
Journal of Complexity 24 (2008) 173–184
www.elsevier.com/locate/jco

Finding a longest common subsequence between a
run-length-encoded string and

an uncompressed string�

J.J. Liua, Y.L. Wangb,∗, R.C.T. Leeb

aDepartment of Information Management, National Taiwan University of Science and Technology, Taipei, Taiwan, ROC
bDepartment of Computer Science and Information Engineering, National Chi Nan University, Nantou, 1 University Rd.

Puli, Nantou Hsien, Taiwan 545, ROC

Received 5 August 2006; accepted 14 June 2007
Available online 24 July 2007

Abstract

In this paper, we propose an O(min{mN, Mn}) time algorithm for finding a longest common subsequence
of strings X and Y with lengths M and N , respectively, and run-length-encoded lengths m and n, respectively.
We propose a new recursive formula for finding a longest common subsequence of Y and X which is in the

run-length-encoded format. That is, Y =y1y2 · · · yN and X=r
l1
1 r

l2
2 · · · rlm

m , where ri is the repeated character
of run i and li is the number of its repetitions. There are three cases in the proposed recursive formula in
which two cases are for ri matching yj . The third case is for ri mismatching yj . We will look specifically at
the prior two cases that ri matches yj . To determine which case will be used when ri matches yj , we have
to find a specific value which can be obtained by using another of our proposed recursive formulas.
© 2007 Elsevier Inc. All rights reserved.

Keywords: Longest common subsequence; Run-length encoding; String compression

1. Introduction

Let X and Y be two strings over a finite alphabet set �, where X = x1x2x3 . . . xM and Y =
y1y2y3 . . . yN . Substrings x1x2x3 . . . xi and y1y2y3 . . . yj are represented by Xi and Yj , respec-
tively, where 1� i�M and 1�j �N . A subsequence of a string is obtained by deleting zero or

� This work was supported in part by the National Science Council of the Republic of China under Contract NSC
95-2221-E260-025.

∗ Corresponding author.
E-mail address: yuelwang@ncnu.edu.tw (Y.L. Wang).

0885-064X/$ - see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.jco.2007.06.003

http://www.elsevier.com/locate/jco
mailto:yuelwang@ncnu.edu.tw

174 J.J. Liu et al. / Journal of Complexity 24 (2008) 173–184

some (not necessarily consecutive) characters of this string. A common subsequence of X and
Y is a subsequence in both X and Y . A longest common subsequence of X and Y is a common
subsequence with the maximum length. Let LCS(i, j) denote the length of a longest common
subsequence of Xi and Yj . LCS(i, j) can be computed by the following recursive formula:

LCS(i, j) =
{

LCS(i − 1, j − 1) + 1 if xi = yj ,

max{LCS(i − 1, j), LCS(i, j − 1)} if xi �= yj ,

with initial conditions LCS(i, 0) = LCS(0, j) = LCS(0, 0) = 0, for 1� i�M and 1�j �N .
For the sake of convenience, we call the above formula the standard formula of an LCS

algorithm. The table which contains all of the values of LCS(i, j), for i = 1, 2, . . . , M , j =
1, 2, . . . , N , is called an LCS table. An LCS table has a property in which the difference between
any two consecutive values in an LCS table must be between −1 and 1. Moreover, the value in
an element with a larger row/column index is greater than or equal to the value in a position with
a smaller row/column index. We call the above property the ascending property of an LCS table.

The time-complexity of an LCS algorithm which uses the standard formula to solve the longest
common subsequence problem is proportional to the production of the lengths of two uncom-
pressed strings, namely O(MN). Advanced algorithms have been proposed for finding LCS of
two strings with time complexity: O(LN + N log N) and O(L(M + 1 − L) log N) [5] (where
L is the length of an LCS), O((r + N) log N) [6] (where r is the total number of matching pairs
of X and Y), O(N log |�| + d log log min{d, MN/d}) [3] (where d is the number of so-called
dominant matches, and |�| is the cardinality of the alphabet set), or O((M +N)|�|+|M| log |M|)
[2] (where |M| is the cardinality of the set of so-called maximal matches between substrings of
X and Y). Note that in the worst case both d and r are of size �(N2) and L is always bounded
by N .

