
Sequence Analysis

A Path Recorder Algorithm for Multiple Longest
Common Subsequences (MLCS) Problems
Shiwei Wei 1,2 ,Yuping Wang 1,∗, Yuanchao Yang 1 and Sen Liu 1

1School of Computer Science and Technology, Xidian University, Xian, Shaanxi, China.
2School of Computer Science and Engineering, Guilin University of Aerospace Technology, Guilin, Guangxi, China.

∗To whom correspondence should be addressed.

Associate Editor: XXXXXXX

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract

Motivation: Searching the Longest Common Subsequences of many sequences is called a Multiple
Longest Common Subsequence (MLCS) problem which is a very fundamental and challenging problem
in many fields of data mining. The existing algorithms cannot not applicable to problems with long and
large-scale sequences due to their huge time and space consumption. To efficiently handle large-scale
MLCS problems, a Path Recorder Directed Acyclic Graph (PRDAG) model and a novel Path Recorder
Algorithm (PRA) are proposed.
Results: In PRDAG, we transform the MLCS problem into searching the longest path from the Directed
Acyclic Graph (DAG), where each longest path in DAG corresponds to an MLCS. To tackle the problem
efficiently, we eliminate all redundant and repeated nodes during the construction of DAG, and for each
node, we only maintain the longest paths from the source node to it but ignore all non-longest pathes. As
a result, the size of the DAG becomes very small, and the memory space and search time will be greatly
saved. Empirical experiments have been performed on a standard benchmark set of both DNA sequences
and protein sequences. The experimental results demonstrate that our model and algorithm outperform
the related leading algorithms, especially for large-scale MLCS problems.
Contact: ywang@xidian.edu.cn

1 Introduction
The biological data can be usually represented by sequences of different
symbols. For example, protein sequences can be represented as sequences
of 20 different amino acids, and DNA sequences can be represented as
sequences of 4 bases: A, C, G and T. One of the most fundamental problems
in bioinformatics is to measure the similarity of biological sequences,
which is very important in the fields such as identification of cancers
(Aravanis et al., 2017), detection of the common origin of different species
(Zvelebil and Baum, 2007), pattern recognition and molecular biology
(Yang et al., 2013), etc. Finding the MLCS of sequences is a commonly
used method to measure the similarity of sequences. So designing effective
model and developing efficient algorithm for dealing with the MLCS
problem are becoming more and more important. However, Maier has
proved that it is an NP-hard problem (Maier, 1978). As the number and
the length of sequences increase, the time complexity and space complexity
of solving such problems grow exponentially.

According to the different number of sequences, these problems can
be generally classified into two classes: (1) The problem of finding the
Longest Common Subsequences (LCS) between only two sequences is
called an LCS problem. (2) The problem of finding the Longest Common
Subsequences among three or more sequences is called an MLCS problem.

In the past few decades, efforts have been mainly concentrated on
the LCS problem, and many methods (Sankoff, 1972; Hirschberg, 1977;
Masek and Paterson, 1980; Smith and Waterman, 1981; Hsu and Du, 1984;
Apostolico et al., 1992) have been proposed. One of the typical methods is
called Dynamic Programming approach (DP), but it is inefficient for MLCS
problems. However, with the development of next generation of human
genome project and gene sequencing techniques, the number of biological
sequences (as well as other kinds of sequences from various applications)
is growing rapidly. More and more real world problems require to search
MLCS from many sequences. It becomes urgent to develop more effective
models and efficient algorithms to address such MLCS problems.

In 1977, Hunt (Hunt and Szymanski, 1977) proposed a new type of
methods called dominant point approach for computing MLCS, in which

1

© The Author(s) (2020). Published by Oxford University Press. All rights reserved. For Permissions, please email:
journals.permissions@oup.com

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article-abstract/doi/10.1093/bioinform
atics/btaa134/5771335 by The Edw

ard G
 M

iner Library user on 04 M
arch 2020

2 Sample et al.

a Directed Acyclic Graph (DAG) is constructed and searching MLCS is
transformed into looking for the longest paths from the source node to
the ending node in the DAG. This type of methods has been proved to
be much more efficient than DP approach for MLCS problems with more
than 3 sequences. However, the original dominant point method (Hunt
and Szymanski, 1977) is only for problems with two sequences and same
length, and its time complexity is O((n+ r)logn), where n is the length
of sequences and r is the number of nodes in the built DAG. To improve the
efficiency, a parallel algorithm for MLCS problems is proposed by Korkin
(Korkin, 2001). Its time complexity is O(d|Σ|), where d is the number of
sequences and Σ is the set of symbols. To further improve the efficiency,
Chen (Chen et al., 2006) proposed an efficient MLCS algorithm for DNA
sequences called FAST-LCS. It involves a new table structure called the
successor table, which enables the node’s successors to be created in a
constant time. It also uses a new strategy to delete the dominated nodes
in the DAG. These strategies can save the space and speed up the search.
To further improve the efficiency of the FAST-LCS, Wang (Wang et al.,
2011) proposed a parallel algorithm called Quick-DP. Li (Li et al., 2012)
proposed a parallel algorithm for the LCS problem, which can be efficiently
executed on GPUs. Yang (Yang et al., 2010) designed a parallel MLCS
algorithm for the cloud computing platform. These algorithms show a
better performance than the typical dominant point approach because they
adopted some schemes for saving space cost or parallelization, but all of
them utilize the non-dominated sorting method to delete the dominated
nodes in the construction of DAG, which is very time consuming. Thus
they are inefficient when handling MLCS problems with long and a large
number of sequences. Recently, Li and Wang, et al (Li et al., 2016a)
designed a new model called NCSG and proposed a dominant points based
algorithm called Top-MLCS to reduce the time complexity in constructing
DAG. Although Top-MLCS has a better performance in terms of time
consuming, it needs much more memory space to store the whole DAG.
When the required memory exceeds the limit of the physic memory (this
often happens for large scale problems), the algorithm will fail to find
MLCS (even the algorithm cannot be executed).

