
Algorithmica (2011) 60: 806–818
DOI 10.1007/s00453-009-9369-1

Linear Time Algorithms for Generalizations
of the Longest Common Substring Problem

Michael Arnold · Enno Ohlebusch

Received: 8 August 2008 / Accepted: 15 October 2009 / Published online: 27 October 2009
© Springer Science+Business Media, LLC 2009

Abstract In its simplest form, the longest common substring problem is to find
a longest substring common to two or multiple strings. Using (generalized) suffix
trees, this problem can be solved in linear time and space. A first generalization
is the k-common substring problem: Given m strings of total length n, for all k

with 2 ≤ k ≤ m simultaneously find a longest substring common to at least k of
the strings. It is known that the k-common substring problem can also be solved in
O(n) time (Hui in Proc. 3rd Annual Symposium on Combinatorial Pattern Matching,
volume 644 of Lecture Notes in Computer Science, pp. 230–243, Springer, Berlin,
1992). A further generalization is the k-common repeated substring problem: Given
m strings T (1), T (2), . . . , T (m) of total length n and m positive integers x1, . . . , xm,
for all k with 1 ≤ k ≤ m simultaneously find a longest string ω for which there are at
least k strings T (i1), T (i2), . . . , T (ik) (1 ≤ i1 < i2 < · · · < ik ≤ m) such that ω occurs
at least xij times in T (ij) for each j with 1 ≤ j ≤ k. (For x1 = · · · = xm = 1, we have
the k-common substring problem.) In this paper, we present the first O(n) time algo-
rithm for the k-common repeated substring problem. Our solution is based on a new
linear time algorithm for the k-common substring problem.

Keywords Suffix arrays · Longest common substring · Longest common repeat ·
String mining · Repeat analysis

M. Arnold
Capgemini sd&m AG, Löffelstraße 46, 70597 Stuttgart, Germany
e-mail: michael.arnold@capgemini-sdm.com

E. Ohlebusch (�)
Institute of Theoretical Computer Science, University of Ulm, 89069 Ulm, Germany
e-mail: enno.ohlebusch@uni-ulm.de

mailto:michael.arnold@capgemini-sdm.com
mailto:enno.ohlebusch@uni-ulm.de

Algorithmica (2011) 60: 806–818 807

1 Introduction

The longest common substring problem is a classic problem in string analysis. In
1970 the famous computer scientist Donald E. Knuth conjectured that a linear time
algorithm for this problem would be impossible [2–4]. To the retrieval of his honor,
it should be stressed that the first linear time construction algorithm of suffix trees [5]
became known years after he made the conjecture. In fact, given that knowledge of
suffix trees, a solution to the longest common substring problem is almost trivial; see
e.g. [4, Sect. 7.4].

Given m strings T (1), T (2), . . . , T (m) of total length n, a simple O(m · n) time
solution to the k-common substring problem can be obtained by a bottom-up traversal
of the generalized suffix tree T of T (1), T (2), . . . , T (m); see e.g. [4, Sect. 7.7]. Hui [1]
showed that one can even get rid of the m-factor. More precisely, he gave an O(n)

time solution to the problem based on constant time lca (longest common ancestor)
computations in T ; see e.g. [4, Sect. 9.7] for details.

In this paper, we study the k-common repeated substring problem. This prob-
lem can also be solved in O(m · n) time by a bottom-up traversal of the generalized
suffix tree of T (1), T (2), . . . , T (m), but our goal is to solve it in optimal O(n) time.
(Note that Hui’s technique [1] cannot be applied here.) Partial results in this direc-
tion were obtained by Lee et al. [6] and Lee and Pinzon [7]. In [6], a linear time
algorithm is presented that solves the k-common repeated substring problem for the
special case x1 = · · · = xm = 2. In other words, the number of times a repeated sub-
string should appear is fixed to 2 in each of the strings and cannot be set individu-
ally. Lee [7] mentions two drawbacks of this algorithm: It is not easy to implement
and it is not memory-efficient. In [7] a linear time algorithm is presented that solves
the following special case of the k-common repeated substring problem: Given m

strings T (1), T (2), . . . , T (m) of total length n and m positive integers x1, . . . , xm, for
a fixed k with 1 ≤ k ≤ m find a longest string ω for which there are at least k strings
T (i1), T (i2), . . . , T (ik) (1 ≤ i1 < i2 < · · · < ik ≤ m) such that ω occurs at least xij

times in T (ij) for each j with 1 ≤ j ≤ k. Consequently, if we would use this al-
gorithm to solve the k-common repeated substring problem, we would have to run
the algorithm m times (once for each k, where 1 ≤ k ≤ m). Obviously, the resulting
worst-case time complexity would be O(m · n). Here, we present the first O(n) time
algorithm for the k-common repeated substring problem. Our solution is based on the
generalized enhanced suffix array of T (1), T (2), . . . , T (m). For ease of presentation,
we use constant time range minimum queries (RMQs) in certain subproblems, but the
algorithms can be implemented without these.