There is a string compression technique which is called run-length encoding [7]. In a string,
the maximal repeated string of characters is called a run and the number of repetitions is called
the run-length. Thus, a string can be encoded more compactly by replacing a run by a single
instance of the repeated character along with its run-length. Compressing a string in this way is
called run-length encoding and a run-length encoding string is abbreviated as an RLE string. For
example, the RLE string of string bdcccaaaaaa is b1d1c3a6. Note that, in run-length encoding,
X denotes r

l1
1 r

l2
2 . . . r

lm
m , where rj is the repeated character of run j and lj is its corresponding

run-length, for j = 1, 2, . . . , m. The position of the last character of run rj in the corresponding
uncompressed string is denoted by lp(rj) which is equal to l1 + l2 + · · · + lj .

Freschi and Bogliolo [4] proposed an O(mN + Mn − mn) time algorithm for finding the
longest common subsequence of two RLE strings, where M and N are the lengths of the original
strings X and Y , respectively, and m and n are the numbers of runs in the RLE representations of
X and Y , respectively. Apostolico et al. [1] gave another algorithm for solving the same problem
in O(mn log(mn)) time. In this paper, we shall propose an O(min{mN, Mn}) time algorithm for
finding the longest common subsequence between an RLE string and an uncompressed string. In
the remainder of this paper, we shall assume, without loss of generality, that X is an RLE string
and Y is an uncompressed string and O(min{mN, Mn}) is equal to O(mN).

This paper is organized as follows. In Section 2, we describe some important properties of
an LCS table. In Section 3, we present our algorithm for solving the LCS problem under the
condition that one of the two strings, say X, is in the RLE form. Conclusions and open problems
are given in Section 4.

J.J. Liu et al. / Journal of Complexity 24 (2008) 173–184 175

2. Some properties of an LCS table

Let � ∈ �be a symbol inY . The position of the ith � inY is denoted byY�(i). The inverse function
of Y� is denoted by Y−1

� . The value of Y−1
� is called the rank of �. Thus, if Y�(i) = j , then Y−1

� (j) =
i, i.e., the rank of the � in yj is i. The position just before Y�(i) in Y , i.e., Y�(i) − 1, is denoted by
pre(Y�(i)). Moreover, prek(Y�(j)) denotes pre(Y�(j −k+1)) for 1�k�j while pre0(Y�(j)) =
Y�(j). For instance, Y = y1y2 · · · y8 = baaaccaa. Then, Ya(1) = 2, Y−1

a (2) = 1, Ya(2) = 3,

Y−1
a (3) = 2, Ya(3) = 4, Y−1

a (4) = 3, Ya(4) = 7, Y−1
a (7) = 4, Ya(5) = 8, and Y−1

a (8) = 5.
Furthermore, pre0(Ya(4)) = 7, pre1(Ya(4)) = 6, pre2(Ya(4)) = pre(Ya(4 − 2 + 1)) =
pre(Ya(3)) = 3, and so on.

For X = r
l1
1 r

l2
2 · · · rlm

m , we are interested especially in the computations of the rows with index
lp(ri), i = 1, 2, . . . , m, of an LCS table, if we are only given the values in row lp(ri−1). In the
following, we shall introduce some lemmas which will be used in computing the values of an LCS
table for these specific rows. The notations ri , li , and yj used in the following lemmas denote
the character of the ith run of string X, the length of run i, and the j th character of string Y ,
respectively.

Lemma 1. For run i and yj , if ri mismatches yj , then LCS(lp(ri), j) = max{LCS(lp(ri), j −
1), LCS(lp(ri−1), j)}.

Proof. If ri mismatches yj , then all characters that are in run ri will mismatch yj . This implies
that LCS(lp(ri), j) is obtained by either ignoring the j th symbol of Y or the entire run ri of X.
Therefore, LCS(lp(ri), j) = max{LCS(lp(ri), j − 1), LCS(lp(ri−1), j)}. �

Lemma 2. For run i and yj , if ri matches yj , then

LCS(lp(ri), j) = max
0�k � li

{LCS(lp(ri−1), prek(j)) + k}.

Proof. To compute LCS(lp(ri), j) directly from row lp(ri−1) when ri matches yj , we can con-
sider all possible numbers of the characters in run i used to match the same number of the same
character in Y . If no character in run i is used to match the same character in Y in order to get
LCS(lp(ri), j), then LCS(lp(ri), j) = LCS(lp(ri−1), j) = LCS(lp(ri−1), pre0(j)). If there are k

characters, 1�k� li , in run i which are used to match the same number of the same characters in
Y to obtain LCS(lp(ri), j), then LCS(lp(ri), j) = LCS(lp(ri−1), prek(j)) + k. However, we do
not know which LCS(lp(ri−1), prek(j)) + k, 0�k� li , has the largest value before we compare
all of them. Therefore, LCS(lp(ri), j) = max0�k � li {LCS(lp(ri−1), prek(j)) + k}. �

See Fig. 1 for an elucidation of Lemma 2. To compute LCS(4, 4) directly from row 1, all the
possible values needed for consideration are LCS(1, 4) + 0, LCS(1, 3) + 1, LCS(1, 2) + 2, and
LCS(1, 0) + 3. The maximum value is 3 (= LCS(1, 2) + 2 or LCS(1, 0) + 3).