At present, the number of sequences in MLCS problems is becoming
larger and larger (up to 100 even up to 1000). There are more challenges and
difficulties to find out MLCS from a large-number of sequences. Usually
we call MLCS problems with more than 100 sequences as large-scale
MLCS problems (LMLCS for short). Although many methods (e.g., Rick,
1994, Chen et al., 2006, Yang et al., 2010, Wang et al., 2011, Yang et al.,
2013, Yang et al., 2014, Li et al., 2016a, Li et al., 2016b) have been
proposed for processing MLCS problems, they are not efficient or even
can not work on LMLCS due to the high time and space consumption.
Therefore, it is very necessary and valuable to design more efficient
algorithms to handle LMLCS. So in this paper, we design a Path Recorder
Directed Acyclic Graph (PRDAG) model and propose a Path Recorder
Algorithm (PRA). Comprehensive experiments are performed on two
kinds of biological sequences (DNA sequences and protein sequences)
with different numbers and lengths of sequences, and the experimental
results show that the proposed algorithm PRA performs better than related
leading algorithms, especially for LMLCS. The main contributions are
summarized as follows.

1. A Path Recorder Directed Acyclic Graph (PRDAG) model is designed
to transfer searching MLCS among the sequences into searching the
longest path in graph PRDAG, which can significantly simplify the
procedure of finding MLCS for LMLCS. Before a new match point
(corresponding to a node in PRDAG) is created according to its
precursor, we will check whether it already exists in PRDAG and
ensure that the generated PRDAG do not contain any redundant node.
Thus, the scale of PRDAG is much smaller, and this can reduce both
time consuming and space consuming.

2. Based on the PRDAG model, a fast dominant point based algorithm
called Path Recorder Algorithm (briefly PRA) is proposed. For each
node in PRDAG, we only record its such precursor nodes whose the
longest distance to the current point is 1 as the key precursor nodes,
but ignore other precursor nodes (called its non-key precursor nodes)
because they contribute nothing to the longest paths. Therefore, the
size of constructed DAG is very small, and more running time and
memory consumption are saved. In addition, once the construction
of DAG is completed, all MLCSs can be quickly found out through
searching the longest paths in DAG by traversing from the ending
node to source node.

The rest of this paper is organized as follows. Next section introduces
some backgrounds and related works about LCS and MLCS. Section 3
describes the new path recorder directed acyclic graph model PRDAG
and the proposed algorithm PRA in details. In section 4, to evaluate
performance of the proposed algorithm, we compare it with some of
the best performance algorithms by experiments on a comprehensive
benchmark set. Finally, in Section 5 we make the conclusion.

2 Backgrounds and Related Works

2.1 Definition of the MLCS Porblem

To better understand the MLCS problem, we first define some notations
and terminologies to be used in this paper and then review some related
works for the MLCS problem.

Definition 1. Let Σ be the symbol set and s = c1c2...cn be a sequence
on symbol set Σ (ci ∈ Σ, 1 ≤ i ≤ n). Let |s| denote the length of s,
i.e., |s| = n. A sequence s′ is called a subsequence of sequence s if and
only if s′ is obtained by removing zero or at least one symbol from s, i.e.,
s′ = ci1ci2 ...cim satisfying 1 ≤ i1 < i2 < · · · < im ≤ n. It is
denoted as s′ ∈ Subseq(s).

Definition 2. Let S = {s1, s2, ..., sd} be a set of d sequences
s1, s2, ..., sd on Σ. A sequence s′ is called a Longest Common
Subsequence (LCS) of the d sequences if s′ satisfies the following
conditions:
(1) s′ ∈ Subseq(si) for i = 1, 2, · · · , d, i.e., s′ is a common
subsequence of all d sequences si (1 ≤ i ≤ d).
(2) ¬∃s′′ ∈ Subseq(si) for 1 ≤ i ≤ n satisfying |s′′| > |s′|, i.e., s′ is
the longest subsequence of all these d sequences si (1 ≤ i ≤ d).

Let |S| = d denote the cardinality of set S and LCS(S) denote the
set of all Longest Common Subsequences of S.

Usually there are more than one LCS for given d sequences.
For example, for two sequences s1 = GAAGCGTA and s2 =

AGTCTGAC, both subsequences AGCTA and AGCGA are their
LCS.

2.2 Dominant Point Based Approaches

Dominant point based approaches have been considered to be one of
the most efficient approaches for obtaining exact MLCSs from multiple
sequences (e.g., Wang et al., 2011; Yang et al., 2013; Li et al., 2016a).
Before discussing this type of methods in details, we first introduce some
terminologies (Peng and Wang, 2017) to be used in this paper:

Definition 3. Given d sequences s1, s2, ..., sd on a symbol set Σ, if
a symbol δ ∈ Σ is a common symbol in d sequences, i.e., s1[p1] =

s2[p2] = ... = sd[pd] = δ, where si[pi] represents δ being the pi-th
symbol from the left of sequence si. Then vector p = (p1, p2, ..., pd)

is called a match point of these d sequences. Each match point p =

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article-abstract/doi/10.1093/bioinform
atics/btaa134/5771335 by The Edw

ard G
 M

iner Library user on 04 M
arch 2020

short Title 3

(p1, p2, ..., pd) corresponds to a unique symbol δ. So we also often
use p = δ(p1, p2, ..., pd) to denote the match point, where δ is the
corresponding symbol of p, denoted by C(p) = δ.

