
Expert Systems With Applications 99 (2018) 56–70 

Contents lists available at ScienceDirect 

Expert Systems With Applications 

journal homepage: www.elsevier.com/locate/eswa 

ASCA-PSO: Adaptive sine cosine optimization algorithm integrated 

with particle swarm for pairwise local sequence alignment 

Mohamed Issa 

a , 1 , Aboul Ella Hassanien 

b , 1 , ∗, Diego Oliva 

c , 1 , Ahmed Helmi a , 
Ibrahim Ziedan 

a , Ahmed Alzohairy 

d 

a Computer Engineering and Systems Department, Faculty of Engineering, Zagazig University, Egypt 
b Faculty of Computers and Information, Cairo University, Egypt 
c Departamento de Ciencias Computacionales, Universidad de Guadalajara, Mexico 
d Genetic Department, Faculty of Agriculture, Zagazig University, Egypt 

a r t i c l e i n f o 

Article history: 

Received 16 September 2017 

Revised 12 January 2018 

Accepted 13 January 2018 

Available online 3 February 2018 

Keywords: 

Sine cosine algorithm (SCA) 

Particle swarm optimization (PSO) 

Meta-heuristics algorithms 

Pairwise local alignment 

Longest consecutive substrings 

Smith-Waterman alignment algorithm 

a b s t r a c t 

The sine cosine algorithm (SCA), a recently proposed population-based optimization algorithm, is based 

on the use of sine and cosine trigonometric functions as operators to update the movements of the search 

agents. To optimize performance, different parameters on the SCA must be appropriately tuned. Setting 

such parameters is challenging because they permit the algorithm to escape from local optima and avoid 

premature convergence. The main drawback of the SCA is that the parameter setting only affects the 

exploitation of the prominent regions. However, the SCA has good exploration capabilities. This article 

presents an enhanced version of the SCA by merging it with particle swarm optimization (PSO). PSO ex- 

ploits the search space better than the operators of the standard SCA. The proposed algorithm, called 

ASCA-PSO, has been tested over several unimodal and multimodal benchmark functions, which show its 

superiority over the SCA and other recent and standard meta-heuristic algorithms. Moreover, to verify the 

capabilities of the SCA, the SCA has been used to solve the real-world problem of a pairwise local align- 

ment algorithm that tends to find the longest consecutive substrings between two biological sequences. 

Experimental results provide evidence of the good performance of the ASCA-PSO solutions in terms of 

accuracy and computational time. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

In the past two decades, nature-inspired optimization meth-

ods, also called meta-heuristic algorithms (MAs), have attracted the

attention of researchers from a variety of fields ( Boussaïd, Lep-

agnot, & Siarry, 2013 ). MAs search for optimal solutions based

on a search strategy that imitates a natural behavior. In this

sense, different metaphors are created in MAs, such as genetic

algorithms (GAs) ( Holland, 1992 ) and differential evolution (DE)

( Storn & Price, 1997 ), which are based on evolutionary theory. Ad-

ditionally, physically based algorithms include methods such as

the sine cosine algorithm (SCA) ( Mirjalili, 2016 ), the ions mo-

tion optimization (IMO) ( Javidy, Hatamlou, & Mirjalili, 2015 ) and

the gravitational search algorithm (GSA) ( Rashedi, Nezamabadi-

Pour, & Saryazdi, 2009 ). Another group of methods is based on

insects and other animals and includes particle swarm optimiza-
∗ Corresponding author. 
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0957-4174/© 2018 Elsevier Ltd. All rights reserved. 
ion (PSO) ( Kennedy, 1995 ), artificial bee colony (ABC) ( Karaboga &

kay, 2009 ) and moth-flame optimization (MFO) ( Mirjalili, 2015 ).

ther algorithms imitate human concepts (or creations), such as

he mine blast algorithm (MBA) ( Sadollah, Bahreininejad, Eskan-

ar, & Hamdi, 2013 ) and teaching learning-based algorithm (TLBO)

 Rao, Savsani, & Vakharia, 2011 ). 

Two contradictory factors must be considered in designing new

As: the exploration of the search space (diversification) and the

xploitation of prominent regions (intensification). Exploration is

sed to diversify the regions of the search space to ensure that all

egions of the search space are evenly explored and that the search

s not confined to a limited number of regions and, in addition, to

void becoming trapped in local minima. Exploitation is the pro-

ess of analyzing the bounded search area around the best solution

n order to improve it. Balancing between exploration and exploita-

ion is essential to enhancing the efficiency of a meta-heuristic al-

orithm. 

In the related literature, a substantial number of meta-

euristics can be attributed to the no-free-lunch (NFL) theo-

em ( Wolpert & Macready, 1997 ), which states that the success

f an optimization technique in addressing a specific problem

https://doi.org/10.1016/j.eswa.2018.01.019
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2018.01.019&domain=pdf
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Algorithm 1 Particle swarm optimization. 

1: Initialize a set of population solutions ( P i ), initial velocity ( v i ) and 

algorithm’s parameters ( c 1 , c 2 and w ) 

2: Repeat 

3: Evaluate the objective function based on population solutions 

4: Update the best local solution for each particle ( P i 
best ) 

5: Update the best global solution over all particles ( P gbest ) 

6: Update the next position of population solutions using Eqs. (1) and (2) 

7: Until ( T < maximum number of iterations) 

8: Return the best solution ( P gbest ) obtained as the global optimum 
oes not guarantee success in different optimization problems

ith different natures and types. Hence, according to NFL, the

esearch in meta-heuristics has three main directions: (1) the

mprovement of current methods, (2) the creation of new al-

orithms, and (3) the combination of different meta-heuristics.

he first direction modifies the operators to enhance the perfor-

ance of the existing approaches, such as chaotic maps ( Wang,

uo, Gandomi, Hao, & Wang, 2014; Petrovi ́c, Miti ́c, Vukovi ́c, &

iljkovi ́c, 2016 ), local searches ( Cao, Li, & Chaovalitwongse, 2017;

remalatha & Natarajan, 2008 ) and evolutionary operators ( Wang,

uo, Duan, Liu, & Wang, 2012; Wang, Deb, Gandomi, & Alavi,

016 ). The second direction proposes new optimization mecha-

isms inspired by different behaviors, such as the slap swarm

lgorithm (SSA) ( Mirjalili et al., 2017 ), whale optimization algo-

ithm (WOA) ( Mirjalili & Hatamlou, 2016 ) and multi-verse opti-

izer (MVO) ( Mirjalili & Lewis, 2016 ). The most recent direction

or meta-heuristics is hybridizing different optimization algorithms

o benefit from each of their advantages ( Garg, 2016; Güçyetmez

 Çam 2016; Santra, Mukherjee, Sarker, & Chatterjee, 2016 ; Yang,

ang, Lin, & Chen, 2016 ). 

One of the main problems of MAs is that they commonly have

arameters that must be tuned according to the problems to be

olved. In this context, the SCA possesses several parameters that

ust be tuned to maximize performance in the optimization pro-

ess. Tuning these parameters is challenging, and if they are not

orrectly selected, the algorithms can become trapping in local op-

ima or premature convergence. However, the main advantage of

he SCA is its power of exploration of the search space. SCA has

een used in applications and has efficient performance on prob-

ems such as handwritten Arabic text ( Mudhsh, Xiong, El Aziz,

assanien, & Duan, 2017 ), photovoltaic systems ( Kumar, Hussain,

ingh, & Panigrahi, 2017 ) and detection of galaxies using image

etrieval ( Abd ElAziz, Xiong, & Selim, 2017 ). However, according

o the NFL theory, the SCA would not perform well on all opti-

ization problems, including finding the longest consecutive sub-

trings between two biological sequences. This article introduces

n enhanced version of the SCA and merges it with PSO, a tradi-

ional optimization algorithm inspired by the behavior of flocking

irds or schooling fish. The main advantages of PSO are robustness,

he need for few parameters and the efficient exploitation of the

earch space. 

