
Performance Effective Task Scheduling Algorithm for Heterogeneous
Computing System

E. Ilavarasan P. Thambidurai and R. Mahilmannan

Department of Computer Science & Engineering and Information Technology
Pondicherry Engineering College

Pondicherry – 605014. India
Email: eilavarasan@yahoo.com

Abstract

 Finding an optimal solution to the problem of
scheduling an application modeled by a Directed Acyclic
Graph (DAG) onto a distributed system is known to be
NP-complete. The complexity of the problem increases
when task scheduling is to be done in a heterogeneous
computing system, where the processors in the network
may not be identical and take different amounts of time to
execute the same task. This paper introduces a
Performance Effective Task Scheduling (PETS) Algorithm
for Network of Heterogeneous system, with complexity
O (v+e) (p+ log v), which provides optimal results for
applications represented by DAGs. The performance of
the algorithm is illustrated by comparing the schedule
length, speedup, efficiency and the scheduling time with
existing algorithms such as, Heterogeneous Earliest
Finish Time (HEFT) and Critical-Path On a processor
(CPOP) and Levelized Min Time (LMT) reported in this
paper. The comparison study based on both randomly
generated graphs and graphs of some real applications
shows that PETS algorithm substantially outperforms
existing algorithms.

1. Introduction

Heterogeneous Computing (HC) system is a suite of
distributed processors interconnected by high-speed
networks, thereby promising high speed processing of
computationally intensive applications with diverse
computing needs. A well-known strategy behind efficient
execution of a huge application on HC system is to
partition it into multiple independent tasks and schedule
such tasks over a set of available processors. A task-
partitioning algorithm takes care of efficiently dividing an
application into tasks of appropriate grain size and an
abstract model of such a partitioned application can be
represented by a Directed A-cyclic Graph (DAG). Each
task of a DAG corresponds to a sequence of operations
and a directed edge represents the precedence constraints
between the tasks. Each task can be executed on a
processor and the directed edge shows transfer of relevant
data from one processor to another. Task scheduling can

be performed at compile-time or at run-time. When the
characteristics of an application, which includes execution
times of tasks on different processors, the data size of the
communication between tasks, and the task dependencies
are known a priori, it is represented with a static model.
The objective function of this problem is to map the tasks
on the processors and order their execution so that task
precedence requirements are satisfied and a minimum
overall completion time is obtained. The problem of
scheduling of tasks with required precedence relationship,
in the most general case, has been proven to be NP-
complete [1] [2] and optimal solutions can be found only
after an exhaustive search. Because of its key importance
on performance, the task-scheduling problem in general
has been studied extensively and various heuristics were
proposed in the literature [3-12]. The motivation behind
our work is to develop a new task-scheduling algorithm to
deliver high performance in terms of both performance
metrics (schedule length ratio, speedup, efficiency) and a
cost metric (scheduling time). We have improved the
work done in [5] [6] and proposed a new task scheduling
algorithm.

The rest of the paper is organized as follows: In the
next Section, we define the task scheduling problems. In
Section 3 we present the related works, Section 4
introduces PETS algorithm and Section 5 provides results
and discussions. Finally Section 6 concludes the paper
with some final remarks.

2. Task Scheduling Problems

A scheduling system model consists of an application,

a target computing system and criteria for scheduling. An
application program is represented by a Directed Acyclic
Graph (DAG), G=(V, <, E), where V={vi, i=1…n) is the
set of n tasks. < represents a partial order on V. For any
two tasks vi, vk ∈ V, the existence of the partial order vi <
vk means that vk cannot be scheduled until task vi has been
completed, hence vi is a predecessor of vk and vk is a
successor of vi. The task executions of a given application
are assumed to be non-preemptive. E is the set of directed
edges. Data is a n x n matrix of communication data,
where data i,k is the amount of data required to be

Proceedings of the 4th International Symposium on Parallel and Distributed Computing (ISPDC’05)
0-7695-2434-6/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on September 08,2020 at 03:54:22 UTC from IEEE Xplore. Restrictions apply.

transmitted from task vi to task vk. In a given task graph, a
task without any predecessor is called an entry task and a
task without any child is called an exit task. Without loss
of generality, it is assumed that there is one entry task to
the DAG and one exit task from the DAG. In an actual
implementation, we can create a pseudoentry task and
pseudoexit task with zero computation time and
communication time.