Definition 4. Given two match points p = (p1, p2, ..., pd) and q =

(q1, q2, ..., qd) of d sequences on a symbol set Σ, we call:
(1) p = q iff ∀i(1 ≤ i ≤ d), pi = qi.
(2) p dominates q (denoted by p ⪯ q), if pi ≤ qi (1 ≤ i ≤ d) and ∃j

(1 ≤ j ≤ d), pj < qj .
(3) p strongly dominates q (denoted by p ≺ q) if ∀i(1 ≤ i ≤ d)

pi < qi.
(4) q is a successor of p or p is a precursor of q, if p ≺ q and there is no

other match pointv(v ̸= q) satisfyingp ≺ v ⪯ q andC(q) = C(v) = δ,
denoted by Sucδ(p) = q.

Note that a match point p has at most |Σ| successors.

Definition 5. Let P = {P1, P2, ..., Pm} be a set of match points of d
sequences, where eachPi(1 ≤ i ≤ m) is a match point of thed sequences.
For a match point Pj ∈ P , If ¬∃Pi ⪯ Pj , 1 ≤ i, j ≤ m, i ̸= j, then Pj

is called a non-dominated point (dominant point for short) on P . The set
of all dominant points on P is called the dominant set of P .

The main idea of dominant point based approaches is as follows.
Given d sequences, initially, the specific match point (0, 0, ..., 0) with
no incoming edges is defined as the source match point, and it forms the
0th level set (denoted by level-0). Then all successors of the source match
point can be determined, and form the 1th level set level-1. A directed edge
from the source match point to each of it’s successors is drawn to represent
the relationship between the match point and each of its successors. In this
way, a Directed Acyclic Graph (DAG) containing level-0 and level-1 is
formed, where the source match point is in level-0 and its all successors
are in level-1. Here, level-1 indicates that the corresponding symbols of
the match points in level-1 may be the 1th character of an MLCS of
the d sequences. However, through further analysis, we can find that the
corresponding symbol of all dominated match points in level-1 will appear
later during the construction of DAG. So only the non-dominated match
points in level-1 need to be kept during the construction of DAG. All non-
dominated match points in level-1 forms the dominant set D1 and it can be
obtained by the non-dominated sorting method(Chen et al., 2006; Wang
et al., 2011). Next, calculate all successors of each dominant in D1. These
successors form level-2 and draw directed edges from each dominant in
D1 to their successors. Then a DAG from level-0 to level-2 is formed.
Similarly, we only keep all dominants from level-2 and form the dominant
set D2. Repeat this process until no successor can be found. We then
set point (∞,∞, ...,∞) as the final successor of all dominnats without
successor. The point (∞,∞, ...,∞) is defined as ending point and has no
successor. The construction of DAG is completed. Once DAG is gotten,
the longest paths, which respond to all MLCS, will be obtained. So the key
issue of MLCS problems is how to effectively construct DAG. Algorithm
1 shows the main process of classical dominant point based approaches.

Fig.1 is an example which shows the process of Algorithm 1 when
dealing with two sequences GAAGCGTA and AGTCTGAC, and the
detailed description of the process is provided in supplementary material.

From the example above we can see that, classical dominant point
based approaches have the following main shortcomings:

• One match point can appear many times during the process of
constructing DAG, even may appear in different levels. For example,
match point (5, 4) appears not only twice in level-2, but also in level-1
and level-3. Computing and storing these points will consume time
and memory space.

Algorithm 1 Framework of Classical Dominant Point Based Approaches
Input:

The d sequences.
Output:

The generated DAG and All MLCS(s) obtained from d sequences.
1: k = 0, Dk ← O(0, 0, ..., 0)

2: DAG← O(0, 0, ..., 0)

3: while Dk ̸= ∅ do
4: Candi = ∅
5: for each element p of Dk do
6: calculate all successors of p: Suc(p)

7: Tentative Candi← Candi ∪ Suc(p)

8: Candi← Remove repeated points in Candi, i.e., each point in Candi will be
stored in one copy.

9: end for
10: Dk+1 ← NondominatedSorting(Candi)

11: DAG← DAG ∪Dk+1

12: draw a directed arrow(edge) from each point in Dk to each of its successors in
Dk+1

13: k ← k + 1

14: end while

(∞, ∞)

Fig. 1. Construction of DAG for two sequences GAAGCGTA and AGTCTGAC,
where the black and gray nodes are repeated and dominated nodes, respectively.

• All of redundant points (marked by black or gray background) in
each level will be generated first, then identified, and finally deleted.
However, these operations waste a lot of space and computation time.

• In order to find out set Dk of non-dominated points by nondominated
sorting in level-k, pairwise comparisons of d-dimensional points have
to be made among all points in set Candi in level-k, and this operation
is quite time-consuming especially when the number d of sequences
is large or the cardinality of set Candi is large.

Due to these shortcomings, the classical dominant point based
approaches are unsuitable to deal with large-scale MLCS problems. In
order to overcome the defects of the classical dominant point based
approaches, this paper designs a more effective model and develops a
more efficient algorithm PRA for large-scale MLCS problems.

