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Abstract. The proposed algorithm is a novel matrix-based global pair-wise sequence alignment with a de

novo sequence representation. Needleman–Wunsch, noblest, Emboss-Needle, ALIGN, LALIGN, FOGSAA,

DIALIGN, ACANA, MUMmer, etc. are few other algorithms that are most commonly used for global pair-wise

sequence alignment. Needleman–Wunsch algorithm is one of the most popular algorithms that provides the best

possible pair-wise sequence alignment, but the algorithm output is associated with high time and space com-

plexities. To resolve these complex issues, researchers have proposed several algorithms to reduce time and

space complexities in the pair-wise sequence alignment. Most of these algorithms provide solutions, but

compromise the optimal result in favor of plummeting time and space complexities. An attempt has been made

in the present research to develop MPSAGA and a completely unique positional matrix (PM) based sequence

representation to deal with the time and space complexities without compromising sequence alignment results

(MPSAGA is in public domain available at https://github.com/JyotiLakhani1/MPSAGA). A benchmarking of

the proposed algorithm has also been performed with other popular pair-wise sequence alignment algorithms

with and without positional matrix-based sequence representation. The use of an integer instead of string data

type and exclusive clustering method in MPSAGA with positional matrix based sequence representation resulted

in a noteworthy reduction in the memory usage (space) and execution time in the pair-wise alignment of

biological sequences.

Keywords. Clustering algorithms; algorithm design and analysis; data mining; dynamic programming.

1. Background

BIOLOGICAL sequences are too large to be stored in the

familiar data structures. A biological sequence is a single,

continuous molecule of nucleic acid or protein. It can be

thought of as a multiple inheritance class hierarchy of the

underlying molecule type: DNA, RNA or protein. The

biological sequences are gigantic enough to be considered

as a big data and there are many biological databases to

store such type of data. Biological databases are libraries of

life science information, collected from scientific experi-

ments, published literature, high-throughput experiment

technology, and computational analysis. Some examples of

biological databases are EMBL [1, 2], GenBank [3, 4],

DDBJ [5, 6], Entrez [7], etc. Some important biological

sequence analysis is pair-wise sequence alignment, multi-

ple sequence alignment, gene search, gene prediction, gene

expression analysis, phylogenetic analysis, etc. There are

some dedicated computational algorithms for biological

sequence analysis. To execute these algorithms one needs

to input the sequence/s in question or sequence accession

number to the algorithm. These sequences are required to

be held in a variable. The string is the most common rep-

resentation of a sequence of gene, gene name, DNA, RNA

or primary structure of a protein sequence. These strings are

stored in a flat file format in the system. FASTA [8] format

is an example of a flat file. There are two measures to find

out the effectiveness of an algorithm. These two measures

are the space complexity and the time complexity of the
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aforesaid algorithm. The units of space required to hold

data in an algorithm is known as its space complexity. The

space complexity plays the most prominent role in solving

complex alignments. The space complexity in the analysis

of biological sequence will increase n-fold with the

increase in the size of biological sequences or sometimes

when long and complex algorithms are used. The time

complexity of an algorithm is the measure of the time

required to execute an algorithm. The space and time

complexities of biological sequence analysis are usually

very high due to the complex nature of analysis and in most

of the cases, it is difficult to execute these algorithms on a

computer system having only basic configuration. This is

the reason why most of the biological databases are avail-

able on the servers having high storage and advanced

processors. Researchers can apply filters to get the desired

data on their computer systems. The same is true for the

biological sequence analysis algorithms such as BLAST

[9], MEGA [10, 11], FASTA [8], etc. Many of these are

available on high capacity servers and researchers can run

their queries online on the server itself and subsequently

results can be saved.

The present communication discusses the role of a newly

developed algorithm (MPSAGA: a matrix-based pair-wise

sequence alignment algorithm for global alignment) and a

completely unique positional matrix (PM) based sequence

representation in reducing the time and space complexities

to provide the best possible global pair-wise sequence

alignment. Pair-wise sequence alignment is the process to

arrange two sequences next to each other in such a way that

their similar elements (nucleotides) are juxtaposed. There

can be several possibilities to align two sequences. In a

sequence alignment algorithm, the match score is calcu-

lated for the best alignment. The attempts have been made

in the present communication to address the following two

main objectives. First is to find the quality of the alignment.

It is to mention here that there can be (2n)!/(n!)2 possible

alignments of the two sequences of length n. Second is to

find the best possible alignment. The proposed MPSAGA

provide an un-gapped pair-wise sequence alignment as an

output. The global un-gapped pair-wise sequence alignment

is required in situations where the exact match between two

sequences is required. Gaps are acceptable in the sequence

alignment, if exact matches are not required. Un-gapped

alignment aligner, search for the exact match in the pair of

sequence. For example, un-gapped alignment will be highly

useful, if one is searching for a gene needs to be utilized for

gene therapy. In addition, un-gapped alignment is also

important in searching of a malicious injected code from a

software code in the cyber attack. It will be of much use

when a data packet enquires about the network address/port

address to be delivered. It is also useful for pattern recog-

nition problems where searching pattern is a password, a

bank account number, social security number, mobile

number, etc. The proposed algorithm is based on a dynamic

programming approach [12]. Dynamic programming is a

special algorithmic approach that divides a problem into

sub-problems and by solving each sub-problem, best

alignment results are produced. In the proposed algorithm,

a pair of sequence is aligned by calculating Hamming

Distance. The algorithm also uses a novel position based

matrix representation of nucleotide sequences. Using

MPSAGA along with position matrix representation of

sequences, for pair-wise sequence alignment, a remarkable

decrease in the space and time complexity issues has been

observed. One of the reasons for these observations is that

the biological sequences in computer programming are

considered as strings and all algorithms represent these

sequences as a string data type. In MPSAGA, we have used

positional matrix representation of biological sequences

which converts these sequence strings to integer matrix.

