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Abstract  
 

 Finding an optimal solution to the problem of 
scheduling an application modeled by a Directed Acyclic 
Graph (DAG) onto a distributed system is known to be 
NP-complete. The complexity of the problem increases 
when task scheduling is to be done in a heterogeneous 
computing system, where the processors in the network 
may not be identical and take different amounts of time to 
execute the same task.  This paper introduces a 
Performance Effective Task Scheduling (PETS) Algorithm 
for Network of Heterogeneous system, with complexity    
O (v+e) (p+ log v), which provides optimal results for 
applications represented by DAGs. The performance of 
the algorithm is illustrated by comparing the schedule 
length, speedup, efficiency and the scheduling time with 
existing algorithms such as, Heterogeneous Earliest 
Finish Time (HEFT) and Critical-Path On a processor 
(CPOP) and Levelized Min Time (LMT) reported in this 
paper. The comparison study based on both randomly 
generated graphs and graphs of some real applications 
shows that PETS algorithm substantially outperforms 
existing algorithms. 
 
1. Introduction 
  

Heterogeneous Computing (HC) system is a suite of 
distributed processors interconnected by high-speed 
networks, thereby promising high speed processing of 
computationally intensive applications with diverse 
computing needs. A well-known strategy behind efficient 
execution of a huge application on HC system is to 
partition it into multiple independent tasks and schedule 
such tasks over a set of available processors. A task-
partitioning algorithm takes care of efficiently dividing an 
application into tasks of appropriate grain size and an 
abstract model of such a partitioned application can be 
represented by a Directed A-cyclic Graph (DAG). Each 
task of a DAG corresponds to a sequence of operations 
and a directed edge represents the precedence constraints 
between the tasks. Each task can be executed on a 
processor and the directed edge shows transfer of relevant 
data from one processor to another.       Task scheduling can 

be performed at compile-time or at run-time. When the 
characteristics of an application, which includes execution 
times of tasks on different processors, the data size of the 
communication between tasks, and the task dependencies 
are known a priori, it is represented with a static model. 
The objective function of this problem is to map the tasks 
on the processors and order their execution so that task 
precedence requirements are satisfied and a minimum 
overall completion time is obtained. The problem of 
scheduling of tasks with required precedence relationship, 
in the most general case, has been proven to be NP-
complete [1] [2] and optimal solutions can be found only 
after an exhaustive search. Because of its key importance 
on performance, the task-scheduling problem in general 
has been studied extensively and various heuristics were 
proposed in the literature [3-12]. The motivation behind 
our work is to develop a new task-scheduling algorithm to 
deliver high performance in terms of both performance 
metrics (schedule length ratio, speedup, efficiency) and a 
cost metric (scheduling time). We have improved the 
work done in [5] [6] and proposed a new task scheduling 
algorithm. 

The rest of the paper is organized as follows: In the 
next Section, we define the task scheduling problems. In 
Section 3 we present the related works, Section 4 
introduces PETS algorithm and Section 5 provides results 
and discussions. Finally Section 6 concludes the paper 
with some final remarks.   
 
2. Task Scheduling Problems 

 
A scheduling system model consists of an application, 

a target computing system and criteria for scheduling. An 
application program is represented by a Directed Acyclic 
Graph (DAG), G=(V, <, E), where V={vi, i=1…n) is the 
set of n tasks. < represents a partial order on V. For any 
two tasks vi, vk ∈ V, the existence of the partial order vi < 
vk means that vk cannot be scheduled until task vi has been 
completed, hence vi is a predecessor of vk and vk is a 
successor of vi. The task executions of a given application 
are assumed to be non-preemptive.  E is the set of directed 
edges. Data is a n x n matrix of communication data, 
where data i,k is the amount of data required to be 
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transmitted from task vi to task vk.  In a given task graph, a 
task without any predecessor is called an entry task and a 
task without any child is called an exit task. Without loss 
of generality, it is assumed that there is one entry task to 
the DAG and one exit task from the DAG. In an actual 
implementation, we can create a pseudoentry task and 
pseudoexit task with zero computation time and 
communication time.  