Heterogeneous computing system consists of a set P
= {pj: j =0, m-1} of m independent different types of
processors fully interconnected by a high-speed arbitrary
network. The bandwidth (data transfer rate) of the links
between different processors in a heterogeneous system
may be different depending on the kind of the network.
The data transfer rate is represented by an m x m matrix,
R m x m. W is a n x m computation cost matrix in which
each Wij gives the Estimated Computation Time (ECT) to
complete task vi on processor pj where 0<=i<n and
1<=j<=m. The ECT value of a task may be different on
different processor depending on the processor’s
computational capability. The communication cost
between two processors px and py, depends on the channel
initialization at both sender processor px and receiver
processor py in addition to the communication time on the
channel. This is a dominant factor and can be assumed to
be independent of the source and destination processors.
The channel initialization time is assumed to be
negligible. The communication cost of the edge(i,k),
which is for transferring data from task vi (scheduled on
processor px) to task vk (scheduled on processor py) is
defined by Eqn.(1)

 C i,k = data i,k / R x,y (1)

Otherwise, Ci,k = 0 when both the tasks vi and vk
scheduled on the same processor. We assumed that the
data transfer rate for each link is 1.0 and hence
communication cost and amount of data to be transferred
will be the same. A task graph with 10 tasks, and its
computation cost matrix given in [6] are shown in Figure
1 and Table 1.

 Table 1. Computation Cost Matrix given in [6]

 Figure 1. Task Graph given in [6]

Let EST(vi, pj) and EFT(vi , pj) are the Earliest Start
Time and Earliest Finish Time of task vi on pj,
respectively. For the entry task ventry, EST(ventry, pj) = 0,
and for the other tasks in the graph, the EST and EFT
values are computed recursively, starting from the entry
task, as shown in Eqn.(2) and (3). In order to compute the
EFT of a task vi., all immediate predecessor tasks of vi.
must have been scheduled.

EST(vi, pj) = max {avail[j], max (AFT(vt+Ct,i))}
 where vt ∈ pred(vi) (2)

EFT(vi, pj)=Wij+EST(vi, pj) (3)

where pred(vi) is the set of immediate predecessor tasks
of task vi. and avail[j] is the earliest time at which
processor pj is ready for task execution. If vk is the last
assigned task on processor pj, then avail[j] is the time that
processor pj completed the execution of the task vk and it
is ready to execute another task when we have a
noninsertion-based scheduling policy. The inner max
block in the EST equation returns the ready time, i.e., the
time when all the data needed by vi has arrived at
processor pj. After a task vt is scheduled on a processor pj,
the earliest start time and the earliest finish time of vt on
processor pj is equal to the actual start time AST(vt) and
the actual finish time AFT(vt) of task vt, respectively.
After all tasks in a graph are scheduled, the schedule
length (i.e. the overall completion time) will be the actual
finish time of the exit task vexit. Finally the schedule
length is defined as Eqn. (4)

 max{ ()}exitSchedule Length AFT v= (4)

The objective function of the task-scheduling problem
is to schedule the tasks of an application to machines such
that its schedule length is minimized.

Task P1 P2 P3
1 14 16 9
2 13 19 18
3 11 13 19
4 13 8 17
5 12 13 10
6 13 16 9
7 7 15 11
8 5 11 14
9 18 12 20

10 21 7 16

1133

 11

 77 99

 1100

1188
1122 99 1111 1144

 22 44 55 66

1199
2233

1166
2277 1155

2233

 33

1177 1111 1133

 88

Proceedings of the 4th International Symposium on Parallel and Distributed Computing (ISPDC’05)
0-7695-2434-6/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on September 08,2020 at 03:54:22 UTC from IEEE Xplore. Restrictions apply.

3.Related Works

Efficient application scheduling is critical for
achieving high performance in heterogeneous computing
system, because of its key importance on performance,
the scheduling problem has been extensively studied and
various heuristics have been proposed in the literature [3-
12]. These heuristics are classified into a variety of
schemes such as priority-based [4,5,6], cluster-based [7],
guided random search based [8] and task duplication
based schemes [9,10,11].