2 Preliminaries

Let � be a finite ordered alphabet and let T be a string (also called text) of length
|T | = n over �. For 1 ≤ i ≤ n, T [i] denotes the character at position i in T . For
i ≤ j , T [i..j] denotes the substring of T starting with the character at position i and
ending with the character at position j . Furthermore, for 1 ≤ i ≤ n, Ti denotes the ith
suffix T [i..n] of T .

808 Algorithmica (2011) 60: 806–818

i SA[i] SA−1[i] LCP[i] TSA[i] T #
SA[i] text[i]

1 5 9 0 #1aac#2caac#3 #1 1
2 9 14 0 #2caac#3 #2 2
3 14 6 0 #3 #3 3
4 6 10 0 aac#2caac#3 aac#2 2
5 11 1 3 aac#3 aac#3 3
6 3 4 1 ac#1aac#2caac#3 ac#1 1
7 7 7 2 ac#2caac#3 ac#2 2
8 12 11 2 ac#3 ac#3 3
9 1 2 2 acac#1aac#2caac#3 acac#1 1

10 4 13 0 c#1aac#2caac#3 c#1 1
11 8 5 1 c#2caac#3 c#2 2
12 13 8 1 c#3 c#3 3
13 10 12 1 caac#3 caac#3 3
14 2 3 2 cac#1aac#2caac#3 cac#1 1

Fig. 1 The enhanced suffix array of the text T = acac#1aac#2caac#3 coincides with the generalized
enhanced suffix array of the texts acac, aac, and caac

The suffix array SA of the string T is an array of integers in the range 1 to n, spec-
ifying the lexicographic ordering of the n suffixes of the string T ; see Fig. 1. That is,
TSA[1], TSA[2], . . . , TSA[n] is the sequence of suffixes of T in ascending lexicographic
order. The suffix array can be constructed in linear time [8–10]. The inverse suffix
array SA−1 is an array of size n such that SA−1[SA[i]] = i for each i with 1 ≤ i ≤ n;
see Fig. 1. Obviously, the inverse suffix array can be constructed in linear time from
the suffix array.

The lcp-array LCP is an array containing the lengths of the longest common pre-
fix between every pair of consecutive suffixes in SA. We use lcp(u, v) to denote
the length of the longest common prefix between strings u and v. Thus, the lcp-
array is an array of integers in the range 1 to n such that LCP[1] = 0 and LCP[i] =
lcp(TSA[i−1], TSA[i]) for 2 ≤ i ≤ n; see Fig. 1. The lcp-array can be computed in linear
time from the suffix array and its inverse [11]. Because suffixes appear in lexicograph-
ical order in the suffix array, the equality lcp(TSA[p], TSA[q]) = minp<l≤q{LCP[l]}
holds for all indices p and q with 1 ≤ p < q ≤ n. The value lcp(TSA[p], TSA[q]) can
be computed in constant time, after a linear time preprocessing of the lcp-array. To
be precise, after the preprocessing, so-called range minimum queries of the form
RMQ(p, q) = arg minp≤l≤q{LCP[l]} can be answered in constant time [12, 13] and
lcp(TSA[p], TSA[q]) = LCP(RMQ(p + 1, q)). For instance, in the example of Fig. 1,
lcp(TSA[4], TSA[9]) is found by the range minimum query RMQ(5,9) = 6 and the table
look-up LCP[6] = 1.

Let T (1), T (2), . . . , T (m) be texts of sizes n1, n2, . . . , nm, respectively. The gen-
eralized suffix array of these texts is an array specifying the lexicographic ordering
of all suffixes of the strings T (1)#1, T

(2)#2, . . . , T
(m)#m, where the #j , 1 ≤ j ≤ m,

are pairwise distinct separator symbols that do not occur in any of the strings.
We assume that #1 < #2 < · · · < #m and all other characters in the alphabet �

are larger than the separator symbols. It is not difficult to see that—with respect

Algorithmica (2011) 60: 806–818 809

to the resulting lexicographic ordering—the suffix array of the concatenated string
T = T (1)#1T

(2)#2 . . . T (m)#m (which is of size n = m + ∑m
l=1 nl) coincides with the

generalized suffix array of T (1), T (2), . . . , T (m); see Fig. 1.
The text array corresponding to a generalized suffix array is an array of integers

in the range 1 to n. It is defined for 1 ≤ i ≤ n by text[i] = j , where j is the number
of the text T (j) in which TSA[i] starts; see Fig. 1. The text array can be computed in
linear time from the inverse suffix array as follows. For all j with 1 ≤ j ≤ m and all
i with j + ∑j−1

l=1 nl ≤ i ≤ j + ∑j

l=1 nl set text[SA−1[i]] = j .
For a suffix TSA[i] of T , the prefix of TSA[i] that ends at the first separator symbol

is denoted by T #
SA[i]. More precisely, if suffix TSA[i] starts in text j (i.e., text[i] = j),

then T #
SA[i] = T [SA[i]..j + ∑j

l=1 nl]. In the following we identify TSA[i] with T #
SA[i].