Heterogeneous computing system consists of a set    P 
= {pj: j =0, m-1} of m independent different types of 
processors fully interconnected by a high-speed arbitrary 
network. The bandwidth (data transfer rate) of the links 
between different processors in a heterogeneous system 
may be different depending on the kind of the network. 
The data transfer rate is represented by an m x m matrix, 
R m x m. W is a n x m computation cost matrix in which 
each Wij gives the Estimated Computation Time (ECT) to 
complete task vi on processor pj where 0<=i<n and 
1<=j<=m. The ECT value of a task may be different on 
different processor depending on the processor’s 
computational capability. The communication cost 
between two processors px and py, depends on the channel 
initialization at both sender processor px and receiver 
processor py in addition to the communication time on the 
channel. This is a dominant factor and can be assumed to 
be independent of the source and destination processors. 
The channel initialization time is assumed to be 
negligible.  The communication cost of the edge(i,k), 
which is for transferring data from task vi (scheduled on 
processor px) to task vk (scheduled on processor py) is 
defined by Eqn.(1) 

  
              C i,k = data i,k / R x,y                            (1)                                                                              
 

Otherwise, Ci,k = 0 when both the tasks vi and vk 
scheduled on the same  processor.  We assumed that the 
data transfer rate for each link is 1.0 and hence 
communication cost and amount of data to be transferred 
will be the same. A task graph with 10 tasks, and its 
computation cost matrix given in [6] are shown in Figure 
1 and Table 1. 

              Table 1. Computation Cost Matrix given in [6] 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
          Figure 1.  Task Graph given in [6] 
 

Let EST(vi, pj) and EFT(vi , pj)  are the Earliest Start 
Time and Earliest Finish Time of task vi on  pj, 
respectively. For the entry task ventry,  EST(ventry, pj) = 0, 
and for the other tasks in the graph, the EST and EFT 
values are computed recursively, starting from the entry 
task, as shown in Eqn.(2) and (3). In order to compute the 
EFT of a task vi., all immediate predecessor tasks of vi. 
must have been scheduled.  
 
EST(vi, pj) = max {avail[j], max (AFT(vt+Ct,i))}  
                         where vt ∈ pred( vi )                 (2) 
  
EFT(vi, pj)=Wij+EST(vi, pj)                                             (3)                         
 
where pred(vi) is the set of immediate predecessor tasks 
of task vi.  and avail[j] is the earliest time at which 
processor pj is ready for task execution. If vk is the last 
assigned task on processor pj, then avail[j] is the time that 
processor pj completed the execution of the task vk and it 
is ready to execute another task when we have a 
noninsertion-based scheduling policy. The inner max 
block in the EST equation returns the ready time, i.e., the 
time when all the data needed by vi has arrived at 
processor pj. After a task vt is scheduled on a processor pj, 
the earliest start time and the earliest finish time of vt on 
processor pj is equal to the actual start time AST(vt) and 
the actual finish time AFT(vt) of task vt, respectively. 
After all tasks in a graph are scheduled, the schedule 
length (i.e. the overall completion time) will be the actual 
finish time of the exit task vexit. Finally the schedule 
length is defined as Eqn. (4) 

  max{ ( )}exitSchedule Length AFT v=     (4)                         

The objective function of the task-scheduling problem 
is to schedule the tasks of an application to machines such 
that its schedule length is minimized. 

Task P1 P2 P3 
1 14 16 9 
2 13 19 18 
3 11 13 19 
4 13 8 17 
5 12 13 10 
6 13 16 9 
7 7 15 11 
8 5 11 14 
9 18 12 20 

10 21 7 16 

1133 

    11  

    77      99  

  1100  

1188 
1122 99 1111 1144 

    22      44      55      66  

1199 
2233 

1166 
2277 1155 

2233 

    33  

1177 1111 1133 

    88  
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3.Related Works 
 

Efficient application scheduling is critical for 
achieving high performance in heterogeneous computing 
system, because of its key importance on performance, 
the scheduling problem has been extensively studied and 
various heuristics have been proposed in the literature [3-
12]. These heuristics are classified into a variety of 
schemes such as priority-based [4,5,6], cluster-based [7], 
guided random search based [8] and task duplication 
based schemes [9,10,11]. 

