72
Fe 1.88 2.01 1.55 196  5.58 239 752 17.72 1937 6.83
F; 171 256 047 170 385 198 481 518 17.51 6.81
Fg 0.53 1.82 023 053 3.75 1.09 4.78 4.87 17.48 6.73
Fo 591 333 236 611 9.48 365 108 2220 1745 6.73
Fo  2.06 265 158 222 549 279 718 17.57 1734 6.73
Fii 1.78 240 154 190 647 345 792 17.74 17.33 6.73
Fi,  0.69 1.66 026 070 4.04 1.01 4.89 4.95 1859  6.75
Fi3  3.53 388 183 367 590 298 748 18.31 1850 723
Fis  2.02 213 1.57 223 567 212 6.98 18.09 1738 6.95
Fi5  3.90 395 186 418 7.41 445 730 19.3 1734  6.80
Fis  0.58 099 025 059 373 139 4.66 4.75 17.51 6.78
Fi7 0.57 233 024 056 382 256  4.60 4.69 17.58 6.70
Fis 1.94 1.22 1.61 2.11 5.58 324 698 17.21 1740  6.77
Fio 218 256 163 244 650 456 733 17.81 1942 675
Fyo  3.99 365 200 425 6.86 697 791 1856  17.53 6.75
Table 6
P-value of Wilcoxon rank sum test of comparison between ASCA-PSO and other algorithms (P> .05 is underlined).
ASCA-PSO vs.
F GA SCA PSO MFO ABC WOA MVO SSA GWO

Fy 3.30E-20 3.30E-20 3.30E-20 3.30E-20 2.90E-20  2.50E-15 3.30E-20 3.30E-20 9.00E-21
F, 3.30E-20  2.30E-15 3.30E-20 3.30E-20 3.30E-20 2.90E-20 3.30E-20 3.20E-20 4.00E-14
F3 0.94 0.23 2.30E-17 7.00E-18 3.50E-12 2.50E-18  7.00E-16 3.40E-06  2.60E-15
F4 7.00E-18 7.00E-18 7.00E-18 7.00E-18 7.00E-18 7.70E-14 7.00E-18 7.00E-18 2.30E-08
Fs 7.00E-18 7.00E-18 7.00E-18 7.00E-18 7.00E-18 7.00E-18 7.00E-18 7.00E-18 7.00E-18
Fs 5.70E-12 3.30E-20 3.30E-20 3.30E-20 2.90E-20 3.50E-12 2.60E-20 2.90E-20 3.50E-12

F7 6.20E-19 3.30E-20 3.30E-20 0.01 3.30E-20 3.30E-20 G.80E-18 3.30E-20  3.30E-20
Fg 0.32 330E-20 3.30E-20 3.30E-20 1.80E-10 3.30E-20 3.30E-20 3.30E-20 3.30E-20
Fo 7.00E-18 7.00E-18 7.00E-18 7.00E-18 7.00E-18 7.00E-18 7.00E-18 7.00E-18 7.00E-18
Fio 1.10E-10 110E-17 7.00E-18 7.00E-18 7.00E-18 7.00E-18  4.70E-17 0.99 7.00E-18

Fii 7.00E-18 7.00E-18 7.00E-18 7.00E-18 7.00E-18 7.00E-18 7.00E-18 7.00E-18 7.00E-18
Fi2 3.30E-20 7.00E-18 3.30E-20 3.30E-20 3.30E-20 3.30E-20 7.00E-18 3.30E-20 6.10E-18
Fi3 7.00E-18 7.00E-18 7.00E-18 7.00E-18 7.00E-18 7.00E-18 7.00E-18 7.00E-18 7.00E-18
Fi4 7.00E-18 7.00E-18 7.00E-18 7.00E-18 7.00E-18 7.00E-18 7.00E-18 7.00E-18 7.00E-18
Fi5 4.70E-13 1.70E-14 4.90E-13 4.90E-13 4.90E-13 0.02 4.90E-13 4.80E-13 4.90E-13
Fie 1.20E-19 1.50E-16 1.20E-19 1.20E-19 0.8 3.70E-17 1.30E-16 1.20E-19 1.20E-16
Fi7 1.00E-17 3.80E-13 3.30E-20 3.30E-20  1.10E-07 7.00E-18 7.00E-18 7.00E-18 7.00E-18
Fig 7.00E-18 7.00E-18 7.00E-18 7.00E-18 7.00E-18 7.00E-18 7.00E-18 7.00E-18 7.00E-18
Fig 6.90E-18 0.19 7.00E-18 3.30E-20 6.80E-18 330E-20 3.30E-20 3.30E-20 3.30E-20
Fo  7.00E-18 0.28 7.00E-18 7.00E-18 7.00E-18 6.60E-18 7.00E-18 7.00E-18 7.00E-18
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Fig. 2. Convergence curves for fitness function from F; to Fg.
In Table 6, values less than 0.05 demonstrate that the meth- Figs. 2-5 show a comparison between ASCA-PSO and all the
ods are substantially different and provide results that differ. Val- other algorithms for the convergence rate for the fitness versus the