We call element (lp(ri−1), prek(j)) an originating element and k an originating value of element
(lp(ri), j) in the LCS table if LCS(lp(ri−1), prek(j))+ k = LCS(lp(ri), j), for k = 0, 1, . . . , li .
Sometimes there are more than one originating element of element (lp(ri), j). For example, in
Fig. 1, both elements (lp(r1), pre3(4)) and (lp(r1), pre2(4)) are originating elements of element
(lp(r2), 4). An originating element with the smallest k among all originating elements with re-
spect to element (lp(ri), j) in an LCS table is called the nearest originating element of element
(lp(ri), j) and k is called the nearest originating value of element (lp(ri), j). With the concept

176 J.J. Liu et al. / Journal of Complexity 24 (2008) 173–184

a

∈

∈

0 0 0

b 0 1 1

a 0 1 2

a 0 1 3

a 0 1 3lp (r2)

lp (r1)

b a a

0 0

0 1

1 2

1 2

1 2

Fig. 1. An LCS table for X = baaa and Y = abaa.

of originating elements and Lemmas 1 and 2, the recursive formula for computing the longest
common subsequence can be represented as follows:

LCS(lp(ri), j) =
{

max{LCS(lp(ri), j − 1), LCS(lp(ri−1), j)} if ri �= yj ,

LCS(lp(ri−1), prek(j)) + k if ri = yj ,

where element (lp(ri−1), prek(j)) is an originating element of element (lp(ri), j) in the LCS
table. Note that the above recursive formula only computes the values in the rows with lp(ri), i =
1, 2, . . . , m.

In the above formula, the most time consuming step occurs at computing the LCS value of
two matched characters. It will take O(li) time for finding an originating element of element
(lp(ri), j) so that the total time complexity becomes O((l1 + l2 +· · ·+ lm)N) = O(MN). In the
following, we shall introduce some properties in a standard LCS table. By using these properties,
we can compute the longest common subsequence between a run-length-encoded string and an
uncompressed string efficiently.

For run i and yj of a standard LCS table, an element (t, j) is called a critical element of element
(lp(ri), j) if LCS(t, j) = LCS(lp(ri), j), where lp(ri−1)� t � lp(ri) − 1. The value of a critical
element, i.e. LCS(t, j), is called a critical value with respect to element (lp(ri), j). Let Si,j

denote the number of all critical elements of element (lp(ri), j). We use the LCS table in Fig. 1
to illustrate the above notation. The RLE string X is b1a3 = r

l1
1 r

l2
2 . Thus, lp(r2) = 1 + 3 = 4.

It means that the position of the last character of a3 in the original string X is 4. In column 4 of
the LCS table, we can find that there is only one critical element with respect to element (4, 4),
namely element (3, 4), and the critical value is LCS(3, 4) = 3. Therefore, S2,4 = 1. We can also
find that S2,0 = 3, S2,1 = 2, S2,2 = 3, and S2,3 = 2. Lemmas 3 and 4 will describe the relation
between LCS(lp(ri), j) and Si,j .

Lemma 3. For run i and yj , if ri matches yj and Si,j−1 = 0, then LCS(lp(ri), j) = LCS(lp(ri),

j − 1).

Proof. Si,j−1 = 0 means that there is no critical element with respect to element (lp(ri), j −1) of
an LCS table. Thus, LCS(lp(ri)− 1, j − 1) = LCS(lp(ri), j − 1)− 1. According to the standard
LCS formula and the above equality, if ri matches yj , then

LCS(lp(ri), j) = LCS(lp(ri) − 1, j − 1) + 1

= LCS(lp(ri), j − 1) − 1 + 1

= LCS(lp(ri), j − 1). �

J.J. Liu et al. / Journal of Complexity 24 (2008) 173–184 177

∈

∈
a

0 0 0 0

b 0 1 1 1

a 0 1 2 2

a 0 1 3 3

a 0 1 3 4

lp (r1)

lp (r2)

b a a a a

0 0 0

0 1 1

1 2 2

1 2 3

1 2 4

Fig. 2. An LCS table for X = baaa and Y = abaaaa.