Priority-based schemes [5,6,7] assume a priority for
each task that is utilized to assign the tasks to the different
processors. Priorities based scheduling algorithms, such
as Mapping Heuristics (MH) [4], Levelized Min Time
(LMT) [5], Heterogeneous Earliest Finish Time (HEFT)
[6] and Critical-Path-On a Processor (CPOP) [6] have
been proposed in the literature for heterogeneous systems.
The complexity of MH, LMT, HEFT, and CPOP
algorithms is O (v2 x p), O (v2 x p2), O (v2 x p) and O (v2
x p) respectively. HEFT and CPOP algorithms are proved
to be improvement over MH and LMT algorithms in
terms of average SLR, speedup, and run time. We have
chosen the recently proposed algorithms [5] [6] for
improvement.

4. Performance Effective Task Scheduling

(PETS) Algorithm

The proposed algorithm consists of three phases, viz.,
level sorting, task prioritization, and processor selection.
The detailed explanation of the algorithm is given below:

In the first phase, the given DAG is traversed in a top-
down fashion to sort task at each level in order to group
the tasks that are independent of each other. As a result,
tasks in the same level can be executed in parallel. Given
a DAG G = (V, E), level 0 contains entry tasks. Level i
consist of all tasks vk such that, for all edges(vj,vk), task vj
is in a level less than i and there exists at least one
edge(vj,vk) such that vj is in level i-1. The last level
comprises of some of the exit tasks.

In the second phase of the algorithm priority is
computed and assigned to each task. Priority is computed
based on the task communication cost and average
computation cost. The Average Computation Cost (ACC)
of a task is the average computation cost on all the
available m processors and it is computed by using Eqn.
(5)

,1
() /

m

i i jj
ACC v w m

=
= Σ (5)

Here, we have defined two kinds of communication cost
for a task viz. Data Transfer Cost (DTC) and Data
Receiving Cost (DRC). DTC of a task is the amount of
cost incurred to transfer the data to all its immediate

successor tasks and it is computed as follows: The DTC
for the exit task is 0; for all other tasks at level i, it is
computed by using Eqn. (6)
 x
DTC(vi) = ∑ Ci,j, (6)

 i =1 , x is the number of immediate
 successors of vi

DRC of a task is the cost incurred to receive data from

its immediate predecessor tasks.. The DRC of a task is
computed as follows: The DRC for the entry task is 0; for
all other tasks at level i, it is computed by using Eqn. (7)

 DRC (vj) = Max {rank(vj)} (7)
 where vj is the predecessor of vj

Rank of a task vi (rank(vi)) is the sum of its DTC, DRC
and ACC values of that task. For the every task at each
level i, rank(vi) is computed by using Eqn. (8)

 rank(vvii) = DTC(vvii)+DRC(vvii)+ACC(vvii) (8)

Priority is assigned to all the tasks at each level i,
based on its rank value. At each level, the task with
highest rank value receives the highest priority followed
by task with next highest rank value and so on. The
computed ACC, DTC, DRC, rank and priority value for
each of the task in Figure 1 is shown in Table 2.

In the processor selection phase, the processor, which
gives minimum EFT for a task is selected for executing
that task. It has an insertion-based policy, which considers
the possible insertion of a task in an earliest idle time slot
between two already scheduled tasks on a processor. At
each level, the earliest start time and earliest finish time of
each task on every processor is computed using Eqn. (2)
and (3). Calculation of EST and EFT values for the task
graph in Figure 1 is illustrated below: For example, for
the task 8, EST (8, P1)=max {40, max (40,53,50)}=53,
EFT(8, P1) = 5+53=58, EST(8, P2) = max{70, max(59,
53, 50)}=70, EFT(8, P2) = 11+70=81, EST(8, P3) =
max{35, max(59, 35, 35)}=59 and EFT(8, P3) =
14+59=73. The tasks are selected for execution based on
their priority value. Task with highest priority is selected
and scheduled on its favorite processor (processor which
gives the minimum EFT) for execution followed by the
next highest priority task. Similarly all the tasks are
scheduled on to suitable processor. The processors
selected for executing the tasks of task graph in Figure 1
is as follows: For example, task 1 is the entry task; hence
its data arrival time is 0 and P3 gives the minimum EFT
for task 1. Hence processor P3 is selected for executing
task 1. For task 2, the data arrival time from its
predecessor (task 1 in P3) is 9 and the EFT of this task on
P1, P2 and P3 are 40, 46, and 44. Since P1 gives minimum
EFT, it is selected for executing the task 2. Similarly all