3 The Path Recorder Directed Acyclic Graph
Model and Path Recorder Algorithm

3.1 The Path Recorder Directed Acyclic Graph Model:
PRDAG

PRDAG is a graph model and our main task is to construct a complete
PRDAG graph from the source match point. Given d sequences
s1, s2, · · · , sd. We can construct graph model PRDAG as follows.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article-abstract/doi/10.1093/bioinform
atics/btaa134/5771335 by The Edw

ard G
 M

iner Library user on 04 M
arch 2020

4 Sample et al.

Construction of Graph Model: PRDAG

1. Initially, PRDAG contains one point: the source pointO(0, 0, · · · , 0).
Add O to a first-in-first-out queue Q, set the length of the tentative
longest path from source point O to O as L(O(0, 0, · · · , 0)) = 0.

2. Take an element, say p, from the head of queue Q. Find out p’s
successors: q1, q2, · · · , qt. For each of successors qi(1 ≤ i ≤ t),
check whether it is a newly created point. If yes, add it to the queue Q
and add it as a successor point of p into PRDAG. Draw a directed edge
from p to qi and set its L value as: L(qi) = L(p) + 1. Otherwise,
i.e., qi has existed in PRDAG, then there are three cases:

1) If L(qi) < L(p) + 1, then there is at least one longest path
from O to qi passing through p whose length is L(p) + 1. So we
update L value of qi as L(qi) = L(p)+1, set p as the key precursor
of qi, and remove all of qi’s previous precursors (they now become
the non-key precursors) and all directed edges from these non-key
precursors to qi.

2) If L(qi) = L(p)+1, then paths from O to qi passing through
p are also the longest ones, and accordingly p is a key precursor of
qi. Thus, draw a directed edge from p to qi.

3) If L(qi) > L(p) + 1, then all paths from O to qi passing
through p are not the longest ones, so nothing need to do.

3. IfQ is empty, the construction of PRDAG is finished. Otherwise, goto
Step 2.

Let’s use an example to explain the construction of PRDAG. For given
two sequences s1 = GAAGCGTA and s2 = AGTCTGAC.

1. Initially, PRDAG contains one point: the source point O(0, 0). Add
O(0, 0) to a first-in-first-out queue Q and set L(O(0, 0)) = 0.

2. Take an element, in this case, only O(0, 0), from the head of
queue Q. Find out O’s successors: A(2, 1), C(5, 4), G(1, 2) and
T (7, 3). Now all successors are newly created points (i.e., they do
not exist in PRDAG). Add them to Q one by one and add them
as the successors of O into PRDAG. Draw a directed edge from
O to each of them, set the lengths of the tentative longest paths
from O to them (briefly called their L values) as L(A(2, 1)) = 1,
L(C(5, 4)) = 1, L(G(1, 2)) = 1 andL(T (7, 3)) = 1, respectively
(as shown at the bottom left of each point in Figure 2 (a)). Up to now,
Q contains 4 points: A(2, 1), C(5, 4), G(1, 2) and T (7, 3), while
PRDAG contains 5 points: O(0, 0), A(2, 1), C(5, 4), G(1, 2) and
T (7, 3). O is the key precursor of each of A(2, 1), C(5, 4), G(1, 2)

and T (7, 3).
3. Take element A(2, 1) from the head of queue Q. Find out all

its successors A(3, 7), C(5, 4), G(4, 2) and T (7, 3). Because
successors A(3, 7) and G(4, 2) are newly created points, we first
add them to Q, and add them as the successors of A(2, 1) into
PRDAG. Draw a directed edge from A(2, 1) to each of them. Set
their L values as: L(A(3, 7)) = L(A(2, 1)) + 1 = 2 and
L(G(4, 2)) = L(A(2, 1))+1 = 2, respectively, and setA(2, 1) as a
key precursor ofA(3, 7) andG(4, 2). For successorC(5, 4), because
L(C(5, 4)) < L(A(2, 1)) + 1, the tentative longest path from O

to point C(5, 4) now becomes O(0, 0) → A(2, 1) → C(5, 4).
So A(2, 1) is a key precursor of point C(5, 4) while point O(0, 0)

becomes a non-key precursor of point C(5, 4). The L value of
point C(5, 4) is updated to L(C(5, 4)) = L(A(2, 1)) + 1 = 2.
Add a directed edge from (2, 1) to (5, 4) and erase the directed
edge from O to (5, 4). For successor T (7, 3), The situation is
same as that of (5, 4). A(2, 1) becomes a key precursor of point
C(7, 3) while point O(0, 0) is no longer a key precursor of point
C(7, 3). So add a directed edge from (2, 1) to (7, 3) and erase
the directed edge from O to T (7, 3). Update L(T (7, 3)) =

L(A(2, 1))+1 = 2. Up to now, Q holds 5 points: C(5, 4), G(1, 2),

(a) (b)

(c)

(∞, ∞)

(d)

(∞, ∞)

Fig. 2. The process of PRDAG construction for sequences GAAGCGTA and AGTCTGAC.
The head and tail in a directed edge ’→’ denote the key precursor and successor, respectively.
LCSs are obtained by the recorded paths from the ending point to the source point node.

T (7, 3), A(3, 7) and G(4, 2), while PRDAG contains 7 points:
O(0, 0), A(2, 1), C(5, 4), G(1, 2), T (7, 3), A(3, 7) and G(4, 2).