That is, when we write TSA[i], we actually mean T #
SA[i].

The generalized suffix array of T (1), T (2), . . . , T (m) together with the correspond-
ing lcp-array and text array will be called the generalized enhanced suffix array of
T (1), T (2), . . . , T (m). As we have seen, it can be constructed in linear time.

3 The k Common Substring Problem

Given m strings T (1), T (2), . . . , T (m) such that T = T (1)#1T
(2)#2 . . . T (m)#m is of

length n, the k-common substring problem is to find for all k, 2 ≤ k ≤ m, a longest
substring common to at least k of the strings. In the following, for each k, let �k denote
the length of a longest string with this property. Our algorithms for this problem are
based on the following theorem.

Theorem 1 ω is a longest substring common to at least k strings if and only if there
exist indices p and q with 1 ≤ p < q ≤ n such that

1. |{text[p], text[p + 1], . . . , text[q]}| ≥ k,
2. ω is a common prefix of TSA[p], TSA[p+1], . . . , TSA[q] and lcp(TSA[p], TSA[q]) = |ω|,
3. LCP[p] < |ω| and LCP[q + 1] < |ω| hold true,1

4. |ω| = �k .

Proof “if”: (1) and (2) imply that ω is a substring common to at least k strings and
(4) implies that ω is a longest string with this property.

“only if”: If ω is a longest substring common to at least k strings, then
|ω| = �k and there are indices p′ and q ′ with 1 ≤ p′ < q ′ ≤ n such that |{text[p′],
text[p′+1], . . . , text[q ′]}| ≥ k, ω is a common prefix of TSA[p′], TSA[p′+1], . . . , TSA[q ′],
and lcp(TSA[p], TSA[q]) = |ω|. Let p be the largest index with p ≤ p′ and LCP[p] <

|ω|, and let q be the smallest index with q ′ ≤ q and LCP[q + 1] < |ω|. These indices
p and q satisfy (1)–(4). �

1In fact, we must also consider the boundary case q = n. To avoid the need of case distinctions like
“LCP[q + 1] < |ω| or q = n”, we add the entry LCP[n + 1] = 0 to the lcp-array.

810 Algorithmica (2011) 60: 806–818

Of course, we do not know �k . That is why we successively compute all strings
having properties (1)–(3) and keep track of the currently longest string with these
properties.

3.1 A Naive Solution

We use an array A of size m − 1 that stores for each k, 2 ≤ k ≤ m, a pair (lcs, idx),
where lcs is the length of a (currently) longest substring ω common to at least k

strings and idx is an index such that T [SA[idx]..SA[idx] + lcs − 1] = ω. In what fol-
lows, we denote the first and second component of an array element A[k] by A[k].lcs
and A[k].idx, respectively. Initially, A[k] = (0,⊥) for all k with 2 ≤ k ≤ m.

Moreover, we employ a doubly linked list consisting of exactly m elements. For
each text T (j), 1 ≤ j ≤ m, there is exactly one element in the list and a pointer
textptr[j] to that element. Furthermore, there is a pointer LV to the last element
in the list. (The name LV is an acronym for last visited because—as we shall see
later—LV points to the element that corresponds to the last visited index in the suf-
fix array.) Every element e in the list is a pair (lcp, idx), where lcp is an lcp-value
and idx is a position in the suffix array. We denote the first and second compo-
nent of a list element e by e.lcp and e.idx, respectively. Initially, the list has the
form [(0,1), (0,2), . . . , (0,m − 1), (|TSA[m]|,m)] and for all j , 1 ≤ j ≤ m, textptr[j]
points to the element with second component j . This is because the m lexico-
graphically smallest suffixes are #1,#2, . . . ,#m; cf. Fig. 1. Observe that |TSA[m]| =
|#m| = 1.

Our algorithm linearly scans the enhanced suffix array starting at index m+1, and
for each i with m + 1 ≤ i ≤ n, it first calls the procedure lcp_update with parameter
LCP[i] and then the procedure list_update with parameter i.