See Fig. 2 for an illustration of Lemma 3. There is no critical element with respect to element
(4, 5) of the LCS table in Fig. 2. Thus, S2,5 = 0 and LCS(3, 5) = LCS(4, 5)−1. Since r2 matches
y6, LCS(4, 6) = LCS(3, 5) + 1 = LCS(4, 5) − 1 + 1 = LCS(4, 5).

Lemma 4. For run i and yj , if ri matches yj and Si,j−1 > 0, then LCS(lp(ri), j) = LCS(lp(ri),

j − 1) + 1.

Proof. Si,j−1 > 0 implies that there exists at least one critical element with respect to run i and
yj−1. Thus, LCS(lp(ri), j − 1) = LCS(lp(ri) − 1, j − 1). According to the above equation and
the standard LCS formula again, if ri matches yj , then

LCS(lp(ri), j) = LCS(lp(ri) − 1, j − 1) + 1

= LCS(lp(ri), j − 1) + 1. �

See element (4, 4) of the LCS table in Fig. 2 for an illustration. We can find that S2,3 = 2.
Therefore, LCS(3, 3) = LCS(4, 3) = 2. Since r2 matches y4, LCS(4, 4) = LCS(3, 3) + 1 =
LCS(4, 3) + 1 = 2 + 1 = 3.

Lemmas 5–7 describe a way for computing Si,j , where Lemma 5 can be obtained directly from
the definition of Si,j .

Lemma 5. For run i and yj , if LCS(lp(ri), j) = LCS(lp(ri−1), j), then Si,j = li .

Lemma 6. For run i and yj , if ri mismatches yj and LCS(lp(ri), j) > LCS(lp(ri−1), j), then
Si,j = Si,j−1 < li .

Proof. At first, we prove that if ri mismatches yj and LCS(lp(ri), j) > LCS(lp(ri−1), j), then
Si,j−1 < li . For the purpose of contradiction, we assume that Si,j−1 = li . It means that there are
li critical elements with respect to run i and yj−1 and LCS(lp(ri−1), j −1) = LCS(lp(ri), j −1).
By the ascending property of an LCS table, LCS(lp(ri−1), j)�LCS(lp(ri−1), j − 1). Thus,
LCS(lp(ri−1), j)�LCS(lp(ri), j − 1). However, by Lemma 1, if ri mismatches yj , then
LCS(lp(ri), j) = max{LCS(lp(ri), j −1), LCS(lp(ri−1), j)} = LCS(lp(ri−1), j). It contradicts
the given constraint LCS(lp(ri), j)>LCS(lp(ri−1), j). Therefore, Si,j−1 < li .

Now, we are at a position to prove that if ri mismatchesyj and LCS(lp(ri), j)>LCS(lp(ri−1), j),
then Si,j = Si,j−1. Assume that Si,j−1 = k < li . Then, by a similar reasoning as the proof
of Lemma 1, we can obtain LCS(lp(ri), j) = LCS(lp(ri) − 1, j) = · · · = LCS(lp(ri) −
k, j) = LCS(lp(ri), j − 1) and LCS(lp(ri) − k − 1, j) = max{LCS(lp(ri) − k − 1, j − 1),

178 J.J. Liu et al. / Journal of Complexity 24 (2008) 173–184

b

0 0 0 0

b 0 1 1 1

b 0 1 2 2

a 0 2 2 3

a 0 3 3 3

a 0 3 4 4

∈

∈ a a a b a a a

0 0 0 0 0

1 1 1 1 1

1 1 1 2 2

1 2 2 3 3

1 2 3 4 4

1 2 4 4 5

lp (r1)

lp (r2)

Fig. 3. An LCS table for X = bbaaa and Y = baaabaaa. (a) an rp table; (b) its corresponding reverse rp table.

LCS(lp(ri−1), j)}. It is clear that LCS(lp(ri) − k − 1, j − 1) is less than LCS(lp(ri), j) − 1. By
the following derivation, we can obtain LCS(lp(ri) − k − 1, j) < LCS(lp(ri), j):

LCS(lp(ri) − k − 1, j) = max{LCS(lp(ri) − k − 1, j − 1), LCS(lp(ri−1), j)}
= max{LCS(lp(ri), j) − 1, LCS(lp(ri−1), j)}
= LCS(lp(ri), j) − 1

< LCS(lp(ri), j).

This completes the proof. �

An illumination of Lemma 6 can be seen from Fig. 3. Since r2 mismatches y5 and LCS(5, 5) >

LCS(2, 5), S2,5 = S2,4 = 0.

Lemma 7. For run i and yj , if ri matches yj , then Si,j = li −k, where k is the nearest originating
value of element (i, j) in the LCS table.