Subsequently, working with integers is rather easy because

integer is a primitive data type and comparison of two

integers can simply be performed using a single computer

instruction. On the other side, comparison of two strings is

relatively complex because these are compared using the

methods in Java software. Hence, it is time consuming and

an overhead to CPU. The other reason can be attributed to

the use of an evolutionary clustering algorithm [12]. Once

all the possible alignments are detected by MPSAGA, these

are passed on to the evolutionary algorithm which assess

the fitness of these possible alignments and select the good

ones in a separate cluster (C1). The match score has been

used in the present communication as the fitness criteria.

Then the only task remaining is to sort and find the best

possible alignment with the highest match score from

cluster (C1) by ignoring all the other remaining pair-wise

sequence alignments with low match scores. This shortens

the burden on CPU for searching all the possible alignments

and therefore results in the reduction of the time complexity

in pair-wise sequence alignment. The present paper is

divided into seven sections. The proposed algorithm and a

short review on the research work already done by other

authors have been presented in the section 2. In section 3, a

detailed discussion on the novel positional matrix sequence

representation has been presented. The procedure to use

this representation of pair-wise sequence alignment is also

discussed in this section. Empirical studies are presented in

section 4. The complexity analyses, results and conclusions

are provided in sections 5, 6 and 7, respectively.

2. An overview

Smith and Waterman have proposed a classical dynamic

programming based local pair-wise sequence alignment

algorithm. It was one of the first applications of dynamic

programming to compare biological sequences [13]. A

dynamic programming algorithm with quadratic running

time for the same problem (no gap penalty) for proteins was

firstly introduced by the Needleman–Wunsch [14]. It is still
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widely used for optimal global alignment, particularly

when the quality of the global alignment is of utmost

importantance. Both of these algorithms represent sequen-

ces as a string and then a similarity matrix is used to find

out the best possible sequence alignment. One sequence

string represents rows of the matrix and the other sequence

string represents columns of the similarity matrix. The

algorithms scan each and every base pair and find the best

possible alignment of the two sequences. However, the

algorithms are expensive and complex with respect to the

time and space that are directly proportional to the product

of the length of two sequences under investigation. This is

the reason that why both are not suitable for the analyses of

long biological sequences. Recent developments in this

field have focused on improvement of the time outlay of the

tested algorithm. For example, a Fast Optimal Global

Sequence Alignment Algorithm (FOGSAA) was suggested

[15]. In this algorithm, the alignment of nucleotide or

protein sequences was faster than the other optimal global

alignment algorithms, including Needleman–Wunsch

algorithm. The paper claims that when compared to the

Needleman–Wunsch algorithm, FOGSAA achieved a time

gain of 70–90% for highly similar nucleotide sequences

(with[80% similarity), and 54–70% for sequences having

30–80% similarity. While most of the standard alignment

methods rely on comparing single residue and impose gap

penalties, DIALIGN [16] executes, pair-wise and multiple

sequence alignments by comparing entire segment of bio-

logical sequences with no gap penalties. MUMmer [17–19]

was developed for aligning entire genome sequences

rapidly. As an accurate alignment tool, ACANA [20] is also

useful in comparative sequence analysis to identify con-

served functional regulatory elements. The present details

also include BLAST and its variations. The BLAST algo-

rithm converts a nucleotide sequence in words, aligns it

with other sequences, calculates match scores, and if the

match score of the sequence is less than the threshold value,

it discards the sequence. It is important to note that the blast

algorithm does not analyze the best possible sequence

alignment, but rather gives an optimal sequence alignment

with the highest score. Other than the algorithms discussed

above, some visualization techniques have also been

developed that compares two sequences in their pair-wise

alignment by manual methods. DotPlot [21] matrix is such

kind of visualization method. Dotter (http://sonnhammer.

sbc.su.se/Dotter.html) or Dotlet (http://www.isrec.isb-sib.

ch/java/dotlet) can also be used to create dot plots to

compare alignment of two sequences. Some other pair-wise

sequence analysis tools are AlignMe [22–24], Bioconductor

[25–27] and DpAlign (http://search.cpan.org/dist/BioPerl/

Bio/ Tools/dpAlign.pm). EMBOSS Needle (https://www.

ebi.ac.uk/Tools/psa/emboss_ needle/nucleotide.html) and

EMBOSS Stretcher (https://www.ebi.ac.uk/Tools/psa/

emboss_stretcher/nucleotide.html) are other online tools

that allow analyses of larger sequences in global pair-wise

alignment.