Considering the above, performance of the SCA is improved by

ntegrating the features of PSO to exploit the optimal solutions

ith the capabilities of the SCA to explore the entire search space.

his hybridization provides a good balance between exploration

nd exploitation throughout the iterative process. 

The proposed algorithm is called ASCA-PSO and consists of two

ayers: the bottom layer is responsible for exploration the search

pace, which is performed by the search agents of the SCA; the

op layer is responsible for the exploitation of the best solution

ound by the bottom layer based on the search agents of the PSO.

he proposed approach enables a good diversification of the pop-

lation and preserves the best information on the position at each

teration. 

To verify the performance of the proposed algorithm, it was

ested over a set of mathematical optimization problems with dif-

erent degrees of difficulty. Moreover, the local sequence alignment

LSA) problem is used as a case of study for testing the improved

SCA-PSO. The experimental results on both the mathematical and

SA problem provide evidence of the accuracy of the proposed

ethod in complex optimization problems and show that it main-

ains balance with regard to the computational time. 

The remainder of this paper is organized as follows.

ection 2 describes the preliminaries for the standard SCA

nd PSO. The proposed technique is presented in Section 3 .

ection 4 describes the results of the proposed algorithm com-
ared with the testing benchmark functions. Section 5 provides

he fragmentation local sequence alignment technique based

n a proposed algorithm for comparison with the SCA. Finally,

ection 6 presents the conclusions. 

. Preliminaries 

This section provides a brief explanation of the basic framework

f PSO and the SCA along with some of the fundamental concepts.

.1. Particle swarm optimization (PSO) 

Swarm optimization algorithms are stochastic population-based

earch methods that mimic the behavior of fish schooling, birds

ocking and other grouping behaviors. The search strategy of

hese algorithms is mainly based on global communications among

he individuals of the population, where the particles adapt their

ovements toward the particle that finds the best solution. PSO

enerates a swarm of particles, and each particle has a position

a solution to the problem) in the search space. All particles tune

heir movements according to Eqs. (1) and (2) toward the parti-

le ( P gbest ) that has the best position (the global best solution) and

he best personal position ( P i 
best ) for each particle pass during the

revious iterations. 

 i ( t + 1 ) = w ∗ v i (t) + c 1 rand ( P best 
i − P i (t) ) 

+ c 2 rand ( P gbest − P i (t) ) (1) 

 i ( t + 1 ) = P i ( t ) + v i ( t + 1 ) (2) 

Here, v i is the velocity of the i th particle, c 1 is the best local po-

ition weight coefficient, and c 2 is the global best position weight

oefficient. w is the inertia coefficient that controls the effect of

he previous velocity on the new velocity. P i is the position of par-

icle i, t is the iteration number, and rand is a uniformly distributed

andom variable in the range (0–1). P i 
best is the best local position

solution) found by particle P i , and P gbest is the best solution found

n the whole swarm. 

PSO has several advantages, such as robustness and information

nterchange among particles, which provides a high probability of

chieving a near-optimal solution with a reasonable convergence

peed. PSO has been used to solve many optimization problems,

uch as the optimization of the parameters of electrical motors

 Calvini, Carpita, Formentini, & Marchesoni, 2015 ), solar cell design

 Khanna, Das, Bisht, & Singh, 2015 ) and surgical robot applications

 Tuvayanond & Parnichkun, 2017 ). The steps of PSO are summa-

ized in Algorithm 1 . 

The time complexity of a PSO is O ( T ∗n ∗c pso ), where n is the

umber of particles, c pso is the time cost of updating the position

f one particle and T is the number of iterations. 

.2. Sine-cosine optimization algorithm (SCA) 

SCA is a population-based optimization algorithm that depends

n sine and cosine operators for updating the movement of the
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Fig. 1. The structure of the proposed adaptive SCA-PSO. 

Algorithm 2 Sine-cosine optimization algorithm. 

1: Initialize an N search agents ( P i ) where 1 < i < N , algorithm parameters ( r 1 , 

r 2 , r 3 , and r 4 ) 

2: Repeat 

3: Evaluate the objective function based on search agents 

4: Update the best solution obtained so far ( P gbest ) 

5: Update r 1 , r 2 , r 3 and r 4 
6: Update the next position of each search agent solutions using Eq. (3) 

7: Until ( T < maximum number of iterations) 

8: Return the best solution ( P gbest ) obtained as the global optimum solution 

found 
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search agents toward the best solution found according to Eq. (3) .

P i 
t+1 = 

{ 

P i 
t + r 1 sin ( r 2 ) 

∣∣ r 3 P gbest − P i 
t 
∣∣ r 4 < 0 . 5 

P i 
t + r 1 cos ( r 2 ) 

∣∣ r 3 P gbest − P i 
t 
∣∣ r 4 ≥ 0 . 5 

} 

(3)

where r 1 is the parameter responsible for determining the next

region of the search and increasing the exploration of the search

space for a higher value of it, r 2 defines the direction of movement

toward or away from P gbest and how far the movement should go,

and r 3 controls the effect of the destination on the current move-

ment. 

The values of r 1 , r 2, and r 3 are updated at each iteration to in-

crease the diversity of the solutions. r 4 is used to switch between

the sine and cosine functions, as in Eq. (3) . Eq. (4) is used to bal-

ance between exploration and exploitation, where t is the current

iteration, T is the maximum number of iterations, and a is a con-

stant that should be set by the designer. 

r 1 = a 

(
1 − t 

T 

)
(4)

The steps of the SCA are presented in Algorithm 2 . The time

complexity of the SCA is O ( T ∗n ∗c sca ), where n is the number of

search agents, c sca is the time cost of updating the positions of the

search agent and T is the number of iterations. 

3. Adaptive sine cosine integrated with particle swarm 

(ASCA-PSO) 

In this section, the enhanced ASCA-PSO is presented. This algo-

rithm improves the convergence and quality of solutions produced

by the standard SCA. The basic SCA has drawbacks, such as slow

convergence and the tendency to become trapped in local optima

solutions in optimization problems such as finding the longest con-

secutive substrings ( Smith & Waterman, 1981 ). Such problems oc-

cur because the SCA has parameters that are difficult to properly

tune, and a poor configuration is reflected in a weak exploitation.
owever, the exploration of the search space is not affected by

hese parameters. 

The structure of the proposed approach considers layers as in

ig. 1 , where the top layer contains M particles and their move-

ent is performed by the PSO operators. The bottom layer sep-

rates the population into M groups, and each group contains N

earch agents; the new positions are computed using the SCA. The

est solution found by each group is kept by a particle in the

op layer. Hence, the bottom layer focuses on exploring the search

pace, while the top layer focuses on exploiting the best solutions

ound by the bottom layer. This hybridization scheme belongs to

he classification of high-level and co-evolutionary hybrid meta-

euristics ( Talbi, 2009 ). 

Each search agent in the bottom layer is described as ( x ij ),

here i = 1, 2, 3,…, M , and j = 1, 2, 3,…, N. i and j represent the

ndex of solutions in the top and bottom layer, respectively. Such

lements of the population are updated based on the SCA accord-

ng to Eq. (5) toward the best solution found by ( y i ), and the pa-

ameters of the SCA are tuned for the exploration phase more than

or exploitation. 

 i j 
t+1 = 

{ 

x i j 
t + r 1 sin ( r 2 ) 

∣∣ r 3 y i 
t − x i j 

t 
∣∣ r 4 < 0 . 5 

x i j 
t + r 1 cos ( r 2 ) 

∣∣ r 3 y i 
t − x i j 

t 
∣∣ r 4 ≥ 0 . 5 

} 

(5)

In the same context, each solution from the top layer is repre-

ented by ( y i ) , where i = 1, 2, 3, …, M , and y i also represents the

est solution found by each i group in the bottom layer. The ele-

ents of the top layer update their positions in the local region of

he best solution found from the bottom layer based on the PSO

nd move toward the best solution ( y gbest ) from all search agents

f the top and bottom layers. 