ues higher than 0.05 provide evidence that the methods are similar iterations for all of the functions. These figures show that ASCA-
in this specific implementation.
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PSO outperforms all the other algorithms in terms of the con-
vergence speed with an accurate solution. In addition, Tables 3-

Fig. 3. Convergence curves for fitness function from F; to Fy;.

algorithm

6 show that ASCA-PSO provides an efficient strategy for finding

the optimal global solution of an optimization problem with a fast

convergence rate.

5. Case study: biological pairwise local sequence alignment

Alignment is one of the main processes in bioinformatics and

is used to measure the similarity between biological sequences
to provide indications about evolutionary and functional relations
among RNA, DNA and protein sequences (Berger & Rozener, 1998;
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Cohen, 2004). Sequence alignment compares sequences by match-
ing their bases (amino acids for proteins and nucleotides for DNA)
to produce the best alignment that provides a maximum score
representing the degree of similarity. Many biological operations
are based mainly on sequence alignment processes, such as phy-
logenetic tree constructions (Feng & Doolittle, 1990), where the
alignment is used to evaluate the similarities of the sequences to
construct the evolutionary trees containing the sequences. Protein
secondary structure prediction and analysis use the alignments to
improve the prediction quality (Di Francesco, Garnier, & Munson,
1996). Additionally, DNA fragment assembly uses sequence align-
ment to aid the arrangement of the short fragmented sequences to
construct the original DNA sequence (Li & Khuri, 2004).

Sequence alignment is classified into pairwise alignment, which
is used to align two sequences, and multiple alignment, which
aligns more than two sequences (Xiong, 2006). There are two types
of pairwise alignments: global and local alignment. Global align-
ment finds the alignment over the entire length of the sequences
by aligning the matching regions of the two sequences. Local align-
ment aims to find the longest consecutive substrings between two
sequences.

There is a difference between the longest consecutive substrings
and the longest common subsequences. The longest consecutive
substrings are the consecutive substrings that are common be-
tween two sequences (strings) but with the condition that the
substring is one segment whose bases are in consecutive order
(Gusfield, 1997). However, the longest common subsequences are
the common subsequences between two sequences but are not in
consecutive order (Maier, 1978).

Pairwise local alignment is computed using the Smith-
Waterman (SW) alignment algorithm (Smith & Waterman, 1981),
which is based mainly on a dynamic programming approach
(Cormen, 2009), and thus, it produces the most accurate alignment
results.

For computing an SW alignment, a matrix with size (m+1) and
(n+1) for the row and column, respectively, is constructed, where
m and n represent the lengths of the two sequences. Each cell
saves a score of an alignment from all possible alignments. The
alignment score is computed using Eq. (10) based on the previous
cells on the same row and column and the diagonal cell.