2.1 The algorithm

An attempt has been made in the present work to perform

the global un-gapped sequence alignment of two nucleo-

tide sequences by using the proposed algorithm

(MPSAGA) (figure 1). The algorithm is a combination of

naive and dynamic programming methods of pair-wise

sequence alignment. The proposed algorithm compares all

the possible alignments to enhance the chance to search

for the best possible global alignment. The algorithm

scans a pair of the given sequence for similarity and

returns a pair of aligned sequences with the highest score.

Let us consider two sequences S1 and S2 with lengths N

and M as S1 = {s11,s12,s13, …, s1N} and S2 =

{s21,s22,s23,…S2M}. The algorithm scans S1 and S2

from the left to the right by pairing nucleotides such as

that it aligns each index of S1[i = 0,…,N] with the same

index of S2[j = 0, …, M]. This alignment is called shift =

0. First, it scans, shift = 0 for these sequences, compares

and finds the match score and a similarity matrix is

maintained to hold the alignment position, matching score

and shifting details. The similarity matrix can be imagined

as a universal cluster (U). Thereafter, the sequence pair is

shifted to the right or to the left (figure 2). The compar-

ison process is repeated for all right (0?N) and left (0?
-N) shifts. An evolutionary clustering algorithm12 was

used in the present manuscript to evolve the universal

cluster (U) by considering the match score as a clustering

factor that results in the evolution of many clusters with a

different range of match scores. The final similarity matrix

can be imagined as a set of clusters for all possible

alignments of the sequences S1 and S2 with all possible

shifts. During the process, paired alignments can migrate

from one cluster to other as per their match score. It is

made possible by the migration operator of the evolu-

tionary algorithm12. For example, the clusters developed

from the universal cluster can be considered as C1 =

{86,98,67} and C2 = {27, 34,40} and their paired align-

ment with the match score of 86, 98, 67 and 27, 34, 40

respectively. A sort_cluster() method was applied in the

present work to sort the evolved clusters in ascending

order as per their match score. Therefore, the clusters

were sorted as {C1, C2} because C1 consists of the paired

alignment with the highest match scores. The top cluster

(with the highest match score) was selected and marked as

the final cluster. In the above example, C1 is the top

cluster that is finally selected to find the best alignment.

Sort_within_cluster() method was also applied to sort

other alignments in the final cluster in ascending order

that provides the best alignment on the top of other

alignments in the final cluster. This is applied on the final

cluster C1 that sorts the elements of C1 in an ascending

order C1 = {98, 86, 67}. It is clear here that the paired

alignment with the best score is C1 with 98 as the best

match score. In this way the proposed algorithm not only

provides the best possible pair-wise sequence alignment
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but also assist in finding out the remaining best possible

alignments (with low match score) in ascending order.

2.2 Description

The proposed algorithm has been divided into five steps.

The first step is the self-initialization step that initializes

the parameters required to execute the algorithm. Then

the algorithm scans each nucleotide of the sequence and

converts the entire sequence in the Positional Matrix

(PM). Positional Matrix is the novel representation of

sequences and is being used in the present work for the

first time. In this type of representation, in spite of

storing a string of nucleotide, the position of each

nucleotide is determined and located in a positional

matrix accordingly. In the step 2, the possible alignment

of the two sequences without gap and without shift is

achieved. As a result, a universal cluster is generated

with all the best possible pair-wise sequence alignments.

Now the cluster is searched for shifting positions

without inserting gaps. The process of conversion of a

sequence in the positional matrix is given in the step 1

below and is described in detail in the following sec-

tion. The positional matrix of S1 sequence is shown in

figure 3.

The MPSAGA performs base pair match for all posi-

tive and negative shifts in steps 2 and 3. The details of

the process of shifting, sequence alignment and assess-

ment of sequence for insertions and deletions in the

positional matrix representation model have been pro-

vided in the section 2. In step 4, the universal cluster is

scanned using evolutionary algorithm ACERAM [12] to

search for the best match score. The step 4 returns the

best pair-wise sequence alignment with the highest match

score and the last step 5 displays the finalized sequence

alignment. The proposed algorithm has been detailed out

below.

Figure 1. Flowchart for MPSAGA algorithm.
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2.3 Matrix based pair-wise sequence alignment

algorithm for global alignment (MPSAGA)

Input

Two Sequences S1 and S2 to be aligned of M and N

lengths, respectively

Parameters

Range of Shift Parameter – (-N to ?N)

Match Reward = ?1

Mismatch penalty = - 1, if the substitution is of purine to

purine (A?G or G?A transition) or pyrimidine to

pyrimidine (C? T or T?C transition) and mismatch

penalty will be = - 2, if the substitution is purine to

pyrimidine (A? C, A?T, G?C, or G? T transversion) or

pyrimidine to purine (C?A, C?G, T?A or T?G

transversion). One can use predefined similarity matrix like

dnaall, PAM or BLOSUM for deciding match reward and

mismatch panelty.

Output

An optimal sequence alignment and the formation of

universal cluster for the population of auto evolved pair-

wise sequence alignments as per their match scores

(optional).

Step 1 [Initializes positional Matrix (PMs) for S1 and S2]

Two sequences are given here:

S1 = {s11, s12 .., s1M}

S2 = {s21, s22 .., s2N}

Declare PM1 and PM2 for S1 and S2. PM1 and PM2 are

dynamic clusters represented as a matrix having four rows

of the A, G, C and T nucleotides with dynamic number of

columns. Positions of nucleotides in the sequence will be

stored in PM. PM1 and PM2 are represented in figure 4.

