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Abstract. Alignments of sequences are widely used for biological se-
quence comparisons. Only biological events like mutations, insertions and
deletions are usually modeled and other biological events like inversions
are not automatically detected by the usual alignment algorithms.

Alignment with inversions does not have a known polynomial algo-
rithm and a simplification to the problem that considers only non-over-
lapping inversions were proposed by Schöniger and Waterman [20] in
1992 as well as a corresponding O(n6) solution1. An improvement to
an algorithm with O(n3 log n)-time complexity was announced in an ex-
tended abstract [1] and, in this present paper, we give an algorithm that
solves this simplified problem in O(n3)-time and O(n2)-space in the more
general framework of an edit graph.

Inversions have recently [4,7,13,17] been discovered to be very impor-
tant in Comparative Genomics and Scherer et al. in 2005 [11] experimen-
tally verified inversions that were found to be polymorphic in the human
genome. Moreover, 10% of the 1,576 putative inversions reported over-
lap RefSeq genes in the human genome. We believe our new algorithms
may open the possibility to more detailed studies of inversions on DNA
sequences using exact optimization algorithms and we hope this may be
particularly interesting if applied to regions around known rearrange-
ments boundaries. Scherer report 29 such cases and prioritize them as
candidates for biological and evolutionary studies.

1 Introduction

Alignments of sequences are widely used for biological sequence comparisons and
can be associated with a set of edit operations that transform one sequence to
the other. Usually, the only edit operations that are considered are the substi-
tution (mutation) of one symbol by another one, the insertion of one symbol
1 In this case, n denotes the maximal length of the two aligned sequences.
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and deletion of one symbol. If costs are associated with each operation, there is
a classic O(n2) dynamic program that computes a set of edit operations with
minimal total cost and exhibit the associated alignment, which has good quality
and high likelihood for realistic costs.

Other important biological events like inversions are not automatically de-
tected by the usual alignment algorithms and we can define a new edit operation,
the inversion operation, which substitutes any segment by its reverse comple-
ment sequence. We can define a new alignment problem: given two sequences
and fixed costs for each kind of edit operation, the alignment with inversions
problem is an optimization problem that queries the minimal total cost2 of an
edit operations series that transforms one sequence to the other. Moreover, one
may also be interested in the exhibition of its corresponding alignment and/or
edit operations. Unfortunatley, the decision problem associated with alignment
with inversions for an unlimited alphabet size is NP-hard as consequence of Jiang
et al. [5].

Some simplifications of this problem have been studied and were proved to be
NP-complete [3,22]. Many approximation algorithms were also proposed [6,16].
Another important simplification is the problem known as sorting signed permu-
tations by reversals and polynomial algorithms were obtained in a sequence of
papers [2,14,15,21]. These approaches are mainly used for the study of inversions
on sequences of genes, but new comparative results given by Sherer et al. [11]
show also the importance of DNA inversion studies where those methods can
not be used. Moreover, Sherer et al. reported 83 inversions that are contained
within a gene.

Another important approach was introduced in 1992, by Schöniger and Wa-
terman [20]. They introduced a simplification hypothesis : all regions involved
in the inversions do not overlap. This simplification is realistic for local DNA
comparisons on relatively close sequences. This led to the alignment with non-
overlapping inversions problem and they presented a simple O(n6) dynamic
programming solution for this problem and also introduced a heuristic for it
that reduced the average running-time to something between O(n2) and O(n4).

Recently, independent works [8,9,10,12] gave exact algorithms for alignments
with non-overlapping inversions with O(n4)-time and O(n2)-space complexity.
An algorithm with O(n3 logn)-time [1] was later announced. In this paper, we
give an algorithm that solves this simplified problem in O(n3)-time and O(n2)-
space.

2 Alignments with Non-overlapping Inversions

The standard alignment of two strings is called standard alignment in this text.
This kind of alignment, when viewed as the process of transforming a string s in
a string t, uses the well known string edit operations of insertion, deletion and
substitution of symbols.

2 In this work, we deal with the dual approach of maximization of similarity score.
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The alignment of s and t is usually represented by the insertion of some
spaces (−) in certain places of each string and the matching (alignment) of each
symbol or space of s with the symbol or space in the corresponding position in
t. If s[i] and t[j] are symbols from s and t, respectively, then a pair (s[i], t[j]) is
a substitution of s[i] by t[j] (if they are equal we say it’s a match), (−, t[j]) is
the insertion of t[j] and (s[i],−) is the deletion of s[i]. Usually, there are costs
associated with each edit operation and a score is given to the alignment based
on the pairs that were formed.