4. Then point C(5, 4) is taken from Q and its successors are
A(8, 7), G(6, 6) and T (7, 5). They are all newly created points.
Add them to Q and add them as successors of C(5, 4) into PRDAG.
Since (5, 4) is the key precursor of A(8, 7), G(6, 6) and T (7, 5),
draw a directed edge from C(5, 4) to each of them. Set the L values
of them as L(A(8, 7)) = L(C(5, 4)) + 1 = 3, L(G(6, 6)) =

L(C(5, 4)) + 1 = 3, L(T (7, 5)) = L(C(5, 4)) + 1 = 3.
5. Point G(1, 2) is taken from Q, and its successors are A(2, 7), (5, 4),

G(4, 6) and T (7, 3). Among these successors, A(2, 7) and G(4, 6)

are newly created points. Add them as successors of G(1, 2) into
PRDAG and draw a directed edge from G(1, 2) to each of them.
Set the L values of them as L(A(2, 7)) = L(G(1, 2)) + 1 = 2

and L(G(4, 6)) = L(G(1, 2)) + 1 = 2. But for C(5, 4) and
T (7, 3), they have already been in PRDAG. Add a directed edge from
G(1, 2) to each of them, because L(G(1, 2))+1 = L(C(5, 4)) and
L(G(1, 2)) + 1 = L(T (7, 3)). G(1, 2) is also a key precursor of
C(5, 4) and T (7, 3).

6. Point T (7, 3) is now at the head of Q. Take it from Q and calculate its
successor, i.e., A(8, 7). This successor has already been in PRDAG
with L(T (7, 3)) + 1 = L(A(8, 7)) = 3. So T (7, 3) is also a key
precursor of A(8, 7). Draw a directed edge from T (7, 3) to A(8, 7).

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article-abstract/doi/10.1093/bioinform
atics/btaa134/5771335 by The Edw

ard G
 M

iner Library user on 04 M
arch 2020

short Title 5

Up to now, Q holds 7 points and PRDAG contains 12 points as shown
in Figure 2(b).

7. Continue to take elements from Q, repeat the same operation as Step
3 to Step 6. When Q becomes an empty queue, the construction of
PRDAG is completed as shown in Figure 2(c).

8. Backward search the key precursors from∞. Successively find out the
key precursor A(8, 7) of∞, the key precursors G(6, 6) and T (7, 5)

of (8, 7), the key precursor C(5, 4) of G(6, 6) and T (7, 5), the key
precursor G(4, 2) of C(5, 4), the key precursor A(2, 1) of G(4, 2)

and the key precursor O(0, 0) of A(2, 1). Then we get two longest
common subsequences as shown in Figure 2(d).

Based on the relationship of the key precursor and the successor,
starting from the ending point ∞ and successively searching the
precursor(s) of the current point(s) in the final PRDAG, we can easily
find out the longest paths from the source point to the ending point (as
shown in Figure 2(d)), which correspond to the MLCSs: AGCGA and
AGCTA.

3.2 The Path Recorder Algorithm (PRA)

An efficient algorithm based on the model PRDAG is proposed in this
section and is called Path Recorder Algorithm (PRA). Before introducing
PRA, we first introduce the key data structure to be used in the algorithm.

3.2.1 Node structure
For a match point (node) t in DAG, it contains the following information:

• The match point vector corresponding to t.
• L(t): the length of the longest path(s) from the source point to t.
• Suc(t): all successors of t.
• Pre(t): all key precursors of t, i.e., Pre(t) = {s | t ∈ Suc(s) and

L(t) = L(s) + 1}.

In our PRA algorithm, The match point is represented by its
coordinates. The Pre(t) is used to mark those key precursors of point
t which just locate on the longest path from the source point to current
point t.

3.2.2 Path Recorder Algorithm(PRA)
Algorithm 2 shows the main framework of PRA, which consists of
three components as follows: At the first step, successor tables are
built on the given d sequences. At the second step, starting from the
source point O(0, 0, · · · , 0), graph (PRDAG) will be generated by
continuously expanding successors of match point, which is implemented
by Constuct_PRDAG(). At the third step, when the construction of PRDAG
is finished, all MLCSs can be found out from PRDAG by performing the
Traverse_PRDAG() method.

Algorithm 2 Main Framework of PRA
Input: The sequences: Sd = {s1, s2, · · · , sd}
Output: All MLCSs from sequences Sd: mlcs.
1: sucTables← BuildSuccTalbes(Sd)

2: ending ← Construct_PRDAG(sucTables)

3: mlcs← Traverse_PRDAG(ending)

In Algorithm 2, Constuct_PRDAG() is used for constructing PRDAG,
the pseudocode of which is given in Algorithm 3.

In Algorithm 3, there are several special data structures. With the help
of them, PRDAG can be generated, where Dom is a set to store all match
points in the PRDAG, and Q is a first-in-first-out queue to temporarily
store all newly created successors of match points. During the process

Algorithm 3 Construct_PRDAG()
Input: sucTables

Output: The generated PRDAG
1: source = O(0, 0, · · · , 0), ending =∞(∞,∞, · · · ,∞)

2: L(source)← 0, L(ending)← 0

3: Pre(source)← ∅ , Suc(ending)← ∅
4: Dom← {source, ending}
5: Q← {source}
6: while Q ̸= ∅ do
7: t← pick up the head element of Q
8: if t has no successor then
9: Update_Mark(t, ending)

10: else
11: for each successor s of t do
12: if s /∈ Dom then
13: Dom← Dom ∪ {s}
14: Pre(s)← {t}
15: L(s)← L(t) + 1

16: append s to the tail of Q.
17: else
18: Update_Mark(t, s)

19: end if
20: end for
21: end if
22: end while

of construction of PRDAG, we always pick up the first point in queue
Q(the first element in Q) and then remove it from Q after we find out
all successors of it. These successors will be appended to the tail of
queue Q one by one. By Q, PRDAG can be expanded gradually until
the construction is completed.