Figure 2. The process of shifting during pair-wise sequence alignment by MPSAGA. The process starts with aligning sequences

without any shift (shift = 0) and the match-score is calculated. Thereafter, other possible alignments are generated by the proposed

algorithm by shifting base pair in sequence1 one by one until the last base pair. This shifting can be performed from left (shift = -1) or

right (shift = ?1) which give rises to a new possible alignment. In each case the match score of the new possible alignment is calculated.

All possible alignments of a sequence pair due to shifting process have been shown.
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Step 1.1 [positional matrix (PM) based sequence repre-

sentation of S1 and S2]

Scan S1 to initialize PM1

For i= 0 to M

Read S1[i]

If S1[i] = = ‘A’ then 

PM1[0]=i

End if 

If S1[i] = = ‘G’ then 

PM1[1]=i

End If

If S1[i] = = ‘C’ then 

PM1[2]=i

End if 

` If S1[i] = = ‘T’ then 

PM1[3]=i

End If

Repeat this same process to initialize PM2.

Step 2 [Find match score for alignment of PM1 and PM2

without gap and without shift]

Step 2.1 For each row(i) in PM1 and PM2

Step 2.2 For each column(j) in PM1 and PM2

Match the values of PM1[i][j] and If there exists a match

Match_count??

Step 2.3 Find the total Match_count of each row

Step 2.4 Find the total Match_count for the complete

alignment by adding Match_count of each row

Step 2.5 Insert the entries in Match_index matrix

[Match_index matrix is the similarity matrix for universal

cluster storing all possible pair-wise alignments]

Step 3 [Find Match score for alignment of PM1 and PM2

with shifts]

Step 3.1 Find the possible alignments for shift parameter

from 1 to n-2 (positive shift) and -1 to -n-2 (negative

shift)

For each value of shift parameter

For each value in PM2

Increment each value of PM2 by shift parameter

Step 3.2 Perform match by following all sub steps given

in step 2 and insert it in Match_index matrix

Step 4 [Find best alignment of sequences S1 and S2]

To find the best alignment, scan and evolve the universal

cluster and find an alignment with maximum Match_score

Step 4.1 [Calculate final score of possible alignments]

For all rows(i) in Match_index

Calculate Final_Match_score = Match_score -Mis-

s_Matches

Insert Final_Match_score in Match_index[i][0]

Step 4.2 [Find best alignment by comparing Match_-

scores]

Call sort_within_cluster(sort_clusters())

Step 5 Print/Return best alignment

End of the Algorithm

2.4 Space and time complexities

The Needleman–Wunsch algorithm aligns two biological

sequences of sizes n and m in a matrix of n x m whereas the

proposed algorithm MPSAGA stores sequences in a posi-

tional matrix format. For biological sequences like DNA or

RNA, the number of rows in a positional matrix is fixed as

4 and for the protein sequences, based on the number of

amino acids, it is fixed as 21. Therefore, the space com-

plexity of a DNA or RNA sequence can be expressed as 4 x

maximum frequency of occurrence of one nucleotide. As

expected, which is much less than the space complexity in

Needleman–Wunsch algorithm. Thus, the proposed posi-

tional matrix sequence representation method of MPSAGA

algorithm is useful in performing sequence comparisons

and alignment tasks in a relatively shorter time than the

conventional string method. The empirical study performed

in the present work to compare the string method and the

proposed PM method for sequence representation also

suggests that up to *84% execution time can be saved in

the pair-wise sequence alignment using the PM method.

The time complexity of a sequence alignment using the

string method is expressed as O(n2) whereas in the pro-

posed PM method, it is expressed as O(min(m,n)*(n-shift)).

The advantage of using conventional string representation

method is its simplicity and its nature of representing bio-

logical sequences as a continuous string of monomers but it

is important to note here that the process of pair-wise

alignment of longer sequences using this method is very

 

A    A    G    C    C    T    T    A    G    C
0      1     2     3     4     5    6     7     8      9

A 0 1 7

G 2 8

C 3 4 9

T 5 6

Figure 3. Positional Matrix (PM) representation of a biological

sequence S1.
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complicated that leads to extended execution time.

Whereas, the proposed PM method converts each nucleo-

tide in a pair of biological sequence in a numerical matrix

(positional matrix) first which is relatively simpler and less

bulky for a computational system to analyze and execute.

Moreover, the PM method reduces effectively the time

complexity of pair-wise sequence alignment of long and

complex biological sequences.

3. Positional matrix representation model

In positional matrix representation, a sequence is repre-

sented as a special matrix called Positional Matrix (PM).

Positional matrix contains the number of rows as per the

number of building blocks (nucleotides/amino acids) in the

sequence such as 4 rows of DNA for storing positions of 4

nucleotides (A,G,C,T), 4 rows for (A,G,C,U) in RNA

sequence and 20 rows for protein sequence (for each amino

acid). One additional row could be allotted for gapped

alignments. Figure 3 is a positional matrix (PM) represen-

tation of a sequence S1. It is clear that nucleotide A is

present at three positions (0, 1 and 7), G is present at two

positions (2 and 8), C is present at three positions (3, 4 and

9) and T is present at two positions (5 and 6). Thus, PM

based sequence representation reduces the space complex-

ity of the proposed MPSAGA.