Proof. Since k is the nearest originating value of element (lp(ri), j), by definition, LCS(lp(ri), j)

= LCS(lp(ri−1), prek(j))+k and LCS(lp(ri−1)+k, j)�LCS(lp(ri−1), prek(j))+k. However,
by the ascending property of an LCS table, LCS(lp(ri−1) + k, j)�LCS(lp(ri), j). This implies
that LCS(lp(ri−1) + k, j) = LCS(lp(ri), j).

If we can prove that LCS(lp(ri−1)+k−1, j) < LCS(lp(ri−1)+k, j), then the lemma follows.
Viewing the first k − 1 characters of run i as a new run, the nearest originating value, say h, of
element (lp(ri−1) + k − 1, j) must be less than k. By the definition of an originating value,

LCS(lp(ri−1) + k − 1, j) = LCS(lp(ri−1), preh(j)) + h

< LCS(lp(ri−1), prek(j)) + k

= LCS(lp(ri), j).

Therefore, there are exactly li − k critical elements with respect to element (lp(ri), j) and Si,j =
li − k. �

See Fig. 3 for an example of Lemma 7. Since r2 matches y7 and LCS(lp(r2), 7) = max0�h�3
{LCS(lp(r1), preh(7)) + h} = LCS(lp(r1), pre2(7)) + 2 = LCS(lp(r1), pre3(7)) + 3 = 4, k = 2
is the nearest originating value of element (lp(r2), 7). Thus, S2,7 = l2 − k = 3 − 2 = 1.

J.J. Liu et al. / Journal of Complexity 24 (2008) 173–184 179

∈ b a a

∈ 0 0 0 0

b2 0 1 1 2

a3 0 3 4 4

1 -1 -1 -2 -3

1 1 -1 -1

 lp (r2)

Providing values

Clue values

a a b a a

0 0 0 0 0

1 1 2 2 2

1 2 4 4 5

0

1 0

lp (r1)

Fig. 4. An illustrating example.

From Lemmas 3 to 7, computing LCS(lp(ri), j) and Si,j only uses the values in row lp(ri−1)

of an LCS table for i = 1, 2, . . . , m and j = 1, 2, . . . , N . We rename the table which contains
only the rows lp(r1), lp(r2), . . . , lp(rm) of an LCS table as an RULCS table. Note that row lp(ri)

of an LCS table is the ith row of an RULCS table. Thus, many definitions based on an LCS table
can also be applied to an RULCS table. For example, if element (lp(ri−1), q) is an originating
element of element (lp(ri), j) in an LCS table, then we still call element (i − 1, q) an originating
element of element (i, j) in an RULCS table. For instance, the corresponding RULCS table of
Fig. 3 is shown in Fig. 4 without including the last two rows.

We summarize the above lemmas as the following theorem.

Theorem 1. For run i and yj ,

RULCS(i, j) =

⎧⎪⎪⎨
⎪⎪⎩

max{RULCS(i, j−1), RULCS(i−1, j)} if ri �= yj ,

RULCS(i, j − 1) if ri = yj and Si,j−1 = 0,

RULCS(i, j − 1) + 1 if ri = yj and Si,j−1 > 0,

and

Si,j =

⎧⎪⎪⎨
⎪⎪⎩

li if RULCS(i, j) = RULCS(i − 1, j),

Si,j−1 if ri �= yj and RULCS(i, j) > RULCS(i − 1, j),

li − k if ri = yj ,

where k is the nearest originating value of the element (i, j) in the RULCS table. The initial
conditions are Si,0 = li and RULCS(i, 0) = RULCS(0, j) = RULCS(0, 0) = 0, for 1� i�m

and 1�j �N .

Clearly, in Theorem 1, the computations of RULCS(i, j) and Si,j can be done intuitively in
constant time for all conditions except the last condition for computing Si,j . In the next section,
we shall show that the last condition for computing Si,j can also be obtained in constant time.

3. An efficient algorithm for finding the nearest originating value

If we try to find the nearest originating value of an element by an exhaustive search, then the
time-complexity of our approach will go back to O(MN). The property described in Lemma 8
can be used to find the nearest originating element of an element in constant time. By applying
the property in Lemma 8, we can use the inverted list technique so that the nearest originating
element can be found in constant time.

180 J.J. Liu et al. / Journal of Complexity 24 (2008) 173–184

Lemma 8. For run i and yj in an RULCS table, let ri = �, Y−1
� (j) = p, and an integer q where

p − li + 1�q �p. Then the following conditions are equivalent:

(1) Element (i − 1, pre(Y�(q))) is an originating element of element (i, j).
(2) p − q + 1 is an originating value of element (i, j).
(3) RULCS(i, j) − p = RULCS(i − 1, pre(Y�(q))) + 1 − q.