This process is performed using Eqs. (6) and (7) , where ( y i 
pbest )

epresents the best single solution for y i over all previous itera-

ions. Here, y gbest is the best global solution for all individuals and

s determined as the best solution in the top layer. 

 i 
t+1 = w ∗ v i t + c 1 rand ( y i 

pbest − y i 
t ) + c 2 rand ( y gbest − y i 

t )

(6)

 i 
t+1 = y i 

t + v i t (7)

Hence, the individuals in the bottom layer ( x ij ) are influenced

y the best solution of the group in the top layer ( y i ). Moreover,

 y i ) is influenced by the best solution found between the whole

et of individuals in the top layer ( y gbest ). This fact increases the

iversity of the search space. Additionally, performing exploration

nd exploitation together in each iteration enhances the chance of

nding the global optimum solution. Algorithm 3 shows the pro-

osed ASCA-PSO optimization algorithm. 
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Algorithm 3 ASCA-PSO optimization. 

1: Initialize M × N search agents ( x ij ) in the bottom layer and M particles ( y i ) in 

the top layer, SCA parameters ( r 1 , r 2 , r 3 and r 4 ), PSO parameters ( w, c 1 , c 2 ). 

2: Evaluate the objective function based on search agents ( x ). 

3: Update each particle ( y i ) by the best solution found by the related group in 

bottom layer 

4: Update y gbest by the solution produce best fit from the particles in the top 

layer 

5: Repeat 

6: for i = 1: M 

7: for j = 1: N 

8: Update ( x ij ) according to Eq. (5) 

9: If ( x ij < y i ) Then y i = x ij 
10: Update r 1 , r 2 , r 3 and r 4 
11: end for j 

12: Update ( y i ) according to Eqs. (6) and (7) 

13: Update y gbest by the solution produce best fit from the particles in the top 

layer 

14: end for i 

15: Until ( T < maximum number of iterations) 

16: Return the best solution ( y gbest ) obtained as the global minimum solution 
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medians against the alternative that they are not. 

T

B

The time complexity of the ASCA-PSO algorithm is

 ( TM ( Nc sca + c pso )), where M and N are the sizes of the search

gents in the top and bottom layers, respectively, and c sca and

 pso are the time costs of updating all of the search agents per

teration for the SCA and PSO, respectively, while T is the number

f iterations. 

. Experimental results and discussion 

ASCA-PSO has been tested on several unimodal and multi-

odal mathematical benchmark functions, listed in Table 1
able 1 

enchmark of test functions. 

Function 

F 1 −20 e 
−0 . 2 

√ 
1 
d 

d ∑ 

i =1 

x i 2 − e 
−0 . 2 

√ 
1 
d 

d ∑ 

i =1 

cos ( 2 πx i ) + 20 + e 1 

F 2 10 d + 

d ∑ 

i =1 

[ x i 
2 − 10 cos ( 2 π x i ) ] 

F 3 
d ∑ 

i =1 

x i 
2 

40 0 0 
−

d ∏ 

i =1 

cos ( x i √ 
i 
) + 1 

F 4 
d ∑ 

i =1 

i x i 
4 

F 5 
d ∑ 

i =1 

x i 
2 

F 6 
D ∑ 

i =1 

� x i + 0 . 5 � 2 

F 7 
−1 −cos ( 12 

√ 

x 1 2 + x 2 2 ) 
0 . 5( x 1 2 + x 2 2 )+2 

F 8 0 . 5 + 

si n 2 ( x 1 
2 −x 2 

2 ) −0 . 5 

[ 1+0 . 001( x 1 2 + x 2 2 ) ] 2 

F 9 
d ∑ 

i =1 

[ 
i ∑ 

j 

( x i ) ] 
2 

F 10 ( x 1 − 1 ) 2 + 

d ∑ 

i =2 

i ( 2 x i 
2 − x i −1 ) 

2 

F 11 

d ∑ 

i =1 

x i + 

d ∏ 

i =1 

x i 

F 12 4 x 1 
2 − 2.1 x 1 

2 + 0.33 x 1 
6 + x 1 x 2 + 4 x 2 

2 − 4 x 2 
4 

F 13 max i {| x i |, 1 ≤ i ≤ D } 

F 14 

D ∑ 

i =1 

| x i sin ( x i ) + 0 . 1 x i | 

F 15 

D ∑ 

i =1 

sin ( x i ) ∗ ( sin ( i x i 
2 

π ) ) 20 

F 16 
[1 + ( x 1 + x 2 + 1) 

2 
(19 − 14 x 1 + 3 x 1 

2 − 14 x 2 + 6 x 1 x 2 + 3 x 2 
2 )] 

X [30 + (2 x 1 − 3 x 1 )(18 − 32 x 1 + 12 x 1 
2 + 48 x 2 − 36 x 1 x 2 + 27 x 2 

2 )] 

F 17 (1 . 5 − x 1 + x 1 x 2 ) 
2 + (2 . 25 − x 1 + x 1 x 2 

2 ) 2 + (2 . 625 − x 1 + x 1 x 2 
3 ) 2

F 18 ( 
D ∑ 

i =1 

x i 
2 ) 2 

F 19 

( D ∑ 

i =1 

| x i | 
)(

e 

D ∑ 

i =1 

−sin ( x i 
2 ) 
)

F 20 

[ D ∑ 

i =1 

si n 2 ( x i ) − e 
−

D ∑ 

i =1 

x i 
2 ] (

e 
−

D ∑ 

i =1 

si n 2 
√ | x i | )
 Jamil & Yang, 2013 ), to measure its performance compared to the

CA with regard to the quality of solution and convergence speed. 

.1. Evaluation criteria 

In each run of the individual optimizer, the following measures

re calculated to test the mathematical benchmark functions: 

• Statistical mean is the average of the solutions ( S i ) that are

produced by executing the optimization algorithm M times and

is calculated according to Eq. (8) . 

Mean = 

1 

M 

M ∑ 

i =1 

S i (8) 

where S i is the obtained solution of the run time i . 
• Statistical standard deviation (Std) is an indicator of the vari-

ation of the best fitness values found when running the opti-

mization algorithm for M run times. Additionally, it represents

the robustness and stability, and it is computed as shown in Eq.

(9) : 

Std = 

√ 

1 

M − 1 

M ∑ 

i =1 

( S i − Mean ) 
2 (9) 

• Wilcoxon rank sum test ( Higgins, 2003 ) is a non-parametric

test description of the t -test for two independent groups and is

used to test the null hypothesis that two data points, x and y

vectors, are acquired from continuous distributions with equal
Dimension Range of bounds F min 

30 [ − 32, 32] 0 

30 [ − 5.12, 5.12] 0 

30 [ − 60 0, 60 0] 0 

30 [ − 1.28, 1.28] 0 

30 [ − 5.12, 5.12] 0 

30 [ − 100, 100] 0 

2 [ − 5.12, 5.12] −1.00 

2 [ − 100, 100] 0 

30 [ − 65, 65] 0 

30 [ − 10, 10] 0 

30 [ − 10, 10] 0 

2 [ − 5, 5] −1.03 

30 [ −100,100] 0 

30 [ −10,10] 0 

30 [0, π ] 0 

2 [ −2,2] 3.00 

 2 [ −4.5, 4.5] 0 

30 [ −100,100] 0 

30 [ −2 π , 2 π ] 0 

30 [ −10,10] 0 
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Table 2 

The parameters of the algorithm and their values. 