• lcp_update(LCP[i]) linearly scans the list from right-to-left (the rightmost element
can be found with the LV pointer) and compares the value e.lcp of the current
element e with LCP[i]. Suppose that e is the k-th element from right-to-left. If
e.lcp ≥ LCP[i], then we compare the (currently best) value A[k].lcs with e.lcp. In
case A[k].lcs ≤ e.lcp, we update A[k] by the assignment A[k] ← e. Furthermore,
in the case e.lcp > LCP[i], the value e.lcp is updated by the assignment e.lcp ←
LCP[i], and the next list element is considered. Otherwise (i.e., e.lcp < LCP[i])
the procedure stops the scan of the list.

• list_update(i) updates the list by standard list operations as follows. It deletes
the element to which textptr[text[i]] points from the list and adds a new element
(|TSA[i]|, i) at the end of the list. The pointers LV and textptr[text[i]] are updated
so that they both point to the added element.

After completion of the linear scan, a final procedure call lcp_update(0) ensures
that values which are still in the list are also taken into account. Figures 2 and 3
illustrate the algorithm for the example from Fig. 1.

Each execution of the procedure lcp_update takes O(m) time, while each exe-
cution of the procedure list_update takes constant time. Because these procedures
are called O(n) times, the worst-case time complexity of the naive algorithm is in
O(m · n).

Algorithmica (2011) 60: 806–818 811

Fig. 2 Left: List after i = 5 has been processed. The last suffixes of the texts 1, 2, and 3 are TSA[1] = #1,
TSA[4] = aac#2, and TSA[5] = aac#3. The longest common prefixes of these suffixes with TSA[i] have
length 0, 3, and 4. Furthermore, A[2] = A[3] = (0,⊥). Middle: In step i = 6, the function lcp_update is
called with lcp-value LCP[6] = 1 and the lcp-values of list elements are being updated. Moreover, A[2] is
set to (3,4). Right: List after the procedure call list_update(6)

Fig. 3 Left: List after i = 9 has been processed. Middle: In iteration i = 10, the function lcp_update
is called with lcp-value LCP[10] = 0 and A[3] is set to (2,7). Right: List after the procedure call
list_update(10)

We show that for each i with m ≤ i ≤ n the algorithm maintains the following
invariants:

1. The idx-values of the list elements are in strict ascending order (left-to-right).
2. If textptr[j] points to the element e, then text[e.idx] = j and text[p] �= j for all p

with e.idx < p ≤ i. In words, the element e to which textptr[j] points corresponds
to the last suffix seen so far that belongs to text T (j).

3. The lcp-values of the list elements are in ascending order (from left-to-right).
4. Each element e in the list satisfies e.lcp = lcp(TSA[e.idx], TSA[i]).
It is straightforward to verify that our algorithm maintains the invariants (1)–(3).
We prove by induction that the crucial property (4) is an invariant and use the fact
that for all indices p and q with 1 ≤ p < q ≤ n the equality lcp(TSA[p], TSA[q]) =
minp<l≤q{LCP[l]} holds true. For i = m property (4) holds. The induction hypothe-
sis states that after index i − 1 (where i − 1 ≥ m) has been considered, every element
e in the list satisfies e.lcp = lcp(TSA[e.idx], TSA[i−1]) = mine.idx<l≤i−1{LCP[l]}. After
the procedure call lcp_update(LCP[i]), we have

e.lcp = min{lcp(TSA[e.idx], TSA[i−1]),LCP[i]}
= min

e.idx<l≤i
{LCP[l]} = lcp(TSA[e.idx], TSA[i]).

Hence property (4) is satisfied. This is also true after the procedure call list_update(i)
because for the new element enew = (i, |TSA[i]|), we have enew.lcp = |TSA[i]| =
lcp(TSA[enew.idx], TSA[i]).

812 Algorithmica (2011) 60: 806–818

Theorem 2 The algorithm solves the k-common substring problem.

Proof Recall that �k denotes the length of a longest substring common to at least k

strings, where 2 ≤ k ≤ m. Furthermore, let q be the largest index for which there is
an index p, 1 ≤ p < q ≤ n, so that the suffixes TSA[p], TSA[p+1], . . . , TSA[q] have a
common prefix of length �k and |{text[p], text[p + 1], . . . , text[q]}| ≥ k. Because q

is the largest index with this property, it follows that LCP[q + 1] < �k . Now consider
the list before lcp_update(LCP[q + 1]) is called. By the fourth invariant, we know
that each element e in the list satisfies e.lcp = lcp(TSA[e.idx], TSA[q]). Let e′ be k-th el-
ement in the list (from right-to-left). As the suffixes TSA[p], TSA[p+1], . . . , TSA[q] have
a common prefix of length �k and |{text[p], text[p + 1], . . . , text[q]}| ≥ k, the first k

elements (from right-to-left) in the list have an lcp-value ≥ �k . Moreover, e′.lcp = �k

because otherwise there would be a longer substring common to k strings. Conse-
quently, when the procedure lcp_update(LCP[q + 1]) is called, A[k] is correctly up-
dated by A[k] ← e′. By the choice of index q , A[k] remains unchanged from that
point on. �

3.2 A Linear Time Solution

To obtain a linear time solution, we combine all elements of the doubly linked list
having the same lcp-value into intervals. This implies that every interval can be iden-
tified by its unique lcp-value. Because the lcp-values of the elements are in ascending
order (from left-to-right) in the list, it follows that the lcp-values of intervals are in
strict ascending order (from left-to-right) in the list. To represent intervals, each list
element now has the five components (lcp, idx,begin, end, size).

• begin: Pointer (from the last element of the interval) to the first element of the
interval.

• end: Pointer (from the first element of the interval) to the last element of the inter-
val.

• size: Number of elements in the interval.

The new components begin, end, and size are only relevant for the first and the
last element of an interval.

We can access all intervals by following the begin pointers as follows. We start
with the LV pointer and find the last element of the first interval I1 (from right-to-
left). Following the begin pointer of that last element, we reach the first element e1
of I1. Note that the size information can be used to compute the position k1 (from
right-to-left) of e1 in the list, namely k1 = e1.size. Then we find the element left to
it with the help of the usual links of the doubly linked list. This element is the last
element of the second interval I2 and we can reach the first element e2 of I2 by
following the begin pointer of the last element of I2. The position k2 (from right-to-
left) of e2 in the list is k2 = k1 + e2.size. In this way, we can proceed until all intervals
have been found.

It will also be necessary to access an interval of a certain lcp-value in constant
time. To this end, we use an array intptr[1..n] of interval pointers. To be precise,
intptr[j] points to the first element of the interval with lcp-value j .

Algorithmica (2011) 60: 806–818 813

Initially, the list contains the elements (0,1), (0,2), . . . , (0,m − 1), (|TSA[m]|,m)

divided into two intervals: The first m − 1 elements (from left-to-right) form an in-
terval and the second interval solely consists of the last element.

The linear time algorithm has the same structure as the naive algorithm. It satisfies
invariants (1)–(2), and invariants (3)–(4) for all elements that are the first element of
an interval. The algorithm linearly scans the enhanced suffix array starting at index
m + 1, and for each i with m + 1 ≤ i ≤ n, it first calls the procedure lcp_update and
then the procedure list_update.

• lcp_update(LCP[i]) linearly scans the list of intervals from right-to-left as de-
scribed above. Let e be the first element of the current interval and let k be its
position (from right-to-left) in the list. If e.lcp ≥ LCP[i], then we compare the
(currently best) value A[k].lcs with e.lcp. In case A[k].lcs ≤ e.lcp, we update A[k]
by the assignment A[k] ← (e.lcp, e.idx). Then the next interval (provided it exists)
is considered. If its lcp-value is greater than or equal to LCP[i], it will be set to
be the current interval and so on. Otherwise, if the lcp-value of the next interval is
strictly smaller than LCP[i], then e is the first element of a new interval with lcp-
value LCP[i] and size k. Consequently, we update these values by e.lcp ← LCP[i]
and e.size ← k. Furthermore, we set e.end ← e′ and e′.begin ← e, where e′ is the
last element of the list (LV points to it). Finally, the interval pointer intptr[LCP[i]]
must point to e and it is updated accordingly.

• list_update(i) deletes the element ẽ from the list to which textptr[text[i]] points.
However, this must be done with care. First, the size of the interval to which ẽ

belongs must be decreased by one. Second, if ẽ is the first or the last element
of its interval, then begin and end pointers must be modified accordingly. Nev-
ertheless, these updates can be done in constant time provided that the first and
last element of the interval to which ẽ belongs can be found in constant time.
According to invariant (4), this interval has lcp-value lcp(TSA[ẽ.idx], TSA[i]), and
the lcp-value can be identified in constant time by LCP[RMQ(ẽ.idx + 1, i)]. Then,
one finds the first element e of the interval to which ẽ belongs by following the
interval pointer intptr[LCP[RMQ(ẽ.idx + 1, i)]], while the last element of that in-
terval can be found with the help of the pointer e.end. Moreover, the procedure
list_update(i) adds a new interval at the end of the list. This interval consists of
the element e = (|TSA[i]|, i, e, e,1), i.e., both pointers e.begin and e.end point to e

itself. Finally, the pointers LV , textptr[text[i]], and intptr[|TSA[i]|] are updated so
that they all point to the added element.