Proof. (1)⇒(2) Since element (i − 1, pre(Y�(q))) and element (i − 1, prep−q+1(Y�(p))) are the
same element, by the definition of an originating value, p − q + 1 is an originating value of
element (i, j).

(2)⇒(3) If p−q+1 is an originating value of element (i, j), then, by definition, RULCS(i, j) =
RULCS(i−1, prep−q+1(Y�(p)))+p−q+1. Rearranging the equality, we can obtain RULCS(i, j)

− p = RULCS(i − 1, pre(Y�(q))) + 1 − q.
(3)⇒(1) After replacing pre(Y�(q)) by prep−q+1(Y�(p)) and then rearranging the formula in

condition (3), we have RULCS(i, j) = RULCS(i − 1, prep−q+1(Y�(p))) + (p − q + 1).
According to the definition of an originating element, we know that (i − 1, prep−q+1(Y�(p)))

is an originating element of element (i, j). Therefore, element (i − 1, pre(Y�(q))) is also an
originating element of element (i, j) and the Lemma follows. �

An illumination of Lemma 8 can be seen from Fig. 4. Since RULCS(2, 7) = RULCS(1, pre2(7))

+ 2 = RULCS(1, pre(Ya(4))) + 2, element (1, pre(Ya(4))) is an originating element of element
(2, 7) and q = 4. Since p = Y−1

a (7) = 5 and q = 4, p − q + 1 = 2 is an originating value of
element (2, 7). Moreover, RULCS(2, 7) − p = 4 − 5 = −1 is equal to RULCS(1, pre(Ya(4))) +
1 − q = 2 + 1 − 4 = −1.

For run i, we call RULCS(i, j) − p and RULCS(i − 1, pre(Y�(p))) + 1 − p the clue value
and the providing value, respectively, of the pth � in Y , where Y�(p) = j . For example, see
run 2 and y6 in Fig. 4. Since y6 is the fourth a in Y , RULCS(i − 1, pre(Ya(p))) + 1 − p =
RULCS(2−1, pre(Ya(4)))+1−4 = RULCS(1, pre(6))−3 = RULCS(1, 5)−3 = 2−3 = −1.
Therefore, the providing value of the fourth a for run 2 is −1. We can find that the providing
value of the third a for run 2 is also −1. The other providing values can be seen from the last
row of Fig. 4. The clue value of the fifth a for run 2 is RULCS(i, j) − p = RULCS(2, 7) − 5 =
4 − 5 = −1. By Lemma 8, we can obtain the information that both elements (1, 3) and (1, 5)

are originating elements of element (2, 7) and their corresponding originating values are 3 and 2,
respectively.

Corollary 9. For run i in an RULCS table, let ri = �, � be the providing value of the qth �, � be
the clue value of the pth �, and p − li + 1�q �p. If element (i − 1, pre(Y�(q))) is an originating
element of element (i, Y�(p)), then � (mod li) ≡ � (mod li).

We can view the providing values as a table whose indexes are the ranks of � in Y and the
corresponding value of each index is its providing value. See Fig. 5(a) for an example in which
the providing values in Fig. 4 are represented by a table. We call the above table an rp table of run
i. In order to find the nearest originating value of element (i, j) in constant time, we can construct
an inverted rp table for run i. That is, the indexes of an inverted rp table are providing values and
the corresponding value of each index is the rank of �. Note that if more than one � have the same
index, i.e., the same providing value, then a larger rank will replace a smaller rank in an inverted
rp table. For example, the inverted rp table of Fig. 5(a) is shown in Fig. 5(b). We can see from the

J.J. Liu et al. / Journal of Complexity 24 (2008) 173–184 181

Providing value -3 -2 -1
The rank of a 6 2

The rank of a 1 3
Providing value 1 -1 -1 -2 -3

2 4 5 6
0 5 4 1

0 1

Fig. 5. The rp table and reverse rp table of Fig. 3.

table in Fig. 5(a) that both the third and the fourth a have the same providing value, namely −1,
and the final stored value is 4 in Fig. 5(b).

To illuminate that the nearest originating value of element (i, j) can be found in constant time
(see Function NearestOriginatingValue), we shall compute the nearest originating value
of element (2, 7) as an example by using the inverted rp table in Fig. 5(b). We know that the clue
value of element (2, 7) is RULCS(2, 7) − Y−1

� (7) = 4 − 5 = −1. Using −1 as the index of
the inverted rp table in Fig. 5(b), we can obtain 4, namely the fourth a, from the table. Then, by
Lemma 8, the nearest originating value of element (2, 7) is p − q + 1 = 5 − 4 + 1 = 2.