Algorithm Parameter Value 

GA Cross over percentage 0.7 

Mutation percentage 0.3 

Mutation rate 0.1 

SCA A 2.0 

r 1 10 

r 2 random (0, 2 π ) 

r 3 1.5 

PSO Maximum velocity ( V max ) 1.0 

Minimum velocity ( V min ) −1.0 

Cognitive coefficient (C1) 0.5 

Cognitive coefficient (C2) 0.5 

MFO B 1.0 

L [ −1,1] 

ABC The maximum cycle number 100 

modification rate (MR) 0.8 

WOA ā 2 

r̄ 1 

MVO Minimum of wormhole existence probability 0.2 

Maximum of wormhole existence probability 1.0 

Maximum inertia weight ( w max ) 0.9 

Minimum inertia weight ( w min ) 0.4 

SSA c 1 2 

c 2 , c 3 Random (0.1) 

GWO ā 2 

r̄ [ −1,1] 
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4.2. Comparison between ASCA-PSO, SCA and other similar 

algorithms 

ASCA-PSO has also been compared with the standard SCA and

nine recent and standard optimization algorithms, namely, moth-

flame optimization (MFO) ( Mirjalili, 2015 ), the slap swarm al-

gorithm (SSA) ( Mirjalili et al., 2017 ), artificial bee colony (ABC),

PSO, the genetic algorithm (GA), the whale optimization algo-

rithm (WOA) ( Mirjalili & Hatamlou, 2016 ), the multi-verse opti-

mizer (MVO) ( Mirjalili & Lewis, 2016 ) and grey wolf optimization

(GWO) ( Mirjalili, Mirjalili, & Lewis, 2014 ). 

Table 2 shows the parameter settings of these algorithms in the

experimental test over the benchmark functions. The number of

populations was 500 with 300 iterations. All tests were done on

Matlab R2015a on a computer machine has the following spec-

ification: Intel processor with I3 core each one has speed 2.27

GHz with 4 GB RAM. The experimental tests were implemented
on a CPU Core I3 with 4 GB RAM on Matlab 2015b software. All 

Table 3 

The average minimum values for all algorithms. 

F ASCA-PSO GA SCA PSO MFO 

F 1 8.88E −16 0.21 1.71E −07 3.62 5.36 

F 2 0.00 1.11 67.6 44.24 113.74 

F 3 0.00 0.03 0.22 1.11 1.67 

F 4 7.8E −264 2.00E −12 5.17E −29 0.00 1.697 

F 5 3.8E −131 8.0E −06 9.91E −15 0.05 0.191 

F 6 0.00 0.82 0.00 0.00 85.98 

F 7 −1 −0.98 −0.99 −1 −1 

F 8 0 2.60E −17 0 0 0 

F 9 8.8E −128 0.05 5.20E −11 5.9E −178 5260.6 

F 10 0.00 1.88 0.66 20.38 3729.6 

F 11 4.94E −65 0.04 4.55E −08 1.48 27.57 

F 12 −1.03 −1.03 −1.03 −1.03 −1.031 

F 13 4.33E −65 0.7 3.18E −07 11.69 31.9 

F 14 4.14E −66 0.00 0.31 53 2.792 

F 15 0.00 1.40E −88 0.05 2.52E −19 1.00E −48 

F 16 3 3 3 3 3 

F 17 2.00E −25 5.60E −05 0.00 0.00 0.00 

F 18 2.6E −256 1.90E −05 1.70E −22 370.99 7216.1 

F 19 1.94E −06 4.10E −12 3.50E −06 5.92E −12 3.30E −11 

F 20 3.98E −11 6.60E −18 4.50E −11 3.45E −14 5.20E −14 
he algorithms were executed with 50 independent runs over each

enchmark function for statistical analysis. Tables 3 and 4 show

he average optimal values of the test functions and standard de-

iations for all of the algorithms over 50 independent runs. As

hown in Table 3 , ASCA-PSO outperformed all of the other algo-

ithms with regard to the quality of the solutions for all functions.

In contrast, the other algorithms produced accurate results on

ertain functions and poor results on others. Each method pro-

uced poor results on a set of functions, as follows: GA (F 1 , F 2 ,

 6 , F 10 , F 13 ), SCA (F 2 , F 3 , F 10 , F 14 ), PSO (F 1 -F 3 , F 10 , F 11 , F 13 , F 14 , F 18 ),

FO (F 1 -F 6 , F 9 -F 11 , F 13 , F 14 , F 18 ), MVO (F 1 -F 4 , F 6 , F 9 -F 11 , F 13 , F 14 ,

 18 ) and SSA (F 1 -F 2 , F 6 , F 9 , F 10 , F 13 ). ABC and WOA produced ac-

urate results on most of the functions except for (F 13 , F 16 ) and

F 13 ), respectively. This finding reflects the efficient performance of

he proposed ASCA-PSO in comparison with the other algorithms.

ence, the order of algorithms for producing high-quality means

f solutions is as follows: (1) ASCA-PSO, (2) WOA, (3) ABC, (4) SCA,

nd (5) other algorithms. 

Table 4 shows the standard deviation values of 50 independent

uns, and ASCA-PSO provides the minimum standard deviation for

lmost all of the functions, except for F 19 and F 20 . After ASCA-PSO

s GA, which provides a minimum standard deviation for the func-

ions (F 8 , F 12 , F 15 ), followed by SCA (F 4 ), PSO (F 12 , F 16 ), MFO (F 15 ,

 16 , F 19 ), ABC (F 2 , F 12 ). WOA (F 1 , F 5 , F 9 , F 11 , F 18 ), MVO (F 19 ), SSA

F 7 , F 15 , F 19 , F 20 ) and GWO (F 1 , F 19 ). Thus, the order of the algo-

ithms for producing accurate quality means of the solutions is as

ollows: (1) ASCA-PSO, (2) WOA, (3) SCA, (4) GA and MFO, and (5)

ther algorithms. 

Table 5 provides the average execution time for 50 indepen-

ent runs of each algorithm for all of the functions. SCA produces

he minimum execution time, followed by ASCA-PSO, PSO, GA, and

BC. 

In the Wilcoxon rank test, as the null hypothesis, it is assumed

hat there is no difference among the algorithms that are com-

ared. The alternative hypothesis considers an actual difference be-

ween the values from both approaches. The results obtained by

he Wilcoxon test indicate that data cannot be assumed to be oc-

urring by coincidence (i.e., due to the typical noise contained in

he process). Thus, this test is used as proof that the results of

SCA-PSO are different from those using the other methods. The

nalysis of the values of Table 6 considers a 5% significance over

he averaged best values of the functions. Each algorithm was run

or 50 single experiments, after which the Wilcoxon rank test was

erformed over the best solutions found in each experiment. 
ABC WOA MVO SSA GWO 

6.80E −14 4.50E −15 0.84 0.51 3.90E −14 

4.80E −07 0.00 93.41 25.84 1.04 

0.00 1.30E −03 0.58 0.00 0.00 

3.60E −16 2.00E −03 0.56 0.00 0.00 

8.90E −16 1.50E −71 0 1.90E −11 1.00E −35 

0.00 0.00 3.78 4.92 0.00 

−1 −1 −0.99 −1 −1 

2.40E −08 0 4.20E −06 2.90E −13 0.00 

8.90E −16 7.80E −69 8.49 4.08 2.80E −32 

0.00 6.50E −01 1.7 0.8 0.66 

1.90E −15 1.30E −39 0.31 0.09 2.30E −19 

−1.03 −1.03 −1.03 −1.03 −1.03 

44.5 1.14E 0.48 0.36 5.50E −09 

1.40E −05 2.50E −01 2.63 0.00 0.00 

3.20E −19 0.00 1.80E −07 6.70E −34 0.00 

3.21 3 3 3 3 

0.00 7.40E −14 1.80E −08 1.40E −15 2.80E −08 

1.80E −17 2.70E −90 0.12 6.20E −17 1.80E −64 

3.60E −12 3.30E −11 3.30E −11 3.30E −11 3.30E −11 

1.90E −15 2.40E −01 6.50E −16 1.40E −23 2.60E −16 
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Table 4 

Standard deviation of testing functions for all algorithms. The bold values provides the minimum standard deviation for almost all of the 

functions. 