Figure 4 illustrates how the algorithm works.
In contrast to the naive algorithm, when the algorithm updates an entry in the

array A, say A[k], then it does not check whether other entries A[k′] with k′ < k

have to be updated as well. This is because the algorithm directly jumps from the
last element of an interval to the first element and skips the elements in between
them. Consequently, in the final state of the array A, there may be entries A[k] and
A[k′] with 2 ≤ k′ < k ≤ m such that �k = A[k].lcs > A[k′].lcs. This means that the
algorithm has found a string common to k strings that is longer than the (currently
longest) string common to k′ strings, where k′ < k. Therefore, in a final phase, the
algorithm scans the array A from right-to-left and for j = m downto j = 3 it tests

814 Algorithmica (2011) 60: 806–818

Fig. 4 In our fictitious example,
there are nine texts and the
upper figure depicts the point of
departure. For each element e in
the list, the component e.idx is
omitted. Furthermore, the
component e.lcp is only shown
for the relevant elements, viz.
the first element of intervals.
The begin and end pointers of
an interval are drawn as an arc
with two arrowheads, and the
size of the interval is represented
by the number above this arc. In
the next iteration i, we have
LCP[i] = 2, text[i] = 2, and
|TSA[i]| = 21. The middle figure
shows the situation after the
procedure call lcp_update(2),
while the lower figure depicts
the situation after the procedure
call list_update(i)

whether A[j].lcs > A[j − 1].lcs holds true. If so, then it updates A[j − 1] by the
assignment A[j − 1] ← A[j]. The correctness of the algorithm now follows from the
invariants as in Sect. 3.1.

Let us turn to the overall complexity of the algorithm. In each iteration, at most
two intervals are created. Thus, the algorithm creates at most 2n intervals. When
the procedure lcp_update(LCP[i]) reads an interval, it either overwrites this interval
with the new interval or it stops at this interval. Clearly, every interval can be over-
written only once. Thus, in all iterations the procedure lcp_update can overwrite at
most 2n intervals. Hence it takes O(n) time. Since the same is true for the procedure
list_update, the overall running time of the algorithm is O(n).

4 The k Common Repeated Substring Problem

Given m strings T (1), T (2), . . . , T (m) such that T = T (1)#1T
(2)#2 . . . T (m)#m is of

length n and m positive integers x1, . . . , xm, the k-common repeated substring prob-
lem is to find, for all k with 1 ≤ k ≤ m, a longest string ω for which there are at

Algorithmica (2011) 60: 806–818 815

least k strings T (i1), T (i2), . . . , T (ik) (1 ≤ i1 < i2 < · · · < ik ≤ m) such that ω occurs
at least xij times in T (ij) for each j with 1 ≤ j ≤ k. Again, let �k denote the length
of a longest string with this property.

Our algorithms for this problem are based on the following analogon to Theo-
rem 1.

Theorem 3 ω is a longest string for which there are at least k strings T (i1),

T (i2), . . . , T (ik) (1 ≤ i1 < i2 < · · · < ik ≤ m) such that ω occurs at least xij times

in T (ij) if and only if there exist indices p and q with 1 ≤ p < q ≤ n such that

1. For each j with 1 ≤ j ≤ k: |{l | p ≤ l ≤ q and text[l] = ij }| ≥ xij

2. ω is a common prefix of TSA[p], TSA[p+1], . . . , TSA[q] and lcp(TSA[p], TSA[q]) = |ω|,
3. LCP[p] < |ω| and LCP[q + 1] < |ω|,
4. |ω| = �k .

Proof Similar to the proof of Theorem 1. �

4.1 A Naive Solution

Again, array A stores the currently best solutions, but this time for each k with
1 ≤ k ≤ m. The doubly linked list now contains

∑m
j=1 xj many elements, and each

element e in the list is now a triple (lcp, idx,flag), where the new component e.flag
is a Boolean flag. The initial list is obtained by adding, for each text Tj , xj − 1 many
elements of the form (lcp, idx,flag) = (0,−1,flag) to the left of the doubly linked list
[(0,1,flag), (0,2,flag), . . . , (0,m−1,flag), (|TSA[m]|,m,flag)]. For each text Tj , the
flag of the leftmost element in the list that belongs to Tj is set to true, while the flags
of all other elements are set to false. For each 1 ≤ j ≤ m, there is not one text pointer
textptr[j] but there is an array textptr[j][0..xj − 1] containing xj many text pointers.
Initially, textptr[j][0] points to the leftmost element of text Tj in the list, textptr[j][1]
points to the second leftmost element of text Tj in the list, etc. So textptr[j][xj − 1]
points to the rightmost element of text Tj in the list, namely (0, j,flag) if j �= m and
(|TSA[m]|,m,flag) if j = m. Furthermore, there is an array LM[1..m] such that en-
try LM[j] is an integer in the range 0 to xj − 1. (LM is an acronym for leftmost.)
Initially, LM[j] = 0 for each j with 1 ≤ j ≤ m.