3.1 Procedure to use PM representation

for sequence alignment

The proposed algorithm uses PM to represent sequences

and scans the two sequences under investigation at once in

the complete algorithm.

The two sequences are

S1 = AGTCAGGCCT

S2 = AGCTCACGCT

The sequence alignment matrix for S1 and S2 are PM1

and PM2 respectively, and are presented in figure 4.

3.2 To calculate matching score using PM

The matching score is calculated by scanning the PM

indexes. If the PM1 and PM2 values at any index are same

then it is a match. In the above example, there are four

matches at A1[0] and A2[0], G1[0] and G2[1], C1[2] and

C2[4] and T1[1] and T2[1]. Hence the matching score is 4.

3.3 To implement positive shifting in PM

To implement positive shifting (right shift) in the align-

ment, one has to just add shifting index in each value of

PM2 from 0 to N. For example, the ?1 shift in S2 can be

calculated as shown in figure 5. S2 sequence has only 0–9

indexes therefore T2[1] = 10 is limit out and can be elim-

inated in overlapped sequence alignments from the further

processing. The complete process is shown in figure 6.

3.4 To implement gaps in PM

If gap is considered in the alignments the sequence align-

ment of the positional matrix will be

S2 =_ AGCTCACGCT

And if, gap exists, then it will be a matter of gap penalty

(Figure 7). Gaps are not permitted in the proposed algo-

rithm, but represented here for the sake of clarity of the

procedure.

3.5 To implement insertions and deletions in PM

Insertions and deletions by point mutations and exchange of

nucleotides in DNA sequences are common in nature. To

implement insertions and deletions (in-del) the proposed

method accepts maximum two insertions or deletions. Each

base in the first sequences is scanned and checked for its

match in the opposite, second sequence with -2, -1, 1, ?1

or ?2 possibilities. If there is no match, then the insertion

and deletion is possible. Figure 8a shows a perfect base pair

match at position 0 between S1 and S2. Therefore, no shift

or in-del is required and the match score will remain 4. So

no change will be made in PM1 and PM2. At position 1, G

nucleotide in both S1 and S2 is a direct match; therefore no

in-del is required here at this position. PM1 and PM2 will

Figure 5. A positive shift in sequence S2.

Figure 4. Positional Matrix (PM) representation of a biological

sequence S1 and S2.
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remain the same at this point. The match score will remain

4 in this position (figure 8(b)). At position 2 of S1 and S2,

there is no direct base pair match. Nucleotide T at position

3 in S2 can be matched with nucleotide T at position 2 in S1

and hence there is an exchange. The process of exchange of

nucleotide T in position matrixes of sequences S1 and S2 is

shown in figure 8c. After this step there are total 6 base pair

matches in S1 and S2 sequences. As the exchange operator

is used for this step, the final match score will be the match

score – cost of exchange operator (2 i.e., a default value).

Therefore, the final match score will be 4 after this step.

There is a direct match again at position 3, therefore no

change is required and the match score will remain 4

(figure 8(d)). The process of base pair alignment at position

4 is shown in figure 8e. Because there is no direct match at

this position and an exchange will occur from C to A,

therefore the match score will become 7. The exchange

penalty is -2, hence the match score will be 5. In this way,

the MPSAGA will process all the base pairs till position 9

to achieve the best possible alignment between S1 and S2.

The final pair of aligned sequences is shown in figure 8f

with all possible 9 base pair matches between the two

sequences.

4. Empirical study

4.1 Data collection

Forty two pairs of sequences were randomly selected and

downloaded from NCBI (National Center for

Biotechnology Information) nucleotide database. These

pairs of sequences vary in length (table 1).

4.2 Experimental set-up

The experiment was performed on Pentium� Dual Core

CPU T4300 @ 2.10 GHz, 4 GB RAM and Windows 7, 64

bit platform. The proposed algorithm was implemented and

executed using Java 8 on Eclipse Mars IDE. The algorithm,

MPSAGA is available in public domain at https://github.

com/JyotiLakhani1/MPSAGA and the snapshot of its exe-

cution has been provided in supplementary material as

Appendix A. The classical pair-wise algorithm, Needle-

man–Wunsch algorithm was treated as a control and has

been implemented on eclipse using Java8 with plug-in of

Figure 6. Positive shifting in position based matrix from index 0 to 9.

Figure 7. Positional Matrix (PM) representation of sequence 2

with gaps.
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Figure 8. The process of pair-wise sequence alignment by MPSAGA using positional matrix representation. S1 and S2 sequences have

been shown in string as well as in positional matrix representation. The sequence alignment is executed by MPSAGA by comparing each

base of S1 from left to right to the bases in S2 located opposite to it. If match is not found, it performs insertion or deletion or exchange

operation for the best possible sequence alignment. The match score is 4 initially (4 base pair match). (a) At first, the position i in S1 (that

is base A) is compared with i?2 to i-2 positions in S2. i-1 and i-2 positions do not exist this time. There is a direct match at i position

for base A in S1 and S2. No comparison for this position will be performed and the match score will remain 4. (b) The second base G