Score(i, j)

Score(i— 1, j — 1) + Similarity (Seqa (i), Seqs(j))
maxy_q.i_1 (Score(i, k) + 8o+ k ge)
maxy_y.i_1 (Score(k, j)+ go+k ge)

0

= Mmax

(10)

where Seqs and Seqp are the sequences to be aligned with lengths
m and n, respectively, and i and j denote the row and column in-
dices, respectively, with 1 < i < m and 1<j<n. Here, g, and g.
are the open gap and extended gap penalties, where the insertion
of gaps (k is the number of inserted gaps) represents the possi-
bility of aligning the bases of sequences with nothing when shift-
ing bases for matching. A linear gap penalty (go +k ge) is chosen
for penalizing sequential gaps instead of separated gaps to max-
imize the overall alignment score (Gotoh, 1982). In some cases,
common consecutive substrings may require gaps ‘-’ to be inserted
within the substrings to match as many bases as possible in or-
der to increase the lengths of the substrings, as shown in Fig. 6,
in which the three consecutive gaps enable the longest substrings
to be identified. Similarity () is a function that computes the sim-
ilarity between two bases according to the scoring scheme used
based on the matching or un-matching of bases. There are differ-
ent schemes for measuring similarity, and for proteins, there are
two common scoring schemes: (1) BLOcked SUbstitution Matrix
(BLOSUM) (Mount, 2008) and (2) Point Accepted Mutation (PAM)
(Henikoff & Henikoff, 1992). For DNA, a positive score is assigned
for matching nucleotides, and for un-matching nucleotides, a neg-
ative score is assigned.

SW alignment produces the most accurate longest consecutive
substrings between two biological sequences, but it requires a very
long execution time, where the time complexity of SW alignment
is O(n3) and the space complexity is O(n2), in which n is the length
of the two sequences to be aligned.

Hence, this paper attempts to reduce the execution time of SW
alignment to provide results that give a primary indication of com-
mon substrings between long sequences. Then, SW alignment can
be used to re-align the sequences if the primary results are ac-
ceptable. The proposed approach is based on fragmentation of the
sequences into short fragments, and thus, the execution time of
the alignment is reduced due to aligning short fragments instead
of the entire lengths of the sequences. The rule of using meta-
heuristics algorithms is to update the positions of the fragments
in the two sequences toward the position of a fragment that pro-
duces the best longest consecutive substrings found.
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Sequencel: NR V A

Sequence?2:

I LKPGRVAMARA
QL KPGQKQRVAMARALVRN

Substringl: L K PG == = RVAMARA
Substring2: LK PGQ KQRVAMARA

Fig. 6. Example of common longest consecutive substrings with gaps.

P, @ P, P;
=0
PZ p3 Pl
L h:-:":—
| e
W
== Common substringbetween two fragments with length W
[o=z3) Fragment with length L;

Fig. 7. Example of aligning fragments of sequences.
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Fig. 8. Different ways to cut a fragment with length LF.

5.1. Formulating the problem as optimization problem

As noted above, the objective of the local sequence alignment
algorithm is to find the longest consecutive substrings between
two biological sequences. Thus, the fragmentation of sequences is
used, in which short fragments of sequences are aligned instead
of the entire sequence to overcome the problem of an extended
execution time for the long sequences. The SW alignment algo-
rithm aligns the short fragments to find the longest consecutive
substrings between them. The sum of pair (SOP) objective func-
tion, as shown in Eq. (11), is used to evaluate the lengths of the
consecutive substrings found.

Alignmentscore = Z otherwise penalize zero an

L {if A; = B; penalize(+1) score}
i=1

where A and B are the aligned sequences.

However, there is a large number of trials for the fragmenta-
tion of sequences in their many positions. Thus, the idea of the
proposed alignment scheme is to cut the number of fragments in
each sequence at different positions and find the longest consecu-
tive substrings between each pair. Then, we update the positions
of the fragments to be cut in the subsequent iterations toward
the positions of the fragments that obtained the maximum scores
found (the longest consecutive substrings). The optimization search
strategy of the meta-heuristic algorithms is used for updating the
positions toward the fragments that obtained the best result.

Fig. 7 shows an example of cutting three fragments of the se-
quences at positions Py, P, and P3, where each position is repre-
sented by one search agent. The yellow part represents the com-
mon substring with length W between two fragments, and as
shown, the P, cut fragments have the longer consecutive sub-
strings than those of P; and P3. Hence, the optimization search
strategy must update positions P; and P3 toward P, to find com-
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Fig. 9. Percentage of common consecutive substrings obtained using SW, SCA and ASCA-PSO methods.