By using the modulus operation, the indexes of an inverted rp table can be bounded in the range
from 0 to li − 1. That is what Lemma 10 states.

Function NearestOriginatingValue(int i, int j)

begin1

theClueV alue = RULCS(i, j) − Y−1
� (j);2

return Y−1
� (j) − rp[theClueV alue] + 1;3

end4

Lemma 10. For run i, let ri = �, � be the providing value of the sth �, and let � be the clue value
of the pth �, and let element (i − 1, pre(Y�(q))) be the nearest originating element of element
(i, Y�(p)). If q < s�p, then � (mod li) �≡ � (mod li).

Proof. By definition, the providing value of the sth � is RULCS(i − 1, pre(Y�(s))) + 1 − s. We
know that s > q. Then

RULCS(i − 1, pre(Y�(s)))�RULCS(i − 1, pre(Y�(q))). (1)

Since element (i − 1, pre(Y�(q))) is the nearest originating element of (i, Y�(p)), we also have

RULCS(i, Y�(p)) = RULCS(i − 1, pre(Y�(q))) + p − q + 1 (2)

and

RULCS(i, Y�(p)) > RULCS(i − 1, pre(Y�(s))) + p − s + 1 for q < s�p. (3)

From (2) and (3), we can obtain

RULCS(i − 1, pre(Y�(q))) − q + 1 > RULCS(i − 1, pre(Y�(s))) − s + 1. (4)

From (1) and (4), we can derive

RULCS(i − 1, pre(Y�(q))) − q + 1 − (RULCS(i − 1, pre(Y�(s))) − s + 1)

�RULCS(i − 1, pre(Y�(s))) − q + 1 − (RULCS(i − 1, pre(Y�(s))) − s + 1)

= s − q < p − q � li . (5)

182 J.J. Liu et al. / Journal of Complexity 24 (2008) 173–184

By exchanging li and RULCS(i − 1, pre(Y�(s))) − s + 1 in (5), we can have the following
derivation:

RULCS(i − 1, pre(Y�(q))) − q + 1 − li < RULCS(i − 1, pre(Y�(s))) − s + 1. (6)

Using (4) and (6), we can find that RULCS(i − 1, pre(Y�(q))) − q + 1 − li < RULCS(i −
1, pre(Y�(s))) − s + 1 < RULCS(i − 1, pre(Y�(q))) − q + 1. This implies that RULCS(i − 1,

pre(Y�(q))) − q + 1 (mod li) �≡ RULCS(i − 1, pre(Y�(s))) − s + 1 (mod li). Since RULCS(i −
1, pre(Y�(q)))−q +1 = RULCS(i, pre(Y�(p)))−p = �, and RULCS(i −1, pre(Y�(s)))− s +1
is the providing value of the sth �, i.e. �, � (mod li) �≡ � (mod li). �

See Fig. 4 for an illumination of Lemma 10. For run 2, the clue value of the 6th a is RULCS(2,

Ya(6))−5 = RULCS(2, 8)−6 = −1. Element (1, pre(Ya(4))) is the nearest originating element
of element (2, Ya(6)) because RULCS(1, pre(Ya(4)))+1−4 = −1 = RULCS(2, Ya(6))−5. The
providing value of the 5th a is RULCS(1, pre(Ya(5)))+1−5 = −2. It is clear that −2 (mod l2) �≡
−1(mod l2).

For simplicity, we still call an inverted rp table with modulus an inverted rp table if it will
not make confusion. We use the computation of S2,7 as an example to show how to use the
inverted rp table. The table in Fig. 6 is the inverted rp table after computing RULCS(2, 7). The
clue value of the fifth a in run 2 is −1, and 2 after the modulus operation. Thus, by retrieving
the inverted rp table, the providing value of the fourth a in Y is also 2. Then, by Theorem 1,
S2,7 = l2 − k = 3 − (5 − 4 + 1) = 1.

Algorithm A is used for finding a longest common subsequence of a run-length-encoded string
and an uncompressed string.

Algorithm A.

Input: An RLE string X = r
l1
1 r

l2
2 · · · rlm

m and an uncompressed string Y = y1y2 · · · yN .
Output: A longest common subsequence L.
begin

Step 1. Use the recursive formula in Theorem 1 to compute Si,j , for i = 1, 2, . . . , m

and j = 1, 2, . . . , N .
Step 2. Let L = �, i = m, and j = N .
Step 3. If i = 0 or j = 0, then output L in the reverse order and terminate.
Step 4. For ri and yj , adjust i, j , and L according to the following cases.