Priority-based schemes [5,6,7] assume a priority for 
each task that is utilized to assign the tasks to the different 
processors. Priorities based scheduling algorithms, such 
as Mapping Heuristics (MH) [4], Levelized Min Time 
(LMT) [5], Heterogeneous Earliest Finish Time (HEFT) 
[6] and Critical-Path-On a Processor (CPOP) [6] have 
been proposed in the literature for heterogeneous systems. 
The complexity of MH, LMT, HEFT, and CPOP 
algorithms is O (v2 x p), O (v2 x p2), O (v2 x p) and O (v2 
x p) respectively. HEFT and CPOP algorithms are proved 
to be improvement over MH and LMT algorithms in 
terms of average SLR, speedup, and run time. We have 
chosen the recently proposed algorithms [5] [6] for 
improvement.  
 
4. Performance Effective Task Scheduling 

(PETS) Algorithm 
 

The proposed algorithm consists of three phases, viz., 
level sorting, task prioritization, and processor selection. 
The detailed explanation of the algorithm is given below: 

In the first phase, the given DAG is traversed in a top-
down fashion to sort task at each level in order to group 
the tasks that are independent of each other. As a result, 
tasks in the same level can be executed in parallel. Given 
a DAG G = (V, E), level 0 contains entry tasks. Level i 
consist of all tasks vk such that, for all edges(vj,vk), task vj 
is in a level less than i and there exists at least one 
edge(vj,vk) such that vj is in level i-1. The last level 
comprises of some of the exit tasks. 

In the second phase of the algorithm priority is 
computed and assigned to each task. Priority is computed 
based on the task communication cost and average 
computation cost. The Average Computation Cost (ACC) 
of a task is the average computation cost on all the 
available m processors and it is computed by using Eqn. 
(5) 

,1
( ) /

m

i i jj
ACC v w m

=
= Σ                                               (5)         

Here, we have defined two kinds of communication cost 
for a task viz. Data Transfer Cost (DTC) and Data 
Receiving Cost (DRC). DTC of a task is the amount of 
cost incurred to transfer the data to all its immediate 

successor tasks and it  is computed as follows: The DTC 
for the exit task is 0; for all other tasks at level i, it is 
computed by using Eqn. (6) 
                   x  
DTC(vi) = ∑ Ci,j,                                                             (6)    

   i =1     , x is the number of   immediate   
          successors of vi  

  
DRC of a task is the cost incurred to receive data from 

its immediate predecessor tasks..  The DRC of a task is 
computed as follows: The DRC for the entry task is 0; for 
all other tasks at level i, it is computed by using Eqn. (7) 
                  
 DRC (vj) = Max {rank(vj)}                           (7) 
                       where vj  is the predecessor of vj                                
 

Rank of a task vi (rank(vi)) is the sum of its DTC, DRC 
and ACC values of that task. For the every task at each 
level i, rank(vi) is computed by using Eqn. (8) 
 
 rank(vvii) = DTC(vvii)+DRC(vvii)+ACC(vvii)     (8)     
 

Priority is assigned to all the tasks at each level i, 
based on its rank value. At each level, the task with 
highest rank value receives the highest priority followed 
by task with next highest rank value and so on. The 
computed ACC, DTC, DRC, rank and priority value for 
each of the task in Figure 1 is shown in Table 2.  

In the processor selection phase, the processor, which 
gives minimum EFT for a task is selected for executing 
that task. It has an insertion-based policy, which considers 
the possible insertion of a task in an earliest idle time slot 
between two already scheduled tasks on a processor. At 
each level, the earliest start time and earliest finish time of 
each task on every processor is computed using Eqn. (2) 
and (3). Calculation of EST and EFT values for the task 
graph in Figure 1 is illustrated below: For example, for 
the task 8, EST (8, P1)=max {40, max (40,53,50)}=53, 
EFT(8, P1) = 5+53=58, EST(8, P2) = max{70, max(59, 
53, 50)}=70, EFT(8, P2) = 11+70=81, EST(8, P3) = 
max{35, max(59, 35, 35)}=59 and EFT(8, P3) = 
14+59=73. The tasks are selected for execution based on 
their priority value. Task with highest priority is selected 
and scheduled on its favorite processor (processor which 
gives the minimum EFT) for execution followed by the 
next highest priority task. Similarly all the tasks are 
scheduled on to suitable processor. The processors 
selected for executing the tasks of task graph in Figure 1 
is as follows: For example, task 1 is the entry task; hence 
its data arrival time is 0 and P3 gives the minimum EFT 
for task 1. Hence processor P3 is selected for executing 
task 1.  For task 2, the data arrival time from its 
predecessor (task 1 in P3) is 9 and the EFT of this task on 
P1, P2 and P3 are 40, 46, and 44. Since P1 gives minimum 
EFT, it is selected for executing the task 2. Similarly all 
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other tasks in the task graph are scheduled on to the 
suitable processor. The processor selected for executing 
each of the task in Figure 1 is shown in Table 3. The 
proposed algorithm is given in Figure 2. 
 