Initializations are shown from line1 ∼ line5. Then, for each point
t in Dom, check if it has successors. If not, we assume that the ending
point∞(∞,∞, · · · ,∞) is t’s only successor, and then update the path
recorder of ending(as shown in line8 ∼ line9). Otherwise, for t, by
referring to the Successor Tables sucTables, we calculate all successors
of t to expand PRDAG. Suppose s is any of these successors. Before we
add s into PRDAG (i.e., add s to set Dom), we should identify whether s
has already been in Dom.

1. If s has not been in Dom (i.e., the point s does not exist in the
PRDAG), it will be added into Dom and the relationship between it
and its key precursor twill be established. Then length of the tentative
longest paths from the source node to s is also updated to L(t) + 1,
and s will be appended to the tail of Q for further expanding.

2. If s has already been in Dom, there is no need to add s into Dom

again. We only need to update the key precursor of s by performing
Update_Mark() which is a program to update the tentative longest
path and the key precursor of s.

This process is shown in line11 ∼ line20 in Algorithm 3. However,
there is a key issue for the above procedure. Once a successor s is created,
we must check whether s is in Dom (line12 in Algorithm 3) before
updating PRDAG. This operation is performed very frequently in PRA,
and it will be quite time-consuming when the number of points in Dom is
large. To deal with this problem, a hash table is adopted in our algorithm,
which can quickly check whether Dom contains s or not, and can quickly
take it out of Dom if it exists in Dom. Empirical experiments also show
that the time spent on checking whether a point exists in Dom is almost
negligible.

During the construction of PRDAG, in order to update the tentative
longest paths from the source point to the current point in real time, a
method called Update_Mark() is developed to update the set of the
key precursors (Pre(s)) and the L value of current point s according to
different cases:

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article-abstract/doi/10.1093/bioinform
atics/btaa134/5771335 by The Edw

ard G
 M

iner Library user on 04 M
arch 2020

6 Sample et al.

Algorithm 4 Update_Mark(t, s)
Input: The point s and its precursor t.
Output: The updated L value of s, and the set of the key precursors of s.
1: if L(s) < L(t) + 1 then
2: Pre(s)← {t}
3: L(s)← L(t) + 1

4: else if L(s) = L(t) + 1 then
5: Pre(s)← Pre(s) ∪ {t}
6: else
7: continue;
8: end if

1. If L(s) < L(t) + 1, update the set of the key precursors of s by
Pre(s)← {t} and the length of the tentative longest path from O to
s by L(s)← L(t) + 1. In this case, a longer path than the tentative
longest path is found which is the tentative longest path from O to
t plus the directed edge from t to s. Then, t is currently only key
precursor of s and the tentative longest path is updated.

2. If L(s) = L(t) + 1, update the set of key precursors by Pre(s)←
Pre(s) ∪ {t}. In this case, the longest path from O to t plus the
directed edge from t to s is an additional tentative longest path and t

is another key precursor of s.
3. If L(s) > L(t) + 1, this case indicates that the longest paths from

O to t plus the directed edge from t to s is shorter than the current
longest paths from O to s. Thus t is a non-key precursor of s and
nothing needs to do.

The pseudo code of method Update_Mark() is presented in
Algorithm 4 which shows the process of updating L value and records
the tentative longest paths.

When the construction of PRDAG is finished, the longest pathes can
be easily found out from the completed PRDAG. By tracing the key
precursors from the ending point to the source point, all the longest paths
corresponding to MLCSs can be immediately obtained by using tree’s depth
traversal approach Traverse_PRDAG().

4 Experiments and Analysis

4.1 Experimental Setups and Compared Algorithms

All of experiments are run on a workstation equipped with Intel(R)
Xeon(R) Gold 6138 CUP(2.00GHz) and 704GB memory. The operating
system is Windows 7 professional 64. We make the comparisons of
the proposed algorithm PRA with three best performed algorithms
Top_MLCS(Li et al., 2016a), Quick-DP (Wang et al., 2011) and Fast_LCS
(Chen et al., 2006) in these experiments. Biological sequences from NCBI
1 and DIP corpus 2 are selected as the test sets and usually have two kinds
of sequences: protein sequences and DNA sequences (for the limitation
of the journal pages, the experimental results on DNA sequences are not
given in this paper but shown in supplementary materials).

To evaluate the performance of the proposed algorithm PRA, two types
of experiments are conducted: 1) Fix the sequence length and change the
number of sequences; 2) Fix the number of sequences and change the
length of sequences. For the first type of experiments, the length of protein
sequences is fixed to 240, and the number of protein sequences varies
from 3 to 9000. The experimental results including run time and memory
consumption consumed by the compared algorithms are listed in Table 1,
where ’d’ represents the number of sequences, ’l’ represents the length of
the obtained MLCS. For the second type of experiments, the number of

1 http://www.ncbi.nlm.nih.gov/nuccore/110645304?report=fasta
2 http://dip.doe-mbi.ucla.edu/dip/Download.cgi

Table 1. The run time (millisecond) / memory (megabyte) consumed by the
compared algorithms on protein sequences with length fixed to 240.

d l
Protein (|Σ| = 20)