F ASCA-PSO GA SCA PSO MFO ABC WOA MVO SSA GWO 

F 1 0 0.37 3.20E −07 1.21 3.41 1.50E −14 2.30E −15 0.62 0.65 3.70E −15 

F 2 0 0.68 82.5 11.69 30.6 2.30E −06 0 26.61 10.64 2.76 

F 3 0.09 0.03 0.28 0.26 0.37 0 0 0.08 0 0 

F 4 0 2.80E −12 1.49E −28 0 0.34 8.50E −17 0 0.06 0 0 

F 5 1.6E −131 7.00E −06 1.85E −14 0.08 0.07 1.90E −16 7.30E −71 0 3.12E −12 1.30E −35 

F 6 0 0.71 0 0 41.4 0 0 2.34 2.63 0 

F 7 0 0.02 0.0175 0 0.48 0 0 6.10E −09 6.20E −16 0 

F 8 0 1.80E −16 0 0 0 6.10E −08 0 4.50E −06 2.80E −13 0 

F 9 4.5E −128 0.08 0 120.8 2916.32 2.30E −16 4.10E −68 5.73 11.07 3.30E −32 

F 10 0.02 3.05E −04 0 18.71 18,300.8 0.06 0.08 1.77 0.29 7.80E −06 

F 11 2.20E −65 0.08 6.38E −08 0.88 18.18 2.50E −16 4.10E −39 0.06 0.18 1.90E −19 

F 12 0 4.40E −16 0 4.49E −16 6.60E −16 4.40E −16 3.70E −14 7.10E −08 9.20E −15 2.60E −09 

F 13 2.64E −65 0.13 2.65E −07 2.63 7.78 6.5 20.373 0.12 0.48 3.20E −09 

F 14 2.19E −66 0 1.03 4.31 5.13 3.10E −05 1.75 1.4 0.02 0 

F 15 0 1.00E −87 0.06 9.67E −19 7.30E −48 4.60E −19 0 8.30E −07 4.36E −33 0 

F 16 0.25 3.21E −15 0 3.32E −15 2.60E −15 0.17 3.40E −08 6.70E −07 5.90E −14 4.60E −07 

F 17 9.20E −41 0 0 0 0 0 2.05E −13 1.50E −08 1.30E −15 2.50E −08 

F 18 0 3.65E −05 8.84E −22 1200 6544.15 1.60E −17 1.6E −137 0.05 2.10E −17 6.30E −64 

F 19 1.95E −06 3.40E −13 3.98E −06 1.35E −12 4.50E −26 1.30E −13 4.54E −26 4.50E −26 4.50E −26 4.50E −26 

F 20 1.90E −11 7.60E −18 1.45E −11 3.48E −14 4.80E −14 4.00E −16 0.42 1.90E −16 3.50E −24 4.80E −17 

Table 5 

The elapsed time of computing functions for all algorithms. The bold values means, SCA produces 

the minimum execution time. 

F ASCA-PSO GA SCA PSO MFO ABC WOA MVO SSA GWO 

F 1 3.35 3.48 1.98 3.59 7.05 3.22 8.67 18.35 17.42 6.73 

F 2 2.11 2.23 1.72 2.32 4.51 3.39 6.05 15.90 17.39 6.75 

F 3 3.40 3.69 1.97 3.61 6.52 4.22 7.83 17.55 17.44 6.77 

F 4 3.07 2.99 1.83 3.30 6.88 1.88 7.80 17.40 17.36 6.80 

F 5 1.85 2.93 1.54 2.02 5.72 1.63 7.71 17.73 17.61 6.72 

F 6 1.88 2.01 1.55 1.96 5.58 2.39 7.52 17.72 19.37 6.83 

F 7 1.71 2.56 0.47 1.70 3.85 1.98 4.81 5.18 17.51 6.81 

F 8 0.53 1.82 0.23 0.53 3.75 1.09 4.78 4.87 17.48 6.73 

F 9 5.91 3.33 2.36 6.11 9.48 3.65 10.8 22.20 17.45 6.73 

F 10 2.06 2.65 1.58 2.22 5.49 2.79 7.18 17.57 17.34 6.73 

F 11 1.78 2.40 1.54 1.90 6.47 3.45 7.92 17.74 17.33 6.73 

F 12 0.69 1.66 0.26 0.70 4.04 1.01 4.89 4.95 18.59 6.75 

F 13 3.53 3.88 1.83 3.67 5.90 2.98 7.48 18.31 18.50 7.23 

F 14 2.02 2.13 1.57 2.23 5.67 2.12 6.98 18.09 17.38 6.95 

F 15 3.90 3.95 1.86 4.18 7.41 4.45 7.30 19.3 17.34 6.80 

F 16 0.58 0.99 0.25 0.59 3.73 1.39 4.66 4.75 17.51 6.78 

F 17 0.57 2.33 0.24 0.56 3.82 2.56 4.60 4.69 17.58 6.70 

F 18 1.94 1.22 1.61 2.11 5.58 3.24 6.98 17.21 17.40 6.77 

F 19 2.18 2.56 1.63 2.44 6.50 4.56 7.33 17.81 19.42 6.75 

F 20 3.99 3.65 2.00 4.25 6.86 6.97 7.91 18.56 17.53 6.75 

Table 6 

P -value of Wilcoxon rank sum test of comparison between ASCA-PSO and other algorithms ( P > .05 is underlined). 

F 

ASCA-PSO vs. 