1. Read the DAG, associated attributes values, and 
the number of processor P; 

2. For all tasks at each level Li do 
3. Begin 
4.     Compute DRC, DTC and ACC. 
5.     Compute  rank(vk) =  

DTC(vk)+DRC(vk)+ACC(vk)    
6.     Construct a priority queue using ranks; 
7.     While there are unscheduled tasks in  

    the queue do         

8. Begin 
9.     Select the first task, vk from the   

queue for scheduling; 
10.     For each processor pk in the  

processor set P do 
11.     Begin 
12.        Compute EFT (vk,pk) value  

                     using insertion based scheduling  policy; 
13.        Assign the task vk to processor pk, 

which minimizes the EFT;  
14.    End; 
15. End; 
16. End. 

 

                     
 

Figure 2. Proposed PETS Algorithm

Table 2. The computed ACC, DTC, DRC, rank and priority values for the tasks in Figure 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

      Table 3. The Computed EST, EFT values on Processors P1, P2, P3 for the tasks in Figure 1 
 

 
 

 

 

 

 

 

 

      

Level Task ACC DTC DRC rank priority 
1 1 13 64 0 77 1 
2 2 16.7 35 77 128.7 2 
2 3 14.3 23 77 114.3 3 
2 4 12.7 50 77 139.7 1 
2 5 11.7 13 77 101.7 5 
2 6 12.7 15 77 104.7 4 
3 7 11 17 114.3 142.3 3 
3 8 10 11 139.7 160.7 2 
3 9 16.7 13 139.7 169.4 1 
4 10 14.7 0 169.7 184.1 1 

Processors 

P1 P2 P3 

 
Ordered   
  Tasks 
 
 EST EFT EST EFT EST EFT 

Predecessors Processor 
selected  

1 0 14 0 16 0 9 Null P3 
4 18 31 18 26 9 26 1 P3 
2 27 40 27 46 26 44 1 P1 
3 40 51 21 34 26 45 1 P2 
6 40 53 34 50 26 35 1 P3 
5 40 52 34 47 35 45 1 P3 
9 58 76 58 70 56 76 2,4,5 P2 
8 53 58 70 81 59 73 2,4,6 P1 
7 58 65 34 41 57 68 3 P2 

10 83 104 70 77 83 99 7,8,9 P2 
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             (a) CPOP Algorithm                                      (b) HEFT Algorithm                                       (c) PETS Algorithm 
                          

 Figure 3. The Schedule Length generated by CPOP, HEFT and PETS Algorithms  

As an illustration, Figure 3 presents the schedules 
obtained by the CPOP, HEFT and PETS algorithms for the 
sample DAG of Figure 1. The schedule length, which is 
equal to 77, is shorter than the schedule lengths of the 
related work; specifically, the schedule lengths of HEFT, 
CPOP and LMT Algorithms are 80, 86, and 91 
respectively.  The time complexity of PETS algorithm is 
equal to O (v + e) (p + log v) where v is the number of 
tasks, e number of edges and p number of processors. For 
implementation, we used breadth first search for level 
sorting which takes O (v + e) time complexity. A binary 
heap was used to implement the priority queue, which has 
time complexity of O (log v). Each task in the priority 
queue is checked with all the p processors in order to 
select a processor that gives the earliest finish time. Hence 
the complexity of the algorithm is O (v + e) (p+log v). 

5. Results and Discussion 
In this section, we present the comparative evaluation 

of proposed PETS algorithm and the existing algorithms 
for heterogeneous systems such as, LMT, HEFT and 
CPOP for DAGs with various characteristics by 
simulation. For this purpose, we consider two sets of 
graphs as the workload for testing the algorithms: 
randomly generated task graphs and the graphs that 
represent some of numerical real world problems. 
 