FAST_LCS Quick-DP Top_MLCS PRA

3 45 379 / 14 157 / 17 189 / 66 159 / 66
5 30 37616 / 21 3392 / 36 5555 / 534 3244 / 381
7 25 1996261 / 184 169122 / 187 123414 / 4295 64673 / 2601
9 24 – / – 3599302 / 2964 933081 / 25897 616202 / 15295
10 23 – / – – / – 2119472 / 60655 1413280 / 38266
20 18 – / – – / – 2177137 / 96125 1268958 / 56968
40 15 – / – – / – 247959 / 14151 90146 / 6611
60 14 – / – – / – 51084 / 4555 23001 / 2470
80 12 – / – 2882690 / 10397 4434 / 861 1771 / 482
100 11 – / – 1235160 / 2373 3633 / 561 1475 / 244
200 9 9450 / 25 1713 / 28 179 / 49 105 / 25
500 8 947 / 20 360 / 22 151 / 34 107 / 23
1000 6 252 / 23 180 / 21 164 / 31 142 / 28
5000 3 687 / 63 612 / 63 640 / 64 578 / 61
9000 0 1112 / 119 1163 / 109 1050 / 111 1001 / 105

Table 2. The run time (millisecond) / memory (megabyte) consumed by the
compared algorithms. Each of data sets contains 10 protein sequences.

L l
Protein (|Σ| = 20)

FAST_LCS Quick-DP Top_MLCS PRA

80 6 38 / 1 28 / 1 23 / 1 17 / 1
110 9 142 / 5 66 / 7 66 / 14 41 / 6
140 13 14434 / 18 1568 / 116 654 / 153 213 / 80
170 16 6859997 / 1081 249010 / 2288 42153 / 2241 22526 / 1114
180 17 – / – 534724 / 3028 88490 / 4228 40506 / 2069
200 20 – / – 3357801 / 8406 584819 / 19025 252729 / 8539
210 21 – / – – / – 1418219 / 40882 741791 / 18904
230 23 – / – – / – 6451866 / 176502 2937844 / 72265
240 25 – / – – / – – / – 8480665 / 153142
250 27 – / – – / – – / – 9616040 / 275924

protein sequences is fixed to 10 and the length of protein sequences varies
from 80 to 250. The experimental results are listed in Table 2, where ’L’
represents the Length of sequences, ’l’ represents the length of the obtained
MLCS.

4.2 Experimental Results and Analysis

From Table 1 we can see that, the FAST_LCS algorithm always fails
to handle protein sequences when the number of them varies from 9 to
100 due to the extremely long run time. While the Quick-DP algorithm
also fails to deal with protein sequences with number varying from 10 to
60. The reason is that, in each point, the dimension of the match point
grows quickly as the number of sequences grows. The pruning strategy
adopted by these two algorithms needs a large number of comparisons
among match points, which will be very time-consuming. Top_MLCS and
PRA are much faster than Quick-DP and FAST_LCS. Both of them can
successfully process all protein sequences. But, relatively, the proposed
algorithm PRA always performs better than Top_MLCS. In particular, PRA

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article-abstract/doi/10.1093/bioinform
atics/btaa134/5771335 by The Edw

ard G
 M

iner Library user on 04 M
arch 2020

short Title 7

is 4.67% to 63.64% faster than Top_MLCS, and in general PRA is 33.34%
in average faster than Top_MLCS. This demonstrates that algorithm PRA
is more suitable for large-scale MLCS problems. Also It is can been seen
from the experimental results that the memory consumption of FAST_LCS
(Quick-DP) is less than that of Top_MLCS and PRA when the number
of protein sequences is less than 7(9), but the memory consumption of
FAST_LCS (Quick-DP) is greater than that of algorithm Top_MLCS and
PRA when the number of protein sequences is greater than 200 (80). This
also demonstrates that when dealing with large-scale MLCS problems,
Top_MLCS and PRA outperform FAST_LCS and Quick-DP in terms of
memory consumption. Compared with algorithm Top_MLCS, PRA always
consumes fewer memory. To be specific, the memory consumption of PRA
is 72.9% of Top_MLCS on average when processing protein sequences.
Especially, when the number of protein sequences is 40, the memory
consumption of PRA is only 46.72% of Top_MLCS. This is because PRA
only records the key precursors of each match point and ignores non-
key precursors during the construction of PRDAG, and many non-longest
paths and useless match points can be removed from PRDAG timely. So
PRA performs best among all compared algorithms in terms of memory
consumption when handling large-scale MLCS problems.

From experimental results in Table 2 we can see that, the time
consumption of FAST_LCS and Quick-DP grows sharply as the length
of protein sequences grows, but the time consumption of Top_MLCS and
PRA grows much more slowly. And PRA always spends much fewer time
than Top_MLCS. To be specific, it is faster than Top_MLCS about 48.8%
in average when processing proteins sequences. What is more, FAST_LCS
can only process protein sequences with length no more than 170 in a
reasonable time (3 hours), Quick-DP with length no more than 200, and
Top_MLCS with length no more than 230. But PRA can process protein
sequences with length up to 250. In addition, compared with Top_MLCS,
PRA always consumes less memory. Its memory consumption is only
53.34% of that of Top_MLCS. Furthermore£¬as the length of sequences
increases, the ratio of memory consumption of PRA and that of Top_MLCS
becomes much smaller. When the length of protein sequences is 230,
Top_MLCS consumes 176502MB memory space, but PRA consumes
72265MB, which only accounts for 40.94% of that of Top_MLCS.