GA SCA PSO MFO ABC WOA MVO SSA GWO 

F 1 3.30E −20 3.30E −20 3.30E −20 3.30E −20 2.90E −20 2.50E −15 3.30E −20 3.30E −20 9.00E −21 

F 2 3.30E −20 2.30E −15 3.30E −20 3.30E −20 3.30E −20 2.90E −20 3.30E −20 3.20E −20 4.00E −14 

F 3 0.94 0.23 2.30E −17 7.00E −18 3.50E −12 2.50E −18 7.00E −16 3.40E −06 2.60E −15 

F 4 7.00E −18 7.00E −18 7.00E −18 7.00E −18 7.00E −18 7.70E −14 7.00E −18 7.00E −18 2.30E −08 

F 5 7.00E −18 7.00E −18 7.00E −18 7.00E −18 7.00E −18 7.00E −18 7.00E −18 7.00E −18 7.00E −18 

F 6 5.70E −12 3.30E −20 3.30E −20 3.30E −20 2.90E −20 3.50E −12 2.60E −20 2.90E −20 3.50E −12 

F 7 6.20E −19 3.30E −20 3.30E −20 0.01 3.30E −20 3.30E −20 6.80E −18 3.30E −20 3.30E −20 

F 8 0.32 3.30E −20 3.30E −20 3.30E −20 1.80E −10 3.30E −20 3.30E −20 3.30E −20 3.30E −20 

F 9 7.00E −18 7.00E −18 7.00E −18 7.00E −18 7.00E −18 7.00E −18 7.00E −18 7.00E −18 7.00E −18 

F 10 1.10E −10 1.10E −17 7.00E −18 7.00E −18 7.00E −18 7.00E −18 4.70E −17 0.99 7.00E −18 

F 11 7.00E −18 7.00E −18 7.00E −18 7.00E −18 7.00E −18 7.00E −18 7.00E −18 7.00E −18 7.00E −18 

F 12 3.30E −20 7.00E −18 3.30E −20 3.30E −20 3.30E −20 3.30E −20 7.00E −18 3.30E −20 6.10E −18 

F 13 7.00E −18 7.00E −18 7.00E −18 7.00E −18 7.00E −18 7.00E −18 7.00E −18 7.00E −18 7.00E −18 

F 14 7.00E −18 7.00E −18 7.00E −18 7.00E −18 7.00E −18 7.00E −18 7.00E −18 7.00E −18 7.00E −18 

F 15 4.70E −13 1.70E −14 4.90E −13 4.90E −13 4.90E −13 0.02 4.90E −13 4.80E −13 4.90E −13 

F 16 1.20E −19 1.50E −16 1.20E −19 1.20E −19 0.8 3.70E −17 1.30E −16 1.20E −19 1.20E −16 

F 17 1.00E −17 3.80E −13 3.30E −20 3.30E −20 1.10E −07 7.00E −18 7.00E −18 7.00E −18 7.00E −18 

F 18 7.00E −18 7.00E −18 7.00E −18 7.00E −18 7.00E −18 7.00E −18 7.00E −18 7.00E −18 7.00E −18 

F 19 6.90E −18 0.19 7.00E −18 3.30E −20 6.80E −18 3.30E −20 3.30E −20 3.30E −20 3.30E −20 

F 20 7.00E −18 0.28 7.00E −18 7.00E −18 7.00E −18 6.60E −18 7.00E −18 7.00E −18 7.00E −18 
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Fig. 2. Convergence curves for fitness function from F 1 to F 6 . 

 

 

 

 

o  

i  
In Table 6 , values less than 0.05 demonstrate that the meth-

ods are substantially different and provide results that differ. Val-

ues higher than 0.05 provide evidence that the methods are similar

in this specific implementation. 
Figs. 2–5 show a comparison between ASCA-PSO and all the

ther algorithms for the convergence rate for the fitness versus the

terations for all of the functions. These figures show that ASCA-
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Fig. 3. Convergence curves for fitness function from F 7 to F 12 . 

P  

v

6  
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c

5

a

 

i  
SO outperforms all the other algorithms in terms of the con-

ergence speed with an accurate solution. In addition, Tables 3–

 show that ASCA-PSO provides an efficient strategy for finding

he optimal global solution of an optimization problem with a fast

onvergence rate. 
t  

a  
. Case study: biological pairwise local sequence alignment 

lgorithm 

Alignment is one of the main processes in bioinformatics and

s used to measure the similarity between biological sequences

o provide indications about evolutionary and functional relations

mong RNA, DNA and protein sequences ( Berger & Rozener, 1998;
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Fig. 4. Convergence curves for fitness function from F 13 to F 18 . 
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Fig. 5. Convergence curves for fitness function from F 19 to F 20 . 
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ohen, 2004 ). Sequence alignment compares sequences by match-

ng their bases (amino acids for proteins and nucleotides for DNA)

o produce the best alignment that provides a maximum score

epresenting the degree of similarity. Many biological operations

re based mainly on sequence alignment processes, such as phy-

ogenetic tree constructions ( Feng & Doolittle, 1990 ), where the

lignment is used to evaluate the similarities of the sequences to

onstruct the evolutionary trees containing the sequences. Protein

econdary structure prediction and analysis use the alignments to

mprove the prediction quality ( Di Francesco, Garnier, & Munson,

996 ). Additionally, DNA fragment assembly uses sequence align-

ent to aid the arrangement of the short fragmented sequences to

onstruct the original DNA sequence ( Li & Khuri, 2004 ). 

Sequence alignment is classified into pairwise alignment, which

s used to align two sequences, and multiple alignment, which

ligns more than two sequences ( Xiong, 2006 ). There are two types

f pairwise alignments: global and local alignment. Global align-

ent finds the alignment over the entire length of the sequences

y aligning the matching regions of the two sequences. Local align-

ent aims to find the longest consecutive substrings between two

equences. 

There is a difference between the longest consecutive substrings

nd the longest common subsequences. The longest consecutive

ubstrings are the consecutive substrings that are common be-

ween two sequences (strings) but with the condition that the

ubstring is one segment whose bases are in consecutive order

 Gusfield, 1997 ). However, the longest common subsequences are

he common subsequences between two sequences but are not in

onsecutive order ( Maier, 1978 ). 

Pairwise local alignment is computed using the Smith-

aterman (SW) alignment algorithm ( Smith & Waterman, 1981 ),

hich is based mainly on a dynamic programming approach

 Cormen, 2009 ), and thus, it produces the most accurate alignment

esults. 

For computing an SW alignment, a matrix with size ( m + 1) and

 n + 1) for the row and column, respectively, is constructed, where

 and n represent the lengths of the two sequences. Each cell

aves a score of an alignment from all possible alignments. The

lignment score is computed using Eq. (10) based on the previous

ells on the same row and column and the diagonal cell. 

core ( i, j ) 
= max 

⎧ ⎪ ⎨ 

⎪ ⎩ 

Score ( i − 1 , j − 1 ) + S imilarity ( S e q A ( i ) , S e q B ( j ) ) 
ma x k =1: i −1 ( Score ( i, k ) + g 0 + k g e ) 
ma x k =1: i −1 ( Score ( k, j ) + g 0 + k g e ) 

0 

⎫ ⎪ ⎬ 

⎪ ⎭ 

(10) 

here Seq A and Seq B are the sequences to be aligned with lengths

 and n, respectively, and i and j denote the row and column in-

ices, respectively, with 1 < i < m and 1 < j < n . Here, g o and g e 
re the open gap and extended gap penalties, where the insertion

f gaps ( k is the number of inserted gaps) represents the possi-

ility of aligning the bases of sequences with nothing when shift-

ng bases for matching. A linear gap penalty ( g 0 + k g e ) is chosen

or penalizing sequential gaps instead of separated gaps to max-

mize the overall alignment score ( Gotoh, 1982 ). In some cases,

ommon consecutive substrings may require gaps ‘ـ ــ ’ to be inserted

ithin the substrings to match as many bases as possible in or-

er to increase the lengths of the substrings, as shown in Fig. 6 ,

n which the three consecutive gaps enable the longest substrings

o be identified. Similarity () is a function that computes the sim-

larity between two bases according to the scoring scheme used

ased on the matching or un-matching of bases. There are differ-

nt schemes for measuring similarity, and for proteins, there are

wo common scoring schemes: (1) BLOcked SUbstitution Matrix

BLOSUM) ( Mount, 2008 ) and (2) Point Accepted Mutation (PAM)

 Henikoff & Henikoff, 1992 ). For DNA, a positive score is assigned

or matching nucleotides, and for un-matching nucleotides, a neg-

tive score is assigned. 

SW alignment produces the most accurate longest consecutive

ubstrings between two biological sequences, but it requires a very

ong execution time, where the time complexity of SW alignment

s O ( n 3 ) and the space complexity is O ( n 2 ), in which n is the length

f the two sequences to be aligned. 

Hence, this paper attempts to reduce the execution time of SW

lignment to provide results that give a primary indication of com-

on substrings between long sequences. Then, SW alignment can

e used to re-align the sequences if the primary results are ac-

eptable. The proposed approach is based on fragmentation of the

equences into short fragments, and thus, the execution time of

he alignment is reduced due to aligning short fragments instead

f the entire lengths of the sequences. The rule of using meta-

euristics algorithms is to update the positions of the fragments

n the two sequences toward the position of a fragment that pro-

uces the best longest consecutive substrings found. 
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Fig. 6. Example of common longest consecutive substrings with gaps. 

Fig. 7. Example of aligning fragments of sequences. 