5.1 Comparison Metrics 
    We have used the following metrics to evaluate the 
performance of the algorithm and the metrics are: 

 
Schedule Length Ratio (SLR) is the ratio of the parallel 
time to the sum of weights of the critical path tasks on the 
fastest processor.  
Speedup. The speedup is the ratio of the sequential 
execution time to the parallel execution time. 
Efficiency. The efficiency is the ratio of the speedup 
value to the number of processor used to schedule the 
graph. 
Frequency of better quality of schedules.  The number of 
times that each algorithm produced better, worse and 
equal quality of schedules compared to every other 
algorithm is counted in the experiments.  
 
5.2 Randomly Generated Application Graphs 

 
As part of this work we have implemented a random 

task graph generator that allows the user to generate a 
variety of test DAGs with various characteristics that 
depends on several input parameters and they are number 
of tasks in the graph (v), out degree (β), in degree (γ), 
shape parameter of a graph (α) Communication to 
Computation Ratio (CCR) and Range percentage of 
computation cost (η). By varying α value we can generate 
different shape of the task graph. The height of the graph 
is randomly generated from a uniform distribution with a 

mean value equal to /v α  and the width for each level 
is randomly selected from a uniform distribution with 

mean value equal to *v α . A dense graph (shorter 
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graph with high parallelism) and a longer graph (low 
parallelism) can be generated by selecting α >>1.0 and    
α <<1.0 respectively. CCR is the ratio of the average 
communication cost to the average computation cost. The 
computation intensive applications may be modeled by 
assuming CCR = 0.1, whereas data intensive applications 
may be modeled assuming   CCR = 10.0. Range 
percentage of computation costs on processors (η) is 
basically the heterogeneity factor for processors speeds. A 
high percentage value causes a significant difference in a 
task’s computation cost among the processors and a low 
percentage indicates that the expected execution time of a 
task is almost equal on any given processor in the system. 
The average computation cost of each task vi in the graph, 
i.e., Wi, is randomly selected from a uniform distribution 
with range [0, 2*Wdag], where Wdag is the average 
computation cost of the given graph, which is set 
randomly in the algorithm. Then, the computation cost of 
each task vi on each processor pj in the system is 
randomly set from the following range: 
  
     Wi*(1-η/2)<=Wi,j<=Wi*(1+η/2)                               (8) 
 

For experiments, we set the following range of values 
for the parameters. v = {30,40,50,60,70,80,90,100}, α = 
{0.5,1.0,2.0}, β = {1,2,3,4,5}, γ = {1,2,3,4,5}, CCR= 
{0.1,0.5,1.0,5.0,10.0} and η={0.1,0.5,1.0}. 
 
5.3 Experimental Results  
        

The experimental results are organized in two major 
test suites..      
   Test Suite 1: In this test suite, we evaluated the quality 
of schedules generated by the algorithms with respect to 
the graph characteristics values given in Section 5.2.  We 
have generated around 720 random task graphs for the 
experiments with different characteristics and counted the 
number of times that each scheduling algorithm in the 
experiments produced better, worse, or equal schedule 
length compared to every other algorithm. Table 4 
indicates the comparison results of the algorithm on the 
left with the algorithm on the top. The “combined” 
column shows the percentage of graphs in which the 
algorithm on the left gives the better, equal, or worse 
performance than all other algorithms combined. The 
ranking of algorithms, based on occurrences of best 
results, is {PETS, HEFT, and CPOP, LMT}. 

The performance of the algorithm is also evaluated by 
average SLR with respect to the graph structure, by 
varying the α value with 0.5, 1.0. and 2.0 and the results 
obtained by this experiment are shown in Figure 4. The 
results confirm that PETS algorithm substantially 
outperforms reported algorithms in terms of average SLR 
for random task graphs with various shapes.   