Proceedings of the 4th International Symposium on Parallel and Distributed Computing (ISPDC’05)
0-7695-2434-6/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on September 08,2020 at 03:54:22 UTC from IEEE Xplore. Restrictions apply.

other tasks in the task graph are scheduled on to the
suitable processor. The processor selected for executing
each of the task in Figure 1 is shown in Table 3. The
proposed algorithm is given in Figure 2.

1. Read the DAG, associated attributes values, and
the number of processor P;

2. For all tasks at each level Li do
3. Begin
4. Compute DRC, DTC and ACC.
5. Compute rank(vk) =

DTC(vk)+DRC(vk)+ACC(vk)
6. Construct a priority queue using ranks;
7. While there are unscheduled tasks in

 the queue do

8. Begin
9. Select the first task, vk from the

queue for scheduling;
10. For each processor pk in the

processor set P do
11. Begin
12. Compute EFT (vk,pk) value

 using insertion based scheduling policy;
13. Assign the task vk to processor pk,

which minimizes the EFT;
14. End;
15. End;
16. End.

Figure 2. Proposed PETS Algorithm

Table 2. The computed ACC, DTC, DRC, rank and priority values for the tasks in Figure 1

 Table 3. The Computed EST, EFT values on Processors P1, P2, P3 for the tasks in Figure 1

Level Task ACC DTC DRC rank priority
1 1 13 64 0 77 1
2 2 16.7 35 77 128.7 2
2 3 14.3 23 77 114.3 3
2 4 12.7 50 77 139.7 1
2 5 11.7 13 77 101.7 5
2 6 12.7 15 77 104.7 4
3 7 11 17 114.3 142.3 3
3 8 10 11 139.7 160.7 2
3 9 16.7 13 139.7 169.4 1
4 10 14.7 0 169.7 184.1 1

Processors

P1 P2 P3

Ordered
 Tasks

 EST EFT EST EFT EST EFT

Predecessors Processor
selected

1 0 14 0 16 0 9 Null P3
4 18 31 18 26 9 26 1 P3
2 27 40 27 46 26 44 1 P1
3 40 51 21 34 26 45 1 P2
6 40 53 34 50 26 35 1 P3
5 40 52 34 47 35 45 1 P3
9 58 76 58 70 56 76 2,4,5 P2
8 53 58 70 81 59 73 2,4,6 P1
7 58 65 34 41 57 68 3 P2

10 83 104 70 77 83 99 7,8,9 P2

Proceedings of the 4th International Symposium on Parallel and Distributed Computing (ISPDC’05)
0-7695-2434-6/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on September 08,2020 at 03:54:22 UTC from IEEE Xplore. Restrictions apply.