An extra operation is considered here: the inversion of a substring. A string
that suffers this operation has a substring removed, reverted, complemented
and inserted back in its original place. For example, the inversion of the string
ACCATGC gives GCATGGT.

When evaluating an alignment with inversions, there is a cost associated with
the inversion operation. Besides that, insertions, substitutions and deletions may
be applied in an inverted substring, incurring in additional costs.

In this paper we consider only non-overlapping inversions. This means that
when aligning two strings we may consider multiple inversions in s, but any
symbol of s may be involved in at most one inverted substring. When dealing
with non-overlapping inversions, the order in which the inversions are performed
is unimportant.

In the following sections, s is the inverted string s while s[a..b] is the inverted
substring os s that starts in position a and ends in position b. These positions
are taken from s, not s, as would be the case in s[a..b] (notice the extension of
the bar in each case).

3 Edit Graph

Let s and t be two sequences of lengths n and m respectively.

Definition 3.1 (Edit Graph of s and t). Consider V = {(i, j)|0 ≤ i ≤ n, 0 ≤
j ≤ m} and E = EH ∪ ED ∪ EV , such that,

– EH = {ei,j
H = ((i, j − 1), (i, j))|0 ≤ i ≤ n, 0 < j ≤ m} is the set of horizontal

edges that end on vertex (i, j),
– ED = {ei,j

D = ((i − 1, j − 1), (i, j))|0 < i ≤ n, 0 < j ≤ m} is the set of
diagonal edges that end on vertex (i, j),

– EV = {ei,j
V = ((i − 1, j), (i, j))|0 < i ≤ n, 0 ≤ j ≤ m} is the set of vertical

edges that end on vertex (i, j).

Consider the function ω : E −→ R ∪ {−∞}, that associates each edge e ∈ E
with weight ω(e). The directed graph G = (V,E, ω) is the edit graph of s and t.

In this work, the weight of edge ei,j
V is the score of the deletion of letter s[i]

when s[1..i − 1] is aligned with t[1..j], the weight of edge ei,j
H is the score of

the insertion of letter t[j] when s[1..i] is aligned with t[1..j − 1] and the weight
of edge ei,j

D is the score of the substitution of letter s[i] by letter t[j] when
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(a) Edit graph (b) Extended edit graph

Fig. 1. Examples of edit graph and extended edit graph. Edge weights are not shown,
and the only extended edges shown are those that arrive at (1, 2).

s[1..i−1] is aligned with t[1..j−1]. These weights are usually defined by a function
φ : Σ ∪ {−} × Σ ∪ {−} −→ R ∪ {−∞}, − /∈ Σ, such that ω(ei,j

V ) = φ(s[i],−),
ω(ei,j

H ) = φ(−, t[i]) and ω(ei,j
D ) = φ(s[i], t[i]), where Σ is the set of symbols used

in the sequences.
Therefore, there is a one-to-one relation between paths in G and standard

alignments of s against t. In others words, one path from (0, 0) to (i, j) in G
corresponds to one and only one standard alignment of s[1..i] against t[1..j]. The
score of an alignment without inversions is the total weight of its corresponding
path in G.

We say that a path p from u = (i, j) to v = (i′, j′) is optimal if there is no
other path from u to v with total weight greater than the weight of p. We denote
wv

u = wi′,j′
i,j to be the weight of this optimal path path p. If there is no such a

path from u to v, we denote wv
u = −∞.

Notice that the score of an optimal standard alignment of s against t is the
weight of an optimal path from (0, 0) to (i, j) in G.

Definition 3.2 (Extended edit graph of s and t). Consider EH , ED, EV

and V as described in the definition of edit graph of s and t. Consider E =
EH ∪ED ∪EV ∪EX where EX =

⋃n
i=0

⋃m
j=0 E

i,j
X and Ei,j

X is the set of extended
edges that end on vertex (i, j), that is

Ei,j
X = {ei,j

i′,j′ = ((i′, j′), (i, j)) | 0 ≤ i′ ≤ i ≤ n, 0 ≤ j′ ≤ j ≤ m e (i′, j′) �= (i, j)}.
The directed graph G = (V,E, ω) is the extended edit graph of s and t and the

weight function ω is defined like in the edit graph, but extended to assign weights
to the extended edges.

In this paper, the extended edges represent optimal standard alignments of sub-
strings of t against inverted substrings of s.