Further, we evaluated the efficiency of the algorithms 
by scheduling random task graphs consists of fixed 
numbers of tasks (120) on to HC system consists of 
varying number of processors (4,8,12,16,20). For this 
experiment, we have used 100 numbers of randomly 
generated task graphs. The results obtained by this 
experiments are shown in Figure 5. As expected the 
average SLR is reduced while increasing the number of 
processors and at the same time PETS outperforms LMT, 
CPOP and HEFT algorithms.  
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    Test Suite 2: In this test suite, we considered 
application graphs of three real world problems such as 
Gauss Elimination algorithm, Fast Fourier Transformation 
and molecular dynamics code given in [6][12]. For the 
experiment of Gauss elimination applications, 
heterogeneous computing systems with five processors, 
CCR and the range percentage parameters given in 
Section 5.2 are used. Since the structure of the application 
is known, the parameters such as number of tasks, in 
degree and out degree are not needed. A new parameter 
matrix size (m) is used in place of number of tasks (v). 
The total number of task in a Gaussian elimination graph 
is equal to (m2+m-2)/2. We evaluated the performance of 
the algorithms at various matrix sizes from 5 to 15 with 
an increment of one. The smallest size graph in this 
experiment has 14 tasks and the largest one has 119 tasks. 
The simulation results are given in Figure 6, which shows 
that PETS algorithm outperforms other reported 
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algorithms by average SLR and Efficiency for various 
matrix sizes.  
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              Figure 6. Gaussian Elimination graphs 

 For FFT related experiments, only the CCR and range 
percentage parameters given in Section 5.2 were used. 
Since the structure of the application is known, other 
parameters such as number of tasks, in degree and out 
degree are not needed. The number of data points in FFT 
is another parameter in our experiments, which varies 
from 2 to 32 incrementing powers of 2. Figure 7(a) 
presents the average SLR values for FFT graphs at 
various sizes of input points. Figure 7(b) presents the 
efficiency values obtained for each of the algorithms with 
respect to various numbers of processors with graphs of 
32 data points. 
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                     Figure 7. FFT Application graphs 

The task graph of the molecular dynamics code given 
in [6],[12] is also part of our experiment since it has an 
irregular task graph. Since the number of task is fixed in 
the application and the structure of the application is 
known, only the values of CCR and the range percentage 
parameters given in Section 5.2 are used in the 
experiments. Figure 8 shows the performance of the 
algorithms (Average SLR and Efficiency) with respect to 
five different CCR values when the number of processors 
is equal to seven. The simulation results show that PETS 
algorithm substantially outperforms HEFT, CPOP and 
LMT algorithms. 

0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00

0.1 0.5 1.0 0.5 10.0
CCR

A
ve

ra
ge

 S
L

R

PETS

HEFT

CPOP

LMT

                                                                                  (a) Average SLR  

0.00

0.20

0.40

0.60

0.80

1.00

2 3 4 5 6 7
Number of Processors

E
ffi

ci
en

cy

PETS

HEFT

CPOP

LMT

                                                                                  (b) Efficiency  
                      Figure 8. Molecular Dynamics Structure 
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Table 4. Pair-Wise Comparison of the Scheduling Algorithms 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

   
 
 
 
 
 
6. Conclusion 

 
The task scheduling algorithm PETS proposed here 

has been proven to be better for scheduling DAG 
structured applications onto heterogeneous computing 
system in terms of performance matrices (average 
schedule length ratio, speedup, efficiency, frequency of 
best results) and scheduling time. The performance of the 
PETS algorithm has been observed experimentally by 
using large set of randomly generated task graphs with 
various characteristics and application graphs of several 
real world problems such as Gaussian Elimination, Fast 
Fourier Transformation and Molecular Dynamics code. 
The simulation results confirm that PETS algorithm 
substantially better that of the existing algorithms such as 
LMT, CPOP and HEFT in terms performance matrices.  
The complexity of PETS algorithm is O (v + e) (p+log v), 
which is less when compared with other scheduling 
algorithms reported in this paper. We have planned to 
extend this algorithm for arbitrary-connected networks 
and also for the dynamic networks. 
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Algorithm  PETS HEFT CPOP LMT COMBINED 

PETS 
Better 
Equal 
Worse 

* 
441 
198 
81 

498 
140 
82 

607 
72 
41 

71% 
19% 
10% 

HEFT 
Better 
Equal 
Worse 

81 
198 
441 

* 
556 
38 

126 

657 
27 
36 

61% 
12% 
27% 

CPOP 
Better 
Equal 
Worse 

82 
140 
498 

126 
38 

556 
* 

634 
40 
46 

39% 
10% 
51% 

LMT 
Better 
Equal 
Worse 

41 
72 

607 

36 
27 

657 

46 
40 

634 
* 

7% 
9% 

84% 
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