Our modified algorithm also satisfies the invariants (1), (3), and (4) of Sect. 3.1
and, for each 1 ≤ j ≤ m, the following modified invariant (2): Suppose that l =
LM[j] and the text pointers

textptr[j][l], textptr[j][l + 1], . . . , textptr[j][xj − 1],
textptr[j][0], textptr[j][1], . . . , textptr[j][l − 1]

point to the elements e1, . . . , exj
(i.e., textptr[j][l] points to e1, textptr[j][l+1] points

to e2, etc.), then

(a) text[ep.idx] = j for all 1 ≤ p ≤ xj ,
(b) the sequence of indices e1.idx, . . . , exj

.idx is strictly increasing, and
(c) |{q | e1.idx ≤ q ≤ exj

.idx and text[q] = j}| = xj .

816 Algorithmica (2011) 60: 806–818

Fig. 5 For each text T (j) , there
are xj elements in the list (here
x1 = x2 = x3 = x4 = 2), and the
pointers in the textptr[j] array
point to them. The pointer to the
leftmost element corresponding
to text T (j) is indicated by an
arrowhead at the textptr[j] array

In words, the elements e1, . . . , exj
correspond to the last xj suffixes seen so far that

belong to text T (j) and textptr[j][LM[j]] points to the leftmost of these elements
in the list. An illustration can be found in Fig. 5. Moreover, the Boolean flag of an ele-
ment is set if and only if one of the pointers textptr[1][LM[1]],textptr[2][LM[2]],. . . ,
textptr[m][LM[m]] points to it. In other words, if we scan the list, then the Boolean
flag of the current element e tells us whether e is the leftmost element for some
1 ≤ j ≤ m or not.

As in Sect. 3.1 the algorithm linearly scans the enhanced suffix array starting at
index m+1, and for each i with m+1 ≤ i ≤ n, it first calls the procedure lcp_update
with parameter LCP[i] and then the procedure list_update with parameter i.

• We modify procedure lcp_update from Sect. 3.1 as follows. There, k is the number
of elements from the rightmost element in the list to the current element e. Here, k

is the number of elements from the rightmost element to e whose Boolean flag is
set.

• list_update(i) updates the list as follows. If text[i] = j , then list_update(i) deletes
the element to which textptr[j][LM[j]] points from the list and adds a new el-
ement (|TSA[i]|, i,flag) at the end of the list, where flag = true if xj = 1 and
flag = false otherwise. The pointer LV is updated so that it points to the added
element. Furthermore, by the assignment LM[j] ← ((LM[j] + 1) mod xj) we
make sure that textptr[j][LM[j]] points to the leftmost element belonging to text
T (j), and we set the flag of this leftmost element.

The worst-case time complexity of the algorithm is obviously in O(n · ∑m
j=1 xj).

4.2 A Linear Time Solution

As in Sect. 3.2, we combine all elements having the same lcp-value into intervals.
The elements in the list have the same five components, only the meaning of the size
component is different. It now stores the number of elements in the interval whose
Boolean flag is set.

Again, the algorithm linearly scans the enhanced suffix array starting at index
m + 1. The procedure lcp_update is the same as in Sect. 3.2, only the procedure
list_update needs the following slight changes.

If text[i] = j , then list_update(i) deletes the element ẽ to which textptr[j][LM[j]]
points. The interval to which ẽ belongs can be found as in Sect. 3.2 and the size com-
ponent of the first element of the interval is decreased by one. By the assignment
LM[j] ← ((LM[j] + 1) mod xj) we make sure that textptr[j][LM[j]] points to

Algorithmica (2011) 60: 806–818 817

the new leftmost element belonging to text T (j), find the interval to which this ele-
ment belongs (again by a range minimum query and a look-up in the LCP array), and
increase the size component of the first element of this interval by one.

It follows as in Sect. 3.2 that the worst-case time complexity of this algorithm
is O(n).

5 Conclusions

We have presented a new linear time algorithm for the k-common substring problem.
In contrast to previous algorithms, small modifications to this algorithm are sufficient
to solve a natural generalization of this problem—the k-common repeated substring
problem—in optimal time. To the best of our knowledge, the modified algorithm is
the first O(n) time solution to the k-common repeated substring problem.