Let G be an extended edit graph of s and t. The graph obtained by removing
the extended edges from G is an edit graph of s and t. Like in edit graphs, an
optimal path in an extended edit graph is a path with maximal weight.
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4 The Algorithm

Let s = s[1..n] and t = t[1..m] be the sequences to be aligned.
Let G = (V,E, ω) be the edit graph of s and t. This graph is used to evaluate

the alignments of substrings of t and inverted substrings of s. In G, the weights
ω(ei,j

H ), ω(ei,j
D ) and ω(ei,j

V ) correspond, respectively, to the scores of insertion of
t[j], substitution of s[i] = s[n+ 1 − i] by t[j] and deletion of s[i] = s[n+ 1 − i].

Let G = (V,E, ω) be the extended edit graph of s and t, such that

ω(ei,j
H ) = score of insertion of t[j],

ω(ei,j
V ) = score of deletion of s[i],

ω(ei,j
D ) = score of substitution of s[i] by t[j],

ω(ei,j
i′,j′) = w

(n−i′,j)
(n−i,j′) + ωinv,

where ωinv is a penalty value for inversions and w
(n−i′,j)
(n−i,j′) is the weight of an

optimal path from (n− i, j′) to (n− i′, j) in G. In others words w(n−i′,j)
(n−i,j′) is the

score of the standard alignment of s[i′ + 1..i] against t[j′ + 1..j].
Since there is a one to one relation between paths in G and alignments with

non-overlapping inversions of s against t, the weight of an optimal path from
(0, 0) to (n,m) in G is the score of an optimal alignment with non-overlapping
inversions of s against t.

The following definitions help us to understand how the weight of an optimal
path from (0, 0) to (n,m) in G is obtained through Algorithm 1.

Definition 4.1 (Matrix B). B[i, j] = wi,j
0,0 is the weight of an optimal path

from (0, 0) to (i, j) on G, 0 ≤ i ≤ n and 0 ≤ j ≤ m.

In others words B[i, j] is the score of an optimal alignment with non-overlapping
inversions of s[1..i] against t[1..j].

Definition 4.2 (Matrix Outii′). Given i′ and i such that 0 ≤ i′ ≤ i ≤ n we
define the matrix Outii′ [1..m, 1..m] of G as

Outii′ [j
′, j] =

{
B[i′, j′] + wi,j

i′,j′ , if 0 ≤ j′ ≤ j ≤ m,
−∞ if 0 ≤ j < j′ ≤ m,

The element Outii′ [j
′, j] stores the optimal alignment score of s[1..i] against t[1..j]

such that s[i′ + 1..i] is aligned with t[j′ + 1..j].

Definition 4.3 (hDif i,j
i′ vector). Let G be an edit graph. Given i′ and the

vertex (i, j) of G such that 0 ≤ i′ ≤ i, we define hDif i,j
i′ of G by the vector of

size j such that hDif i,j
i′ [j′] = wi,j

i′,j′ − wi,j−1
i′,j′ , 0 ≤ j′ < j.

The vector hDif i,j
i′ has an important property that is used by our algorithm: it

is nondecreasing.
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Lemma 4.4 The vector hDif i,j
i′ of an edit graph G is nondecreasing.

Proof. Let (i′, j1), (i′, j2), (i, j3) and (i, j4) be vertices of G, such that 0 ≤
j1 < j2 ≤ j3 < j4 ≤ m. There is at least one common vertex v that belongs
to the paths from (i′, j2) to (i, j3) and from (i′, j1) to (i, j4), as one can see
at Figure 2. To simplify, we define: a = wi,j3

i′,j1 , b = wi,j4
i′,j2 , c = wv

(i′,j1), d =

w
(i,j4)
v , e = wv

(i′,j2) and f = w
(i,j3)
v . As a and b are the optimal path scores

then a ≥ c + f and b ≥ e + d. Adding the two previous inequalities we have
a+ b ≥ c+ f + e+ d⇒ b− (e+ f) ≥ (c+ d)− a. Consider j3 = j4 − 1. Therefore
wi,j4

i′,j2 − wi,j4−1
i′,j2 ≥ wi,j4

i′,j1 − wi,j4−1
i′,j1 ⇒ hDif i,j4

i′ [j2] ≥ hDif i,j4
i′ [j1].