(position 1) in S1 is compared with A, G, C, T bases at i-1, i, i?1, i?2. There is also a direct match at position 1 (G to G), therefore, the

match score will remain 4. (c) The base T at position 2 in S1 is compared with S2 for the same position and there is no direct match and

hence MPSAGA process positions i-2. i-1, i, i?1, i?2 for sequence alignment. There is a match at i?1 position, hence C in S2 is

exchanged with T in S2. The match score will turn 6 but there will be an exchange penalty of -2, consequently the match score will

remain 4. (d) There is a direct match at position 3. (e) At position 4, base A in S1 is compared with S2 for the same position. Since there

is no direct match again there will an exchange at position i?1 from C to A and the match score becomes 7. The exchange penalty is -2,

hence the match score will reduce to 5 and so on (f) MPSAGA will process all the base pairs till position 9 for the best possible alignment

between S1 and S2, the final pairwise sequence alignment of S1 and S2 has been provided.
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biojava4.0.0 with the help of maven and ant tools. The

proposed algorithm has also been compared with other

global pair-wise alignment tools. Forty two pairs of

sequences were converted to the proposed PM based format

for data representation.

4.3 Parameter set-up

Following parameters were used to perform the experi-

ments in the present study to implement MPSAGA, The

parameters and their default values are furnished in the

discussion part. The Range of shift parameter = -N to ?N,

Shifting = true, gap = 0, Match Reward = ?1, Mismatch

Penalty = -1 for transitions (substitution of Purine [
Purine (A to G or G to A) or Pyrimidine?Pyrimidine (C to

T or T to C)), Mismatch Penalty = -2 for transversions

(substitutions of Purine to Pyrimidine (A to C, A to T, G to

C or G to T) or Pyrimidine to Purine (C to A, T to A, C to G

or T to G)). Here A, G, C, and T are Adenine, Guanine,

Cytosine, and Guanine, respectively. Other parameters are

Insertion deletion penalty = -1, Threshold = no limit by

default, Distance measure= Hamming distance. The Ham-

ming score has been used to find out the match score where

only matches and mismatches are considered.

Table 1. NCBI sequence IDs and the size of forty two pairs of sequences.

Sl. No. Sequence1 Size of Seq1 Sequence2 Size of Seq2

P1 FR850916.1 181 FR850691.1 153

P2 FN432372.1 1050 FN432373.1 1034

P3 L06042.1 9597 NC_001802.1 9181

P4 JX650235.1 600 JX650236.1 602

P5 Y00277.1 9646 M80208.1 1461

P6 X57323.1 808 X06879.1 1142

P7 X57323.1 808 L06042.1 9597

P8 X57323.1 808 X07805.1 9170

P9 X57323.1 808 M80208.1 1461

P10 X57323.1 808 Y00277.1 9646

P11 X57323.1 808 X07805.1 9170

P12 X57323.1 808 M80208.1 1461

P13 X06879.1 1142 L06042.1 9597

P14 X06879.1 1142 Y00277.1 9646

P15 X06879.1 1142 M80208.1 1461

P16 X06879.1 1142 X07805.1 9170

P18 L06042.1 9597 M80208.1 1461

P19 L06042.1 9597 Y00277.1 9646

P21 Y00277.1 9646 M80208.1 1461

P22 X07805.1 9170 M80208.1 1461

P24 M80208.1 1461 Y00277.1 9646

P25 M80208.1 1461 X07805.1 9170

P26 I03176.1 99 I03178.1 102

P27 KC506162.1 2384 KC506163.1 2246

P28 JX985678.1 366 JX985681.1 345

P29 HQ711856.1 339 HQ711857.1 339

P30 HM856336.1 732 HM856337.1 732

P31 KU708253.1 2381 KU708254.1 2200

P32 KU159362.1 6840 KU159363.1 7030

P33 KU159363.1 7030 KU159357.1 7271

P34 EF591314.1 1575 EF591316.1 1572

P35 JX129454.1 1009 JX129455.1 1027

P36 JX129464.1 906 JX129465.1 907

P37 KM206982.1 1260 KM206949.1 1257

P38 U10689.1 4741 U10690.1 4736

P39 L31857.1 1451 L31858.1 1443

P40 L11083.1 1746 K00490.1 1696

P41 FJ716745.1 1521 AB762357.1 1630

P42 GQ892202.1 1049 GQ892203.1 1048
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5. Complexity analyses

Suppose S1 and S2 are sequences of size m and n respec-

tively. S1 is the query sequence which is to be aligned with

the sequence S2. Initially, the sequence pair S1 and S2 will

be aligned by MPSAGA aligner without any shift, therefore

the complexity of alignment for this step will be min (m,n).

In the next step, the algorithm scans S1 and S2 from the left

to the right by shifting and pairing nucleotides in the

sequence pair. At this point, the complexity will be

dependent on the actual size of sequence alignment which

is -

Size of S2-shift parameter = (n- no of shifts)

So the complexity of this algorithm will be min(m,n)*(n-

shift).