It should be pointed out that the algorithms can easily be modified so that they
output more information about the solutions to the problem under consideration.
We explain this for the k-common substring problem, but the same is true for the
k-common repeated substring problem. In our exposition, array A stores for each k

a pair (lcs, idx), where lcs is the length of a longest substring ω common to at least
k strings and idx is an index such that T [SA[idx]..SA[idx] + lcs − 1] = ω. However,
the algorithms actually compute indices p and q with 1 ≤ p < q ≤ n such that ω is
a common prefix of TSA[p], TSA[p+1], . . . , TSA[q] and lcp(TSA[p], TSA[q]) = |ω| = lcs;
cf. Theorem 1. Thus, if array A stores pairs of the form (lcs, [p..q]), then the interval
[p..q] contains at least one position from each of the k texts at which ω occurs. More-
over, if the array A stores pairs of the form (lcs, [[p1..q1], . . . , [pr ..qr]]) such that the
list [[p1..q1], . . . , [pr ..qr]] contains all intervals [ps..qs] satisfying Theorem 1, then
the algorithms can output all longest substrings common to at least k strings and not
just one.

Pseudo-code and implementations of the algorithms can be found at http://www.
uni-ulm.de/in/theo/research/seqana.html.

Acknowledgements We thank the anonymous reviewers for their constructive comments.

References

1. Hui, L.C.K.: Color set size problem with applications to string matching. In: Proc. 3rd Annual Sympo-
sium on Combinatorial Pattern Matching. Lecture Notes in Computer Science, vol. 644, pp. 230–243.
Springer, Berlin (1992)

2. Knuth, D.E., Morris, J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM J. Comput. 6(2), 323–
350 (1977)

3. Apostolico, A.: The myriad virtues of subword trees. In: Combinatorial Algorithms on Words, pp.
85–96. Springer, Berlin (1985)

4. Gusfield, D.: Algorithms on Strings, Trees and Sequences: Computer Science and Computational
Biology. Cambridge University Press, Cambridge (1999)

5. Weiner, P.: Linear pattern matching algorithms. In: Proc. 14th IEEE Annual Symposium on Switching
and Automata Theory, pp. 1–11. IEEE, New York (1973)

6. Lee, I., Iliopoulos, C.S., Park, K.: Linear time algorithm for the longest common repeat problem.
J. Discrete Algorithms 5(2), 243–249 (2007)

http://www.uni-ulm.de/in/theo/research/seqana.html
http://www.uni-ulm.de/in/theo/research/seqana.html

818 Algorithmica (2011) 60: 806–818

7. Lee, I., Pinzon-Ardila, Y.J.: A simple algorithm for finding exact common repeats. IEICE Trans.
90D(12), 2096–2099 (2007)

8. Kärkkäinen, J., Sanders, P.: Simple linear work suffix array construction. In: Proc. 30th International
Colloquium on Automata, Languages and Programming. Lecture Notes in Computer Science, vol.
2719, pp. 943–955. Springer, Berlin (2003)

9. Ko, P., Aluru, S.: Space efficient linear time construction of suffix arrays. In: Proc. 14th Annual
Symposium on Combinatorial Pattern Matching. Lecture Notes in Computer Science, vol. 2676, pp.
200–210. Springer, Berlin (2003)

10. Kim, D.K., Sim, J.S., Park, H., Park, K.: Linear-time construction of suffix arrays. In: Proc. 14th
Annual Symposium on Combinatorial Pattern Matching. Lecture Notes in Computer Science, vol.
2676, pp. 186–199. Springer, Berlin (2003)

11. Kasai, T., Lee, G., Arimura, H., Arikawa, S., Park, K.: Linear-time longest-common-prefix computa-
tion in suffix arrays and its applications. In: Proc. 12th Annual Symposium on Combinatorial Pattern
Matching. Lecture Notes in Computer Science, vol. 2089, pp. 181–192. Springer, Berlin (2001)

12. Berkman, O., Vishkin, U.: Recursive star-tree parallel data structure. SIAM J. Comput. 22(2), 221–
242 (1993)

13. Fischer, J., Heun, V.: A new succinct representation of RMQ-information and improvements in the
enhanced suffix array. In: Proc. 1st International Symposium on Combinatorics, Algorithms, Proba-
bilistic and Experimental Methodologies. Lecture Notes in Computer Science, vol. 4614, pp. 459–470.
Springer, Berlin (2007)

	Linear Time Algorithms for Generalizations of the Longest Common Substring Problem
	Abstract
	Introduction
	Preliminaries
	The k Common Substring Problem
	A Naive Solution
	A Linear Time Solution

	The k Common Repeated Substring Problem
	A Naive Solution
	A Linear Time Solution

	Conclusions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