Table 7
The parameters of ASCA-PSO local alignment technique. Table 8
Comparison of different method for cut of fragments using ASCA-PSO.
Algorithm Parameter Value
- mxn Percentage of longest consecutive substrings
SW alignment  Match +1.0
I -1.0 I 11 1 Mix
SCA ‘g‘? ; 3'5 250,000 56 89 84 95
ASCA-PSO Maximum velocity (Vims) 1.0 350,000 26 73 84 95
Minimum velocity (Viin) -1.0 550,000 67 84 84 95
” ¥ Vimin : 750,000 56 78 73 95
Cognitive coefficient (C1) 0.5
Cognitive coefficient (C2) 0.5 1,000,000 62 89 95 89
a 20 1,400,000 73 84 89 89
: 1,800,000 62 73 84 84
2,200,000 56 78 89 84
2,600,000 62 73 84 84
mon substrings with a length better than that found by P,. Hence, 3,000,000 67 73 89 84
when repeating these steps with a large number of search agents, g’ggg'ggg gé ;Z 33 gi
the_re is a high likelihood gf ﬁndi.ng the longest .consecu.tive sub- 6,000,000 62 67 73 84
strings or parts of them with a high percentage in less time than 7,000,000 50 67 73 84
that consumed by the SW alignment. 8,000,000 56 78 78 84
In Fig. 7, the fragments are cut starting from position (P;) to 9,000,000 56 67 84 84
(P; + Lg), but there are two other possibilities, as shown in Fig. 8:
 Cutting a fragment with length Ly starting from (P; — Lg) to (P;). Table 9
able

o Cutting a fragment with length Lr starting from (P; — (Lg/2)) to Wilcoxon rank sum test results between ASCA-

(Pi + (Lg[2)). PSO and SCA vs. product of sequences’ lengths.
In the experimental section, each method for cutting fragments mxn P-value

(I, T and III) is studied separately to show the effect of each 250,000 329E_09
method on the results to choose the most suitable method of cut- 350,000 5.87E—09
ting. 550,000 7.66E—08
750,000 5.39E-10
; ; 1,000,000 1.45E-08
5.2. The fragmentation local alignment proposed method 1400,000 625509
1,800,000 6.01E-13
Step 1: Initialize N search agents (P;, i=1, 2, 3,..., N) with ran- 2,200,000 7.46E—-08
dom positions in the range from 1 to length ((Seq, or Seqg) 2,600,000 3.60E-11
- Lg), where Lg is the length of the fragments. 3,000,000 1.70E-10
Step 2: Cut the fragments with length Lg in each sequence ac- 4.000000 4.68E-11
5,000,000 6.55E—12
cording to one of the three methods in Fig. 8. 6,000,000 231E-12
Step 3: Each corresponding fragment determined by each search 7,000,000 6.69E—-09
agent is aligned using the SW alignment algorithm, and the 8,000,000 5.17E-12
9,000,000 1.33E-07

alignment score is computed using the objective function in
Eq. (11).
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Table 10

Comparison of SW alignment method with fragmentation alignment using ASCA-PSO and SCA on real protein sequences.