For example-

Without shift-

0123456789 (index)

S1: ********** (size = m = 10)

S2: ******** (size = n = 8)

Alignment length = min(m,n) = 8

In further steps-

After 3 negative shifts-

0123456789 (index)

S1: ********** (size = m = 10)

S2:******** (size = n = 8)

Alignment length = n-shift = 8-3 = 5

6. Results

The experiments performed in the present research had

three main objectives. The first objective was to test the

effectiveness of the proposed algorithm. The second

objective was to perform time and space complexity anal-

ysis using MPSAGA and other algorithms and the third

objective was to test the Position Matrix based represen-

tation model. To address the first one, Needleman–Wunsch

algorithm, nBLAST [28–30] and the proposed MPSAGA

were compared to find out the best global pair-wise align-

ment algorithm with respect to the execution time. nBlast

algorithm is a popular tool to achieve the optimal results.

We have used nBLAST (online tool) with parameters set-

ting such as match = ?1, mismatch = -1 to get the optimal

alignment. We have discussed this earlier that the online

tools work faster than the local tools because they are

located on the high configuration servers. Three other

global pair-wise algorithms that are Emboss-Needle,

ALIGN and LALIGN were also tested for 10 randomly

selected sequence pairs (table 1). The result indicated that

the MPSAGA executed pair-wise sequence alignment

much faster with no gaps than the Needleman–Wunsch

algorithm and nBLAST. The result of one such execution is

being described here. A pair-wise global alignment of two

nucleotide sequences of Rhizobium leguminosarum partial

nifH gene of nitrogenase Fe protein is given in table 2

(Sequence 1 ID = FR850916.1 for strain R46098 (181 base

pair long) and Sequence2 ID- FR850691.1 for strain

R45920 (153 base pair long)). On execution of three dif-

ferent algorithms for S1 and S2 pair-wise sequence align-

ment, MPSAGA effectively outcompeted Needleman–

Wunsch and noblest algorithms (please see table 2). The

nBLAST also yielded the equivalent result, but with 36

number of gaps from location 2 to 37. Thus, it can be stated

that as compared to Needleman–Wunsch algorithm (340

ms) and nBLAST, the best sequence alignment in minimum

execution time can be achieved using MPSAGA (24 ms).

It is inappropriate to calculate the time taken by nBLAST

because the nBLAST is an online tool and the time taken by

nBLAST to align two sequences may also include delays

due to the network and server connectivity. To find out the

significance level of MPSAGA relative to Needleman-

Wunsch, nBLAST, Emboss-Needle, ALIGN and a

LALIGN algorithm, a normal distribution of their z score

has been provided that clearly underlines MPSAGA for its

statistically fit identity (figure 9). The atypical result with

nBLAST may be attributed to the un-gapped cases con-

sidered in the present experiment while nBLAST is created

Table 2. Comparison of time complexity of three algorithms for a pair-wise global alignment of two nucleotide sequences of Rhi-

zobium leguminosarum partial nifh genes for nitrogenase fe protein.

Algorithms Parameters Used No. of Match No. of Mismatch No. of Gap Shift Shift Offset Match Score Execution Time

MPSAGA match = ?l 137 49 – ?1 36 88 24

mismatch = -1 milliseconds

gap = no gap

Match

Score = Hamm

ing Score

nBLAST match = ?l 137 13 36 ?1 0 81 –

mismatch = -1

gap = no gap

Needleman – 137 – – ?1 36 – 340

–Wunsch milliseconds
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to provide alignment of sequences having gaps. The present

results of sequence alignment using the above algorithms

confirm that the best possible pair-wise sequence alignment

is achieved in a relatively small time using MPSAGA.

These results clearly indicate that the proposed algorithm is

capable of finding the best sequence alignment as same as

the most popular algorithm Needleman–Wunsch algorithm

finds. To address the second objective to compare the space

and time complexities of the proposed algorithm, 45 runs of

MPSAGA and NW- Blast algorithms were executed for the

paired sequences listed in table 1. The output has been

given in figure 10. The majority of times MPSAGA out-

performed than the Needleman–Wunsch algorithm, but for

a few of the sequence pairs, the performance of both of the

algorithms was same. It is important to note that good

algorithms execute pair-wise sequence alignment with

minimum space and time complexities. To comprehend

these results more fully, we performed another evaluation

of these two algorithms in relation to the size of paired

sequences. We also tried to find out the relation between the

number of identical pairs and the number of gaps inserted

in the sequence for effective pairing by NW-Blast algo-

rithm. To perform this evaluation, three clusters of

sequences were created according to the size of Sequence 1

(figure 11). The cluster 1 represents sequences with

0\size\1000 base pairs. The cluster 2 represents sequences

with 1000\size\5000 base pairs and finally the cluster 3

represents sequences with 5000\size\10000 base pairs. To

mention here, MPSAGA is a un-gapped algorithm, whereas

NW-Blast (Needleman–Wunsch Blast) algorithm include

gaps in a sequence when aligning a pair of sequence.

Figure 11a clearly indicates that highest match (identity)

for a pair of similar sized sequences was observed with

MPSAGA followed by NW-Blast algorithm. After P28

sequence pair (figure 11(a)), on x axis, the performance of

MPSAGA is declining. The reason for this observation can

be attributed to the difference of size between the two

sequences and the incorporation of gaps by NW-Blast

algorithm that has a clear impact on the output (number of

matches) (figure 11(b)). It is noteworthy that NW-Blast is

inserting gaps to justify the unmatched alignment and size

differences otherwise the identical matches in NW-Blast

and MPSAGA algorithms are comparable. For middle sized

sequences, there was no much difference in the output for

the two algorithms (figure 11(c) and (d)). A very dramatic

relationship was seen in the long sequences (fig-

ure 11(e) and (f)) It is highly likely that gaps are inserted

here by NW-Blast for effective alignment. But the results

clearly revealed that with increase in sequence size,

MPSAGA still performs nicely (11(e)). However, the

complexity increases with the inserted gaps because

MPSAGA is restricted to perform sequence alignments

having no gaps (11(f)).