1

4
2

3

6
57

8
9

10

0

10

20

30

40

50

60

70

80

90

100

p1 p2 p3
Processor

Sc
he

du
le

 L
en

gt
h

1

2
4 3

6 5

8

7

9

10

0

10

20

30

40

50

60

70

80

90

100

p1 p2 p3
Processor

Sc
he

du
le

 L
en

gt
h

1

2
3

4

6
7

8

5

9
10

0

10

20

30

40

50

60

70

80

90

100

P1 P2 P3
Processor

Sc
he

du
le

 L
en

gt
h

 (a) CPOP Algorithm (b) HEFT Algorithm (c) PETS Algorithm

 Figure 3. The Schedule Length generated by CPOP, HEFT and PETS Algorithms

As an illustration, Figure 3 presents the schedules
obtained by the CPOP, HEFT and PETS algorithms for the
sample DAG of Figure 1. The schedule length, which is
equal to 77, is shorter than the schedule lengths of the
related work; specifically, the schedule lengths of HEFT,
CPOP and LMT Algorithms are 80, 86, and 91
respectively. The time complexity of PETS algorithm is
equal to O (v + e) (p + log v) where v is the number of
tasks, e number of edges and p number of processors. For
implementation, we used breadth first search for level
sorting which takes O (v + e) time complexity. A binary
heap was used to implement the priority queue, which has
time complexity of O (log v). Each task in the priority
queue is checked with all the p processors in order to
select a processor that gives the earliest finish time. Hence
the complexity of the algorithm is O (v + e) (p+log v).

5. Results and Discussion
In this section, we present the comparative evaluation

of proposed PETS algorithm and the existing algorithms
for heterogeneous systems such as, LMT, HEFT and
CPOP for DAGs with various characteristics by
simulation. For this purpose, we consider two sets of
graphs as the workload for testing the algorithms:
randomly generated task graphs and the graphs that
represent some of numerical real world problems.

5.1 Comparison Metrics
 We have used the following metrics to evaluate the
performance of the algorithm and the metrics are:

Schedule Length Ratio (SLR) is the ratio of the parallel
time to the sum of weights of the critical path tasks on the
fastest processor.
Speedup. The speedup is the ratio of the sequential
execution time to the parallel execution time.
Efficiency. The efficiency is the ratio of the speedup
value to the number of processor used to schedule the
graph.
Frequency of better quality of schedules. The number of
times that each algorithm produced better, worse and
equal quality of schedules compared to every other
algorithm is counted in the experiments.

5.2 Randomly Generated Application Graphs

As part of this work we have implemented a random

task graph generator that allows the user to generate a
variety of test DAGs with various characteristics that
depends on several input parameters and they are number
of tasks in the graph (v), out degree (β), in degree (γ),
shape parameter of a graph (α) Communication to
Computation Ratio (CCR) and Range percentage of
computation cost (η). By varying α value we can generate
different shape of the task graph. The height of the graph
is randomly generated from a uniform distribution with a

mean value equal to /v α and the width for each level
is randomly selected from a uniform distribution with

mean value equal to *v α . A dense graph (shorter

Proceedings of the 4th International Symposium on Parallel and Distributed Computing (ISPDC’05)
0-7695-2434-6/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on September 08,2020 at 03:54:22 UTC from IEEE Xplore. Restrictions apply.

graph with high parallelism) and a longer graph (low
parallelism) can be generated by selecting α >>1.0 and
α <<1.0 respectively. CCR is the ratio of the average
communication cost to the average computation cost. The
computation intensive applications may be modeled by
assuming CCR = 0.1, whereas data intensive applications
may be modeled assuming CCR = 10.0. Range
percentage of computation costs on processors (η) is
basically the heterogeneity factor for processors speeds. A
high percentage value causes a significant difference in a
task’s computation cost among the processors and a low
percentage indicates that the expected execution time of a
task is almost equal on any given processor in the system.
The average computation cost of each task vi in the graph,
i.e., Wi, is randomly selected from a uniform distribution
with range [0, 2*Wdag], where Wdag is the average
computation cost of the given graph, which is set
randomly in the algorithm. Then, the computation cost of
each task vi on each processor pj in the system is
randomly set from the following range:

 Wi*(1-η/2)<=Wi,j<=Wi*(1+η/2) (8)

For experiments, we set the following range of values
for the parameters. v = {30,40,50,60,70,80,90,100}, α =
{0.5,1.0,2.0}, β = {1,2,3,4,5}, γ = {1,2,3,4,5}, CCR=
{0.1,0.5,1.0,5.0,10.0} and η={0.1,0.5,1.0}.

5.3 Experimental Results

The experimental results are organized in two major
test suites..
 Test Suite 1: In this test suite, we evaluated the quality
of schedules generated by the algorithms with respect to
the graph characteristics values given in Section 5.2. We
have generated around 720 random task graphs for the
experiments with different characteristics and counted the
number of times that each scheduling algorithm in the
experiments produced better, worse, or equal schedule
length compared to every other algorithm. Table 4
indicates the comparison results of the algorithm on the
left with the algorithm on the top. The “combined”
column shows the percentage of graphs in which the
algorithm on the left gives the better, equal, or worse
performance than all other algorithms combined. The
ranking of algorithms, based on occurrences of best
results, is {PETS, HEFT, and CPOP, LMT}.