Protein ID (length) Method Score | Longest Consecutive Substrings Obtained
sw " GEKGAQLSGGQKQRVAMARALVRNPPVLILDEATSA
QINP78 (766) LDAESE
1 095342 (1321) ASCA-PSO | 18 SGGQKQRVAIARALIRNP
SCA 13 LDEATSALDAESE
SW 29 MDEADILADRKVFISKGKLKCAGSSLFLK
2 Q8K442 (1620) ASCA-PSO | 27 EADILADRKVFISKGKLKCAGSSLFLK
P41233 (2160) SCA 13 QITAILGHSGAGK
SW 35 ALKGLFLDIYESQITAILGHSGAGKSSLLNILSGL
3 Q8K441(1624) ASCA-PSO | 21 TAILGHSGAGKSSLLNILSGL
Q91V24(2159) SCA 18 AIMVSGRLRCIGPIQHLK
SW 34 AVGVRGRYELPPCSGPGWLLSLSALLSVAARGAF
4 Q5TCY1 (1141) ASCA-PSO | 26 YELPPCSGPGWLLSLSALLSVAARGA
QI6AE7(1082) SCA 5 QARPG
- GKIQQQVDSPMNLKHPHDLVILMRQEATVNYLKELE
5 AZ‘:’()‘I("‘““ YL4 SW 65 | KQLVAQKIHIEENEDRDTGLEQRHNKEDP
( 5VT) 0 (3423 ASCA-PSO | 29 GKIQQQVDSPMNLKHPHDLVILMRQEATV
Q5VTQO (3423) SCA 11 LVILMRQEATVNY
N SW 25 CRSLSLSSSKSNSQALNSSAQQHRG
6 Q7TQI7 (1024) ASCA-PSO | 18 SSKSNSQALNSSAQQHRG
E9Q472 (2734) SCA 8 SAGDGLRQ
SW 51 PHVFLLFITFPILFIGWGSQSSKVQIHHNTWLHFPGH
7 E9PX95 (5200) NLRWILTFALLFVH
P70170 (1546) ASCA-PSO | 16 PHVFLLFITFPILFIG
SCA 9 LITLLEMLM
BT (1620 SW 26 LKRDTFLEFLYTALILLSLILFLQLH
g | QSBGM7(1620) 7 QEA’pSO | 12 | FLEFLYTALILL
Q8ROP4 (2287) SCA 11 MDEADIL
SW 24 PRGGPEHRAAWGEADSRANGYPHA
9 Q01337 (2524) ASCA-PSO | 12 GPEHRAAWGEAD
Q9ZOF8 (2616) SCA 6 PRGGPE
N SW 26 SGYGAGDSCRSLSLSSSKSNSQALN
10 | Q7TQI7 (1024) ASCA-PSO | 14 SGYGAGDSCRSLS
E9Q472 (2472) SCA 6 YLDIGA
SW 32 SCQRPPRNPLSSNDTWPSPELQTNWTAAPGPE
11 | Q61618 (2080) ASCA-PSO | 16 SCQRPPRNPLSSNDTW
Q99LJI2 (2477) SCA 4 ANDL

Step 4: Update the global optimum search agents (Pgbest) to de-
termine the positions of the fragments in the two sequences
that contain the longest consecutive substrings found.

Step 5: Each search agent updates its position toward Pebest
based on the optimization updating strategy of the used
meta-heuristic technique.

Step 6: Repeat steps 2-5 for a number of iterations (T).

The time complexity of the fragmentation pairwise local align-
ment is (TNLg?), where T, N and Ly are the number of itera-
tions, number of particles and width of the fragments, respectively.
The proposed technique has a time complexity that is lower than
that of the SW alignment algorithm, which is (n3), where n is
the length of the two sequences. Thus, the fragmentation of the
sequences guarantees executing the local alignment in a shorter
amount of time than that required for the SW alignment, and the
role of using meta-heuristics is only to keep the search process

moving toward the region that contains the alignment with the
maximum score, i.e., the longest consecutive substrings between
two sequences.

5.3. The experimental results

The proposed fragmentation local alignment method was im-
plemented using ASCA-PSO, and the SCA and was tested on bio-
logical protein sequences from the Swiss-Prot database (UniProt,
2017) with various lengths (the product of the lengths of the se-
quences up to 9000,000). The objective of the test was to measure
the percentage of the length of the longest consecutive substrings
found by ASCA-PSO and the SCA compared with that found by the
SW alignment algorithm.

Table 7 shows the parameter settings that were used in the test
with 50 independent runs, and each method of cutting the frag-
ments (I, Il and III) was tested separately. In addition, the fourth
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Table 11
Execution time comparison of ASCA-PSO vs. SCA and SW align-
ment methods.

mxn Time (Sec) Search Agents
SW SCA ASCA-PSO  SCA  ASCA-PSO

250,000 1 470  6.04 40 50
350,000 18 470  6.04 40 50
550,000 37 120 127 100 110
750,000 57 14.3 14.9 120 130
1,000,000 138 18.8 18.9 150 160
1,400,000 208 21.7 217 180 190
1,800,000 288 250 26.0 200 210
2,200,000 320 29.0 302 240 250
2,600,000 354 492 512 400 410
3,000,000 428 492 512 400 410
4,000,000 680 539 559 450 460
5,000,000 922 539 559 450 460
6,000,000 1275 539 559 450 460
7,000,000 1670  67.0 69.8 550 560
8,000,000 2134 789 837 650 660
9,000,000 2750 789 837 650 660

cutting of fragments method was applied, which is a combina-
tion of the three methods, in which at each cutting of fragments,
one of the three methods was applied and was chosen at random.
Table 8 shows the percentage of the longest consecutive substrings
found by ASCA-PSO in comparison to that found by the SW align-
ment algorithm, and as shown, cutting methods II and III produced
better results than method I, but using a combination of the three
methods produced the best results.