Fig. 2. Illustration of the proof of Lemma 4.4

The number of times that hDif i,j
i′ [j′] increases when we sweep through

hDif i,j
i′ from j′ = 0 to j − 1 is called ψHi,j

i′ .
Usually, the adopted score system has integer values: r for rewarding a match,

q for a mismatch and E for a gap. Usually 2E ≤ q < r. Using the edit graph
notation, the weights of the edges can be defined as ω(ei,j

D ) = r if s[i] = t[j],
ω(ei,j

D ) = q if s[i] �= t[j] and ω(ei,j
H ) = ω(ei,j

V ) = E ∀(i, j). In these cases ψHi,j
i′ ≤

r−2E, so ψHi,j
i′ is limited by a constant. For instance, if the score system is the

LCS (Longest Common Subsequence), r = 1 and q = E = 0, then ψHi,j
i′ ≤ 1.

The Figure 3 shows a case where ψHi,j
i′ ≤ 3.

In this text, we consider ψHi,j
i′ limited by a constant.

We store the values of j′ where occur each increment of hDif i,j
i′ in a matrix

called BLHi
i′ .

Definition 4.5 (BLHi
i′ matrix). Given i′ and i such that 0 ≤ i′ ≤ i ≤ n, we

define the column j, 0 ≤ j ≤ m, of BLHi
i′ as a vector of size ψHi,j

i′ such that
BLHi

i′ [α, j] is the α-th j′ where hDif i,j
i′ [j′] �= hDif i,j

i′ [j′ − 1], for j′ from 1 to
j − 1.
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-4 -2 -2 -2 -3 -2 0 -1 -2 -3 - 2 0 0 -1 1 2 -1 -1 -1
- -4 -2 -2 -3 -1 1 0 -1 -2 - - 2 0 -1 2 2 -1 -1 -1
- - -4 -4 -2 0 2 1 0 -1 - - - 0 2 2 2 -1 -1 -1
- - - -4 -2 0 2 1 0 0 - - - - 2 2 2 -1 -1 0
- - - - -4 -2 0 -1 -2 -1 - - - - - 2 2 -1 -1 1
- - - - - -4 -2 -2 -2 0 - - - - - - 2 0 0 2
- - - - - - -4 -2 -2 0 - - - - - - - 2 0 2
- - - - - - - -4 -4 -2 - - - - - - - - 0 2
- - - - - - - - -4 -2 - - - - - - - - - 2
- - - - - - - - - -4

BLH

1 - - 1 - 2 1 - 5 5 3
2 - - - - - - - 6 - 4
3 - - - - - - - - - 5

Weights of optimal paths from (0,j') to (n,j) hDif
j=0 j=1 j=2 j=3 j=4 j=5 j=6 j=7 j=8 j=9 j=0 j=1 j=2 j=3 j=4 j=5 j=6 j=7 j=8 j=9

j'=0 j'=0
j'=1 j'=1
j'=2 j'=2
j'=3 j'=3
j'=4 j'=4
j'=5 j'=5
j'=6 j'=6
j'=7 j'=7
j'=8 j'=8
j'=9

j=0 j=1 j=2 j=3 j=4 j=5 j=6 j=7 j=8 j=9

Fig. 3. In this example we used the sequences s = AATG and t = TTCATGACG
to build an edit graph G. All vertical and horizontal edges of G have weight −1, the
weight ω(ei,j

D ) = −1 if s[i] �= t[j] and ω(ei,j
D ) = 1 if s[i] = t[j].

algorithm 1. Algorithm O(n3) that builds matrix B

BimN3(s, t)

1 for i from 0 to |s| do
2 � Get the optimal path ended with non-extended edges
3 if i = 0 then
4 B[0, 0]← 0

5 else B[i, 0]← B[i− 1, 0] + ω(ei,j
V )

6 for j from 1 to |t| do
7 if i = 0 then

8 B[0, j]← B[0, j − 1] + ω(ei,j
H )

9 else aux← max(B[i, j − 1] + ω(ei,j
H ), B[i− 1, j] + ω(ei,j

V ))

10 B[i, j]← max(aux, B[i− 1, j − 1] + ω(ei,j
D ))

11 � Get the optimal path ended with extended edges
12 for i′ from i downto 0 do

13 BLH ← buildBlh(G, BLH, i′)
14 maxOuti

i′ ← getMaxOut(BLH,B, i′)
15 for j from 0 to |t| do
16 B[i, j]← max(B[i, j], maxOuti

i′ [j] + ωinv)
17 return B

The elements of matrix BLHi
i′ are called borderline points in [18]. Figure 3

shows an example of hDif and BLH .
Algorithm 1 builds matrix B and Figure 4 shows its execution.
The function buildBlh(G,BLH, i′) builds the BLHi

i′ matrix. It was devel-
oped based on the algorithm described in section 6 of [19] and runs in O(m)
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Fig. 4. Execution of Algorithm 1. The dotted line is a path from (0, 0) to (i′, j′) in G.
The dashed line represents an alignment of s[i′ + 1..i] × t[j′ + 1..j].