The performance of the algorithm is also evaluated by
average SLR with respect to the graph structure, by
varying the α value with 0.5, 1.0. and 2.0 and the results
obtained by this experiment are shown in Figure 4. The
results confirm that PETS algorithm substantially
outperforms reported algorithms in terms of average SLR
for random task graphs with various shapes.

Further, we evaluated the efficiency of the algorithms
by scheduling random task graphs consists of fixed
numbers of tasks (120) on to HC system consists of
varying number of processors (4,8,12,16,20). For this
experiment, we have used 100 numbers of randomly
generated task graphs. The results obtained by this
experiments are shown in Figure 5. As expected the
average SLR is reduced while increasing the number of
processors and at the same time PETS outperforms LMT,
CPOP and HEFT algorithms.

0

1

2

3

4

5

6

0.5 1 2
Shape parameter

A
ve

ra
ge

 S
L

R

PETS

HEFT

CPOP

LMT

 Figure 4. Average SLR for varying (α))

0.00

0.50

1.00

1.50

2.00

2.50

4 8 12 16 20
Number of processors

E
ff

ic
ie

nc
y

LMT
HEFT
CPOP
PETS

 Figure 5. Efficiency

 Test Suite 2: In this test suite, we considered
application graphs of three real world problems such as
Gauss Elimination algorithm, Fast Fourier Transformation
and molecular dynamics code given in [6][12]. For the
experiment of Gauss elimination applications,
heterogeneous computing systems with five processors,
CCR and the range percentage parameters given in
Section 5.2 are used. Since the structure of the application
is known, the parameters such as number of tasks, in
degree and out degree are not needed. A new parameter
matrix size (m) is used in place of number of tasks (v).
The total number of task in a Gaussian elimination graph
is equal to (m2+m-2)/2. We evaluated the performance of
the algorithms at various matrix sizes from 5 to 15 with
an increment of one. The smallest size graph in this
experiment has 14 tasks and the largest one has 119 tasks.
The simulation results are given in Figure 6, which shows
that PETS algorithm outperforms other reported

Proceedings of the 4th International Symposium on Parallel and Distributed Computing (ISPDC’05)
0-7695-2434-6/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on September 08,2020 at 03:54:22 UTC from IEEE Xplore. Restrictions apply.

algorithms by average SLR and Efficiency for various
matrix sizes.

1.0
1.5
2.0
2.5
3.0
3.5
4.0

5 6 7 8 9 10 11 12 13 14 15
Matrix size

A
ve

ra
ge

 S
L

R

P E T S

HE FT

C P OP

LMT

 (a) Average SLR

0.00

0.20

0.40

0.60

0.80

1.00

2 4 8 16
Number of Processors

E
ff

ie
ci

en
cy

P ETS

HEFT

CP OP

LMT

 (b) Efficiency
 Figure 6. Gaussian Elimination graphs

 For FFT related experiments, only the CCR and range
percentage parameters given in Section 5.2 were used.
Since the structure of the application is known, other
parameters such as number of tasks, in degree and out
degree are not needed. The number of data points in FFT
is another parameter in our experiments, which varies
from 2 to 32 incrementing powers of 2. Figure 7(a)
presents the average SLR values for FFT graphs at
various sizes of input points. Figure 7(b) presents the
efficiency values obtained for each of the algorithms with
respect to various numbers of processors with graphs of
32 data points.

0
0.5
1

1.5
2

2.5
3

3.5

2 4 8 16 32
Input points

A
ve

ra
ge

 S
L

R

PETS
HEFT
CPOP
LMT

 (a) Average SLR

0

0.2

0.4

0.6

0.8

1

1.2

2 4 8 16
Number of Processors

E
ff

ic
ie

nc
y

PETS

HEFT

CPOP

LMT

 (b) Efficiency
 Figure 7. FFT Application graphs

The task graph of the molecular dynamics code given
in [6],[12] is also part of our experiment since it has an
irregular task graph. Since the number of task is fixed in
the application and the structure of the application is
known, only the values of CCR and the range percentage
parameters given in Section 5.2 are used in the
experiments. Figure 8 shows the performance of the
algorithms (Average SLR and Efficiency) with respect to
five different CCR values when the number of processors
is equal to seven. The simulation results show that PETS
algorithm substantially outperforms HEFT, CPOP and
LMT algorithms.