Fig. 8. Different ways to cut a fragment with length LF. 
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5.1. Formulating the problem as optimization problem 

As noted above, the objective of the local sequence alignment

algorithm is to find the longest consecutive substrings between

two biological sequences. Thus, the fragmentation of sequences is

used, in which short fragments of sequences are aligned instead

of the entire sequence to overcome the problem of an extended

execution time for the long sequences. The SW alignment algo-

rithm aligns the short fragments to find the longest consecutive

substrings between them. The sum of pair (SOP) objective func-

tion, as shown in Eq. (11) , is used to evaluate the lengths of the

consecutive substrings found. 

Alignmen t Score = 

L ∑ 

i =1 

{
i f A i = B i penalize ( +1 ) score 

otherwise penalize zero 

}
(11)

where A and B are the aligned sequences. 
However, there is a large number of trials for the fragmenta-

ion of sequences in their many positions. Thus, the idea of the

roposed alignment scheme is to cut the number of fragments in

ach sequence at different positions and find the longest consecu-

ive substrings between each pair. Then, we update the positions

f the fragments to be cut in the subsequent iterations toward

he positions of the fragments that obtained the maximum scores

ound (the longest consecutive substrings). The optimization search

trategy of the meta-heuristic algorithms is used for updating the

ositions toward the fragments that obtained the best result. 

Fig. 7 shows an example of cutting three fragments of the se-

uences at positions P 1 , P 2 and P 3 , where each position is repre-

ented by one search agent. The yellow part represents the com-

on substring with length W between two fragments, and as

hown, the P 2 cut fragments have the longer consecutive sub-

trings than those of P 1 and P 3 . Hence, the optimization search

trategy must update positions P 1 and P 3 toward P 2 to find com-
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Fig. 9. Percentage of common consecutive substrings obtained using SW, SCA and ASCA-PSO methods. 

Table 7 

The parameters of ASCA-PSO local alignment technique. 

Algorithm Parameter Value 

SW alignment Match + 1.0 

g o −1.0 

g e −0.5 

SCA a 2.0 

ASCA-PSO Maximum velocity ( V max ) 1.0 

Minimum velocity ( V min ) −1.0 

Cognitive coefficient (C1) 0.5 

Cognitive coefficient (C2) 0.5 

a 2.0 

m  

w  
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s  
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Table 8 

Comparison of different method for cut of fragments using ASCA-PSO. 

m × n Percentage of longest consecutive substrings 

I II III Mix 

250,0 0 0 56 89 84 95 

350,0 0 0 56 73 84 95 

550,0 0 0 67 84 84 95 

750,0 0 0 56 78 73 95 

1,0 0 0,0 0 0 62 89 95 89 

1,40 0,0 0 0 73 84 89 89 

1,80 0,0 0 0 62 73 84 84 

2,20 0,0 0 0 56 78 89 84 

2,60 0,0 0 0 62 73 84 84 

3,0 0 0,0 0 0 67 73 89 84 

4,0 0 0,0 0 0 62 78 84 84 

5,0 0 0,0 0 0 56 78 78 84 

6,0 0 0,0 0 0 62 67 73 84 

7,0 0 0,0 0 0 50 67 73 84 

8,0 0 0,0 0 0 56 78 78 84 

9,0 0 0,0 0 0 56 67 84 84 

Table 9 

Wilcoxon rank sum test results between ASCA- 

PSO and SCA vs. product of sequences’ lengths. 

m × n P -value 

250,0 0 0 3.29E −09 

350,0 0 0 5.87E −09 

550,0 0 0 7.66E −08 

750,0 0 0 5.39E −10 

1,0 0 0,0 0 0 1.45E −08 

1,40 0,0 0 0 6.25E −09 

1,80 0,0 0 0 6.01E −13 

2,20 0,0 0 0 7.46E −08 

2,60 0,0 0 0 3.60E −11 

3,0 0 0,0 0 0 1.70E −10 

4,0 0 0,0 0 0 4.68E −11 

5,0 0 0,0 0 0 6.55E −12 

6,0 0 0,0 0 0 2.31E −12 

7,0 0 0,0 0 0 6.69E −09 

8,0 0 0,0 0 0 5.17E −12 

9,0 0 0,0 0 0 1.33E −07 
on substrings with a length better than that found by P 2 . Hence,

hen repeating these steps with a large number of search agents,

here is a high likelihood of finding the longest consecutive sub-

trings or parts of them with a high percentage in less time than

hat consumed by the SW alignment. 

In Fig. 7 , the fragments are cut starting from position ( P i ) to

 P i + L F ), but there are two other possibilities, as shown in Fig. 8: 

• Cutting a fragment with length L F starting from ( P i − L F ) to ( P i ).
• Cutting a fragment with length L F starting from ( P i − ( L F /2)) to

( P i + ( L F /2)). 

In the experimental section, each method for cutting fragments

I, II and III) is studied separately to show the effect of each

ethod on the results to choose the most suitable method of cut-

ing. 

.2. The fragmentation local alignment proposed method 

Step 1: Initialize N search agents ( P i , i = 1, 2, 3 ,…, N ) with ran-

dom positions in the range from 1 to length ((Seq A or Seq B )

– L F ), where L F is the length of the fragments. 

Step 2: Cut the fragments with length L F in each sequence ac-

cording to one of the three methods in Fig. 8 . 

Step 3: Each corresponding fragment determined by each search

agent is aligned using the SW alignment algorithm, and the

alignment score is computed using the objective function in

Eq. (11) . 



68 M. Issa et al. / Expert Systems With Applications 99 (2018) 56–70 

Table 10 

Comparison of SW alignment method with fragmentation alignment using ASCA-PSO and SCA on real protein sequences. 

Protein ID (length) Method Score Longest Consecutive Substrings Obtained

1
Q9NP78 (766)
O95342 (1321)

SW 42 GEKGAQLSGGQKQRVAMARALVRNPPVLILDEATSA
LDAESE

ASCA-PSO 18 SGGQKQRVAIARALIRNP
SCA 13 LDEATSALDAESE

2 Q8K442 (1620)
P41233 (2160)

SW 29 MDEADILADRKVFISKGKLKCAGSSLFLK
ASCA-PSO 27 EADILADRKVFISKGKLKCAGSSLFLK
SCA 13 QITAILGHSGAGK

3 Q8K441(1624)
Q91V24(2159)

SW 35 ALKGLFLDIYESQITAILGHSGAGKSSLLNILSGL
ASCA-PSO 21 TAILGHSGAGKSSLLNILSGL

SCA 18 AIMVSGRLRCIGPIQHLK

4 Q5TCY1 (1141)
Q96AE7(1082)

SW 34 AVGVRGRYELPPCSGPGWLLSLSALLSVAARGAF
ASCA-PSO 26 YELPPCSGPGWLLSLSALLSVAARGA

SCA 5 QARPG

5 A0A0A6YYL4 
(2161)
Q5VTQ0 (3423)

SW 65
GKIQQQVDSPMNLKHPHDLVILMRQEATVNYLKELE
KQLVAQKIHIEENEDRDTGLEQRHNKEDP

ASCA-PSO 29 GKIQQQVDSPMNLKHPHDLVILMRQEATV
SCA 11 LVILMRQEATVNY

6 Q7TQI7 (1024)
E9Q4Z2 (2734)

SW 25 CRSLSLSSSKSNSQALNSSAQQHRG
ASCA-PSO 18 SSKSNSQALNSSAQQHRG

SCA 8 SAGDGLRQ

7 E9PX95 (5200)
P70170 (1546)

SW 51 PHVFLLFITFPILFIGWGSQSSKVQIHHNTWLHFPGH
NLRWILTFALLFVH

ASCA-PSO 16 PHVFLLFITFPILFIG
SCA 9 LITLLEMLM

8 Q8BGM7 (1620)
Q8R0P4 (2287)

SW 26 LKRDTFLEFLYTALILLSLILFLQLH
ASCA-PSO 12 FLEFLYTALILL

SCA 11 MDEADIL

9 Q01337 (2524)
Q9Z0F8 (2616)

SW 24 PRGGPEHRAAWGEADSRANGYPHA
ASCA-PSO 12 GPEHRAAWGEAD

SCA 6 PRGGPE

10 Q7TQI7 (1024)
E9Q4Z2 (2472)

SW 26 SGYGAGDSCRSLSLSSSKSNSQALN
ASCA-PSO 14 SGYGAGDSCRSLS

SCA 6 YLDIGA

11 Q61618 (2080)
Q99LJ2 (2477)

SW 32 SCQRPPRNPLSSNDTWPSPELQTNWTAAPGPE
ASCA-PSO 16 SCQRPPRNPLSSNDTW

SCA 4 ANDL
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Step 4: Update the global optimum search agents ( P gbest ) to de-

termine the positions of the fragments in the two sequences

that contain the longest consecutive substrings found. 