time. Remembering that each column of a borderline matrix has O(1) elements,
the function buildBlh(G,BLH, i′) builds each column of BLHi

i′ based on the
respective column of matrix BLHi

i′+1 in constant time.
The function getMaxOut(BLH,B, i′) returns a vector with the maximum

value of each column of Outii′ in O(m) time and was developed based on the
algorithm described in subsection 6.2 of [18]. The linear time complexity of this
function is attained through a procedure that sweeps through BLHi

i′ and line i′

of matrix B, both with O(m) data.
Using these functions one can see that Algorithm 1 is correct and runs in

O(n2m) time (O(n3) time, if m = O(n)).

5 Experiments

We implemented Algorithm 1 in Java. We worked with two sequences pair of dif-
ferent lengths, 867 and 95.319 bp (base pairs) of human and chimpanzee. These
sequences are cited in [11]. The human/chimp sequences were downloaded from
theUniversity ofCalifornia at SantaCruzwebsite (http://genome.ucsc.edu/).The
sequences were taken from the November 2003 chimpanzee (panTro1) genome as-
sembly and the May 2004 (hg17) human genome assembly3.

The shortest pair is formed by human genome chr7:95119414-95120280 and
chimpanzee genome chr6:96726524-96727390. The alignment obtained by the al-
gorithm shows 98,6% of total identities and an inversion involving chr7-95119717-
95119979 of human and chr6:96726825-96727087 of chimpanzee.

The longest pair is formed by human genome chr7:80523522-80618840 and
chimpanzee genome chr6:81751455-81846825. To cope with sequences of this
length faster we broke the sequences into fragments of 100 pairs each.

The fragments were submitted to a standard alignment procedure, such that
each fragment from the human genome was aligned against every fragment of
the chimpanzee genome twice: inverted and not inverted. Our algorithm was
used considering the sequences like sequences of fragments instead of sequences

3 http://genome.ucsc.edu/cgi-bin/hgTrackUi?hgsid=59218717&g=netPanTro1
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of base pairs. A match between two fragments occurs when their alignment has a
score greater than a threshold. The alignment obtained by the algorithm shows
94,8% of total matches and an inversion involving chr7-80553522-80588821 of
human and chr6:81781455-81816854 of chimpanzee. One can see this inversion
at Figure 5 for fragment size 1000 for better resolution.

Fig. 5. Alignment of human genome chr7:80523522-80618840 and chimpanzee genome
chr6:81751455-81846825. Fragment size is 1000 for better visualization.

We also tested the algorithm on simulated data for random DNA sequences
with length in average 700. Each pair of sequences differ from each other by a
number of indels ranging from 5% to 10%, mismatches ranging from 5% to 15%,
and number of non-overlapping inversions ranging from 1 to 15. We obtained
consistent results and detected all the inversions as one would expect.

We also implemented in Java the O(n3 logn) algorithm described in [1], the
O(n4) algorithm described in [9] and the sparse algorithm described in [10] that
has complexity O(r2 log2 r), where r = O(n2) is the number of matches be-
tween symbols in one sequence against symbols in the other sequence. The tests
showed that Algorithm 1 is, as it is expected, always faster than the algorithm
O(n3 logn), which is in turn always faster than the algorithm O(n4). If the se-
quences to be aligned were DNA sequences then Algorithm 1 was faster than
sparse algorithm, but if the sequences to be aligned were sequences of DNA
fragments, where the number of matches is small, then the sparse algorithm was
faster than the Algorithm 1.
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6 Conclusion

In this paper we described a new algorithm that solves the alignment with non-
overlapping inversions problem in O(n3)-time and O(n2)-space. We hope that
this speed up opens the possibility to studies of inversions on DNA sequences
by an exact optimization algorithm. Algorithms that are applied to the study of
inversions of sequences of genes cannot be applied in theses cases, since they do
not allow repetitions of symbols, nor insertions, nor deletions.

Our algorithm may be particularly interesting when applied to regions around
known rearrangement boundaries, since many biologists suppose that inversions
at DNA level are very probable in these cases.

Many studies have been done with inversions in DNA sequences.
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