Case 1. ri matches yj .
Append li − Si,j characters ri to L and change i and j to i − 1 and

preli−Si,j (j), respectively.
Case 2. ri mismatches yj and Si,j = li .

Replace i by i − 1.
Case 3. ri mismatches yj and Si,j < li .

Replace j by j − 1.
Step 5. Go to Step 3.

end

We use an example to illustrate Algorithm A. See Fig. 7 for computing Si,j of X = b2a3 and
Y = baaabaaa. After Step 1, the resulting Si,j , i = 1, 2, . . . , m and j = 1, 2, . . . , N are shown
in Fig. 7. And, the changes of i, j , and L in each iteration are shown in Table 1. We summarize
the above results as the following theorem.

J.J. Liu et al. / Journal of Complexity 24 (2008) 173–184 183

The providing value
with modulus operation

0 1 2

The rank of a 2 5 4

Fig. 6. The inverted rp table for run 2 after computing RULCS(2, 7).

b

∈
∈

0 0 0 0

b2 2 1 0 0

a3 3 1 0 0

a a a b a a a

0 0 0 0 0

1 1 1 0 0

3 2 0 1 0

Fig. 7. The Si,j of the RULCS table.

Table 1
The changes of i, j , and L

i j L

2 8 �
1 5 aaa
0 0 aaabb

Theorem 2. A longest common subsequence of an RLE string X and an uncompressed string
Y can be found in O(min{mN, nM}) time by Algorithm A.

Proof. The way in Algorithm A to obtain a longest common subsequence is similar to that
of obtaining a longest common subsequence from a standard LCS table. Clearly, it only takes
O(m+N) time to obtain a longest common subsequence if an RULCS table is given. According
to Theorem 1 and Lemma 8, an RULCS table can be built in O(mN) time. This completes the
proof. �

4. Concluding remarks

In this paper, we proposed an O(min{mN, nM}) time algorithm for solving the longest common
subsequence problem of a run-length-encoded string and an uncompressed string. The following
table shows the time complexities for solving the LCS problem by using Freschi’s algorithm [4],
Apostolico’s algorithm [1], and our proposed algorithm in different compressed conditions. In
Table 2, T1 denotes the time complexity if both strings X and Y can be compressed efficiently, T2
denotes the time complexity if only one of X and Y can be compressed efficiently, and T3 denotes
the time complexity if the lengths of run-length-encoded strings X and Y are nearly equal to the
lengths of the original strings X and Y , respectively.

We can see from Table 2 that our algorithm is the most efficient algorithm when only one string
can be compressed efficiently. It is obvious that our algorithm can be parallelized in a PRAM
EREW computational model by using O(min{m, N}) processors and takes O(m + N) time. A
general version of this problem is to consider both strings which are in RLE form. We are trying
to solve this problem now.

184 J.J. Liu et al. / Journal of Complexity 24 (2008) 173–184

Table 2
The comparisons of different algorithms for the LCS problem with run-length-encoded strings.

Freschi’s Apostolico’s Our
algorithm [4] algorithm [1] algorithm

T1 O(mN + Mn − mn) O(mn log(mn)) O(min{mN, Mn})
T2 O(MN) O(mN log(mN)) O(mN)

T3 O(MN) O(MN log(MN)) O(MN)

References

[1] A. Apostolico, G.M. Landau, S. Skiena, Matching for run-length encoded strings, Journal of Complexity 15 (1) (1999)
4–16.

[2] B.S. Baker, R. Giancarlo, Sparse dynamic programming for longest common subsequence from fragments,
J. Algorithms 42 (2002) 231–254.

[3] D. Eppstein, Z. Galil, R. Giancarlo, G.F. Italiano, Sparse dynamic programming I: linear cost functions, J. ACM 39
(3) (1992) 519–545.

[4] V. Freschi, A. Bogliolo, Longest common subsequence between run-length-encoded strings: a new algorithm with
improved parallelism, Inform. Process. Lett. 90 (4) (2004) 167–173.

[5] D.S. Hirschberg, Algorithms for the longest common subsequence problem, J. ACM 24 (4) (1977) 664–675.
[6] J.W. Hunt, T.G. Szymanski, A fast algorithm for computing longest common subsequences, Commun. ACM 20 (5)

(1977) 350–353.
[7] K. Sayoood, E. Fow (Eds.), Introduction to Data Compression, second ed., Morgan Kaufmann, Los Altos, CA, 2000.