Fig. 9 shows the comparison among the ASCA-PSO, SCA and
SW alignment methods. The fragment-cutting method used was
the combination of the three methods (I, II and III) due to
its significant impact on the results. As shown in the figure,
ASCA-PSO enhanced the performance of the SCA when find-
ing the common longest consecutive substrings between two se-
quences with lengths m and n with a product of up to 9000,000.
Table 9 presents the p values obtained after applying the Wilcoxon
rank test over the results of SCA and ASCA-PSO. A set of 50 in-
dependent experiments was performed by each algorithm. In this
context, the ASCA-PSO vs. SCA comparison using the Wilcoxon
ranks test provides evidence that the results obtained by the two
algorithms are sufficiently different.

In addition, the proposed fragmentation SW alignment method
implemented by ASCA-PSO and SCA was compared with the stan-
dard SW local alignment algorithm to find the common longest
consecutive substrings between real protein sequences gathered
from the mouse protein database (UniProt, 2017). Table 10 shows
the comparison, in which the second column contains the protein
ID for each sequence accompanied with the length of the sequence,
and the results from each method are shown in the last column
accompanied by the score. The score represents the length of the
common substrings (matched bases).

As shown in the table, the SW alignment method finds the
longest consecutive substrings between each pair of proteins, while
SCA fragmentation alignment can find part of the longest consecu-
tive substrings in cases 1, 5 and 9 but with a shorter length than
that found by ASCA-PSO. In other cases, the SCA can find consecu-
tive substrings but not the longest substrings; however, ASCA-PSO
can find a longer segment of the longest consecutive substrings
in all cases. Hence, this test proved successful for ASCA-PSO in
enhancing the SCA for searching for the longest consecutive sub-
strings based on a fragmentation local alignment method.

Table 11 lists the execution time of the fragmentation alignment
methods using ASCA-PSO and the SCA in comparison with the SW
alignment algorithm according to the number of search agents of
the SCA and ASCA-PSO. For sequences with product lengths less

than 250,000, the SW alignment method produced an accurate
alignment in a smaller execution time than the proposed fragmen-
tation local alignment method by the SCA or ASCA-PSO. Otherwise,
ASCA-PSO sped up the alignment process for finding the longest
consecutive substrings with reasonable results in comparison with
the SW alignment method.

As listed in the table, the size of search agents used increased
in proportion to the increase in the length of the sequences in
order to cover the search space (length of sequences). However,
the SCA alignment method was slightly faster than the ASCA-PSO
alignment method, but the latter doubled the performance of the
SCA alignment process.

6. Conclusions

In this paper, the SCA has the advantage of powerful explo-
ration but poor exploitation. Thus, it was necessary to enhance the
SCA by merging it with PSO, which has the advantage of power-
ful exploitation. The resulting hybrid technique was built in two
layers, where the bottom layer explores the search space based on
the search agents of SCA, while the top layer exploits the region
around the best solution found by the bottom layer. Hence, the
proposed technique is balanced between exploration and exploita-
tion, which improves the quality of the solution while maintain-
ing fast convergence. The enhancement of the SCA using ASCA-PSO
was tested on finding the optimal solution for standard benchmark
mathematical functions, and the results proved the enhancement
of the quality of the solution and the convergence rate of the SCA.
In addition, the problem of finding the longest consecutive sub-
strings between two biological sequences was used as a case study
for testing the proposed approach, the ASCA-PSO, compared with
the SCA. This problem was formulated as an optimization problem,
and ASCA-PSO and the SCA were used to find the longest com-
mon consecutive substrings in comparison with an accurate solu-
tion obtained by the SW alignment method. ASCA-PSO was suc-
cessful for twice the percentage of common consecutive substrings
obtained by the SCA, corresponding to those obtained by the SW
alignment method, when testing on biological protein sequences.
Hence, the results of the proposed enhancement approach (ASCA-
PSO) in this work support its use for optimizing other engineering
problems.
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