Step 5: Each search agent updates its position toward P gbest 

based on the optimization updating strategy of the used

meta-heuristic technique. 

Step 6: Repeat steps 2–5 for a number of iterations ( T ). 

The time complexity of the fragmentation pairwise local align-

ment is ( T N L F 
2 ), where T, N and L F are the number of itera-

tions, number of particles and width of the fragments, respectively.

The proposed technique has a time complexity that is lower than

that of the SW alignment algorithm, which is ( n 3 ), where n is

the length of the two sequences. Thus, the fragmentation of the

sequences guarantees executing the local alignment in a shorter

amount of time than that required for the SW alignment, and the

role of using meta-heuristics is only to keep the search process
oving toward the region that contains the alignment with the

aximum score, i.e., the longest consecutive substrings between

wo sequences. 

.3. The experimental results 

The proposed fragmentation local alignment method was im-

lemented using ASCA-PSO, and the SCA and was tested on bio-

ogical protein sequences from the Swiss-Prot database ( UniProt,

017 ) with various lengths (the product of the lengths of the se-

uences up to 90 0 0,0 0 0). The objective of the test was to measure

he percentage of the length of the longest consecutive substrings

ound by ASCA-PSO and the SCA compared with that found by the

W alignment algorithm. 

Table 7 shows the parameter settings that were used in the test

ith 50 independent runs, and each method of cutting the frag-

ents (I, II and III) was tested separately. In addition, the fourth
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Table 11 

Execution time comparison of ASCA-PSO vs. SCA and SW align- 

ment methods. 

m × n Time (Sec) Search Agents 

SW SCA ASCA-PSO SCA ASCA-PSO 

250,0 0 0 11 4.70 6.04 40 50 

350,0 0 0 18 4.70 6.04 40 50 

550,0 0 0 37 12.0 12.7 100 110 

750,0 0 0 57 14.3 14.9 120 130 

1,0 0 0,0 0 0 138 18.8 18.9 150 160 

1,40 0,0 0 0 208 21.7 21.7 180 190 

1,80 0,0 0 0 288 25.0 26.0 200 210 

2,20 0,0 0 0 320 29.0 30.2 240 250 

2,60 0,0 0 0 354 49.2 51.2 400 410 

3,0 0 0,0 0 0 428 49.2 51.2 400 410 

4,0 0 0,0 0 0 680 53.9 55.9 450 460 

5,0 0 0,0 0 0 922 53.9 55.9 450 460 

6,0 0 0,0 0 0 1275 53.9 55.9 450 460 

7,0 0 0,0 0 0 1670 67.0 69.8 550 560 

8,0 0 0,0 0 0 2134 78.9 83.7 650 660 

9,0 0 0,0 0 0 2750 78.9 83.7 650 660 
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utting of fragments method was applied, which is a combina-

ion of the three methods, in which at each cutting of fragments,

ne of the three methods was applied and was chosen at random.

able 8 shows the percentage of the longest consecutive substrings

ound by ASCA-PSO in comparison to that found by the SW align-

ent algorithm, and as shown, cutting methods II and III produced

etter results than method I, but using a combination of the three

ethods produced the best results. 

Fig. 9 shows the comparison among the ASCA-PSO, SCA and

W alignment methods. The fragment-cutting method used was

he combination of the three methods (I, II and III) due to

ts significant impact on the results. As shown in the figure,

SCA-PSO enhanced the performance of the SCA when find-

ng the common longest consecutive substrings between two se-

uences with lengths m and n with a product of up to 90 0 0,0 0 0.

able 9 presents the p values obtained after applying the Wilcoxon

ank test over the results of SCA and ASCA-PSO. A set of 50 in-

ependent experiments was performed by each algorithm. In this

ontext, the ASCA-PSO vs. SCA comparison using the Wilcoxon

anks test provides evidence that the results obtained by the two

lgorithms are sufficiently different. 

In addition, the proposed fragmentation SW alignment method

mplemented by ASCA-PSO and SCA was compared with the stan-

ard SW local alignment algorithm to find the common longest

onsecutive substrings between real protein sequences gathered

rom the mouse protein database ( UniProt, 2017 ). Table 10 shows

he comparison, in which the second column contains the protein

D for each sequence accompanied with the length of the sequence,

nd the results from each method are shown in the last column

ccompanied by the score. The score represents the length of the

ommon substrings (matched bases). 

As shown in the table, the SW alignment method finds the

ongest consecutive substrings between each pair of proteins, while

CA fragmentation alignment can find part of the longest consecu-

ive substrings in cases 1, 5 and 9 but with a shorter length than

hat found by ASCA-PSO. In other cases, the SCA can find consecu-

ive substrings but not the longest substrings; however, ASCA-PSO

an find a longer segment of the longest consecutive substrings

n all cases. Hence, this test proved successful for ASCA-PSO in

nhancing the SCA for searching for the longest consecutive sub-

trings based on a fragmentation local alignment method. 

Table 11 lists the execution time of the fragmentation alignment

ethods using ASCA-PSO and the SCA in comparison with the SW

lignment algorithm according to the number of search agents of

he SCA and ASCA-PSO. For sequences with product lengths less
han 250,0 0 0, the SW alignment method produced an accurate

lignment in a smaller execution time than the proposed fragmen-

ation local alignment method by the SCA or ASCA-PSO. Otherwise,

SCA-PSO sped up the alignment process for finding the longest

onsecutive substrings with reasonable results in comparison with

he SW alignment method. 

As listed in the table, the size of search agents used increased

n proportion to the increase in the length of the sequences in

rder to cover the search space (length of sequences). However,

he SCA alignment method was slightly faster than the ASCA-PSO

lignment method, but the latter doubled the performance of the

CA alignment process. 

. Conclusions 

In this paper, the SCA has the advantage of powerful explo-

ation but poor exploitation. Thus, it was necessary to enhance the

CA by merging it with PSO, which has the advantage of power-

ul exploitation. The resulting hybrid technique was built in two

ayers, where the bottom layer explores the search space based on

he search agents of SCA, while the top layer exploits the region

round the best solution found by the bottom layer. Hence, the

roposed technique is balanced between exploration and exploita-

ion, which improves the quality of the solution while maintain-

ng fast convergence. The enhancement of the SCA using ASCA-PSO

as tested on finding the optimal solution for standard benchmark

athematical functions, and the results proved the enhancement

f the quality of the solution and the convergence rate of the SCA.

n addition, the problem of finding the longest consecutive sub-

trings between two biological sequences was used as a case study

or testing the proposed approach, the ASCA-PSO, compared with

he SCA. This problem was formulated as an optimization problem,

nd ASCA-PSO and the SCA were used to find the longest com-

on consecutive substrings in comparison with an accurate solu-

ion obtained by the SW alignment method. ASCA-PSO was suc-

essful for twice the percentage of common consecutive substrings

btained by the SCA, corresponding to those obtained by the SW

lignment method, when testing on biological protein sequences.

ence, the results of the proposed enhancement approach (ASCA-

SO) in this work support its use for optimizing other engineering

roblems. 
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