5 Conclusion
In this paper, a new path recorder directed acyclic graph model, termed
PRDAG, is designed for solving large scale MLCS problems. In model
PRDAG, there is no repeated match points and every match point is
assigned a special path recorder (a key precursor pointer) to record the
longest paths from the source point to itself. So the scale of generated
PRDAG is much smaller than that generated by the traditional DAG
models, and a lot of memory space can be saved. Based on this model, a fast
algorithm called path recorder algorithm (PRA) is proposed. During the
construction of PRDAG, PRA will construct and update path recorders
in real time during the expansion of PRDAG. Once the construction
is completed, all MLCSs can be immediately found out by traversing
the generated PRDAG from the ending point to the source point. And
what is more, the algorithm PRA has good performance in terms of
computing time, because we employ path recorder technology rather than
the pruning strategy which needs a large number of comparisons among
match points. Experimental results on a set of benchmarks of both DNA
sequences and protein sequences also demonstrate that the proposed PRA

outperforms compared state-of-the-art dominant point based algorithms,
and can efficiently tackle large-scale MLCS problems.

Acknowledgements
This work was supported by the National Natural Science Foundation of
China (No.61872281).

References
Apostolico, A., Browne, S., and Guerra, C. (1992). Fast linear-space computations

of longest common subsequences. Theoretical Computer Science, 92(1), 3 – 17.
Aravanis, A. M., Lee, M., and Klausner, R. D. (2017). Next-generation sequencing

of circulating tumor dna for early cancer detection. Cell, 168(4), 571–574.
Chen, Y., Wan, A., and Liu, W. (2006). A fast parallel algorithm for finding the longest

common sequence of multiple biosequences. BMC BIOINFORMATICS, 7(4).
Symposium of Computations in Bioinformatics and Bioscience in Conjunction
with the International Mult-Symposium on Computer and Computational Sciences,
Hangzhou, PEOPLES R CHINA, JUN 20-24, 2006.

Hirschberg, D. S. (1977). Algorithms for the longest common subsequence problem.
J. ACM, 24(4), 664–675.

Hsu, W. and Du, M. (1984). Computing a longest common subsequence for a set of
strings. BIT Numerical Mathematics, 24(1), 45–59.

Hunt, J. W. and Szymanski, T. G. (1977). A fast algorithm for computing longest
common subsequences. Commun. ACM, 20(5), 350–353.

Korkin, D. (2001). A new dominant point-based parallel algorithm for multiple
longest common subsequence problem. Technical Report TR01-148, Univ. of New
Brunswick, Tech. Rep.

Li, Y., Wang, Y., and Bao, L. (2012). FACC: A Novel Finite Automaton Based
on Cloud Computing for the Multiple Longest Common Subsequences Search.
MATHEMATICAL PROBLEMS IN ENGINEERING.

Li, Y., Wang, Y., Zhang, Z., Wang, Y., Ma, D., and Huang, J. (2016a). A Novel
Fast and Memory Efficient Parallel MLCS Algorithm for Long and Large-Scale
Sequences Alignments. In 2016 32ND IEEE INTERNATIONAL CONFERENCE
ON DATA ENGINEERING (ICDE), IEEE International Conference on Data
Engineering, pages 1170–1181, 345 E 47TH ST, NEW YORK, NY 10017 USA.
IEEE; IEEE Comp Soc; Aalto Univ, Sch Sci, IEEE. 32nd IEEE International
Conference on Data Engineering (ICDE), Helsinki, FINLAND, MAY 16-20, 2016.

Li, Y., Li, H., Duan, T., Wang, S., Wang, Z., and Cheng, Y. (2016b). A real linear and
parallel multiple longest common subsequences (mlcs) algorithm. In Proceedings
of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’16, pages 1725–1734, New York, NY, USA. ACM.

Maier, D. (1978). The complexity of some problems on subsequences and
supersequences. J. ACM, 25(2), 322–336.

Masek, W. J. and Paterson, M. S. (1980). A faster algorithm computing string edit
distances. Journal of Computer and System Sciences, 20(1), 18 – 31.

Peng, Z. and Wang, Y. (2017). A novel efficient graph model for the multiple longest
common subsequences (mlcs) problem. Frontiers in genetics, 8, 104.

Rick, C. (1994). New algorithms for the longest common subsequence problem.
Sankoff, D. (1972). Matching sequences under deletion/insertion constraints.

Proceedings of the National Academy of Sciences, 69(1), 4–6.
Smith, T. and Waterman, M. (1981). Identification of common molecular

subsequences. Journal of Molecular Biology, 147(1), 195 – 197.
Wang, Q., Korkin, D., and Shang, Y. (2011). A Fast Multiple Longest Common

Subsequence (MLCS) Algorithm. IEEE TRANSACTIONS ON KNOWLEDGE
AND DATA ENGINEERING, 23(3), 321–334.

Yang, J., Xu, Y., and Shang, Y. (2010). An efficient parallel algorithm for longest
common subsequence problem on gpus. In Proceedings of the world congress on
engineering, WCE, volume 1.

Yang, J., Xu, Y., Sun, G., and Shang, Y. (2013). A new progressive algorithm for a
multiple longest common subsequences problem and its efficient parallelization.
IEEE Transactions on Parallel and Distributed Systems, 24(5), 862–870.

Yang, J., Xu, Y., Shang, Y., and Chen, G. (2014). A space-bounded anytime algorithm
for the multiple longest common subsequence problem. IEEE Transactions on
Knowledge and Data Engineering, 26(11), 2599–2609.

Zvelebil, M. J. and Baum, J. O. (2007). Understanding bioinformatics. Garland
Science.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article-abstract/doi/10.1093/bioinform
atics/btaa134/5771335 by The Edw

ard G
 M

iner Library user on 04 M
arch 2020