Figure 10. A direct comparison of Needleman–Wunsch and MPSAGA algorithms.
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Figure 9. Distribution of z-scores for MPSAGA and four other

global pair-wise sequence alignment algorithms.
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In a separate experiment, additional 932 pairs of random

nucleotide sequences with varied length and similarity were

pair-wise aligned using MPSAGA with the same

parameters as these were used in the above mentioned

analysis. The detail of these 932 nucleotide sequences has

been provided in supplementary material as Appendix B.

Figure 11. Comparison of outputs of Needleman–Wunsch and MPSAGA algorithms. (a) Sequence1 with size\1000 bp. (b)With relation

to inserted gaps in in sequence1 with size\1000 bp. (c) Sequence1 with 5000 bp[size\1000bp. (d) With relation to gap in sequence1 with

5000 bp\size\=1000 bp. (e) Sequence1 with 10000\=size[5000 bp. (f) With relation to gap in sequence1 with 10000\=size[5000 bp.
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All 932 pairs of nucleotide sequences were clustered on the

basis of the size of sequence 1 where the cluster 1 repre-

sents 649 sequences with 0\size\1000 base pairs. The

cluster 2 represents 257 sequences with 1000\size\5000

base pairs and the cluster 3 represents 26 sequences with

5000\size\10000 base pairs. The results from the analysis

have been presented in figures 12a–c. It is clear from this

observation too that performing pair-wise sequence align-

ment using MPSAGA is relatively faster than the Needle-

man–Wunsch algorithm. The pivot analysis of the three

different clusters of nucleotide sequences and their average

run time taken in executing pair-wise sequence alignment

also establishes the dominance of MPSAGA over Needle-

man–Wunsch algorithm (13(a–c)).

To address the final objective, that is to see the effec-

tiveness of the proposed novel PM representation, sequence

alignment was represented as string and PM using

MPSAGA. The experiment was implemented in Java on

Mars version of the Eclipse platform. Forty two pairs of

sequences (table 1) were used to perform this experiment.

Execution time of MPSAGA with PM as well as with the

conventional string method of sequence representation was

compared for three clusters of sequences where the cluster 1

represents sequences with 0\size\1000 base pairs. The

cluster 2 represents the sequence with 1000\size\5000 base

pairs and finally the cluster 3 represents the sequence with

5000\size\10000 base pairs. The output of this experiment

is shown for these three clusters in figures 14a–c. The

algorithm, MPSAGA when executed with PM takes more

time to analyze small sized sequences of cluster 1 (fig-

ure 14(a)). The reason for this observation may be attributed

to the high overhead cost of converting cluster 1 (pairs of

short sequences) to PM as compared to processing the small

strings. And it could be that the conversion of cluster 2 and 3

in PM and its associated overhead cost is compensated to the

process of analyzing complex and long string sequences by

MPSAGA. But as shown in figure 14(b) and (c), it is clear
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that the performance of MPSAGA with PM based sequence

representation of clusters 2 and 3 is much more superior to

the string representation.

7. Conclusions

The proposed algorithm for pair-wise sequence alignment

using a novel positional matrix representation represents a

more committed way to analyze biological sequences. The

blend of the proposed MPSAGA with position based rep-

resentation is intrinsically simple to execute and is capable

of reducing the space and time complexity issues of pre-

vious algorithms significantly. The algorithm, MPSAGA

results in the fast pair-wise sequence alignment with the

same number of matching base pairs comparable to

Needleman–Wunsch and other algorithms. In addition,

observations also strengthen the fact that MPSAGA is

competent enough to find the best possible pair-wise

sequence alignment results as same as observed using

nBLAST algorithm. The algorithm, MPSAGA executed

pair-wise sequence alignment in 18.348% less time when

compared to Needleman–Wunsch algorithm in the same

experiment. The best possible sequence alignment similar

to Needleman–Wunsch algorithm for un-gapped pairing

was observed using MPSAGA. The experiments pertaining

to the utility of MPSAGA with and without PM based

representation of sequences suggest that there is a strong

positive correlation between the size of the sequences and

the performance of MPSAGA. The evidence from con-

cluding experiments also supports that MPSAGA with

positional matrix sequence representation is the best

approach to align small, middle and long-sized biological

sequences and highly sustainable to reduce the time and

space complexities associated with earlier algorithms. The

proposed algorithm MPSAGA, when compared with

nBLAST with the same number of matching pairs, except

gaps, exhibited the best possible sequence alignment

results. The proposed algorithm can be applied to biological

sequence analysis problems where the exact match between

two sequences is required, such as in gene searches and in

finding protein motifs. The algorithm can also be used for

natural language processing for phrase alignment, text

summarization, etc. Similarly, the positional matrix repre-

sentation may be used in cryptography for message

encryption and decryption. The improvisation of the pro-

posed algorithm in relation to the larger sequences with

gaps is the subject of future study.
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