0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00

0.1 0.5 1.0 0.5 10.0
CCR

A
ve

ra
ge

 S
L

R

PETS

HEFT

CPOP

LMT

 (a) Average SLR

0.00

0.20

0.40

0.60

0.80

1.00

2 3 4 5 6 7
Number of Processors

E
ffi

ci
en

cy

PETS

HEFT

CPOP

LMT

 (b) Efficiency
 Figure 8. Molecular Dynamics Structure

Proceedings of the 4th International Symposium on Parallel and Distributed Computing (ISPDC’05)
0-7695-2434-6/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on September 08,2020 at 03:54:22 UTC from IEEE Xplore. Restrictions apply.

Table 4. Pair-Wise Comparison of the Scheduling Algorithms

6. Conclusion

The task scheduling algorithm PETS proposed here

has been proven to be better for scheduling DAG
structured applications onto heterogeneous computing
system in terms of performance matrices (average
schedule length ratio, speedup, efficiency, frequency of
best results) and scheduling time. The performance of the
PETS algorithm has been observed experimentally by
using large set of randomly generated task graphs with
various characteristics and application graphs of several
real world problems such as Gaussian Elimination, Fast
Fourier Transformation and Molecular Dynamics code.
The simulation results confirm that PETS algorithm
substantially better that of the existing algorithms such as
LMT, CPOP and HEFT in terms performance matrices.
The complexity of PETS algorithm is O (v + e) (p+log v),
which is less when compared with other scheduling
algorithms reported in this paper. We have planned to
extend this algorithm for arbitrary-connected networks
and also for the dynamic networks.

References

[1] R.L. Graham, L.E. Lawler, J.K. Lenstra, and A.H. Kan,

“Optimization and Approximation in Deterministic
Sequencing and Scheduling: A Survey”, Annals of Discrete
Mathematics, pp. 287-326, 1979.

[2] T. Cassavant and J.A. Kuhl, “Taxonomy of Scheduling in
General Purpose Distributed Memory Systems”, IEEE Trans.
Software Engineering, vol. 14, no. 2, pp. 141-154, 1988.

[3] C.C. Hui and S.T. Chanson, “Allocating Task Interaction
Graphs to Processors in Heterogeneous Networks”, IEEE
Trans. Parallel and Distributed Systems, vol. 8, no. 9, pp.
908-926, Sept. 1997.

[4] H.EI-Rewini and T.G.Lewis, “ Scheduling Parallel Program

Tasks onto Arbitrary Target Machines,”, Journal of parallel
and Distributed Computing, vol.9, pp.138-153, 1990.

[5] M.Iverson, F.Ozguner and G.Follen, “Parallelizing Existing
Applications in a Distributed Heterogeneous Environments”,
Proc. Heterogeneous Computing Workshop, pp.93-100,1995

[6] H. Topcuglou, S. Hariri and M.Y. Wu, “Performance
Effective and Low-Complexity Task Scheduling for
Heterogeneous Computing”, IEEE Trans. on Parallel and
Distributed Systems, vol 13, No.3, Feb’ 2002.

[7] M. Kafil and I. Ahmed, “Optimal Task Assignment in
Heterogeneous Distributed Computing Systems,”, IEEE
Concurrency, vol. 6, no. 3, pp. 42-51, July-Sept. 1998.

[8] M.K. Dhodhi, I.Ahmad, A. Yatama, “An Integrated
Technique for Task Matching and Scheduling onto
Distributed Heterogeneous Computing Systems”, Journal of
parallel and distributed computing “, 62, pp. 1338-1361,
2002.

[9] Atakan Dogan and Fusun Ozguner, “LDBS: A Duplication
Based Scheduling Algorithm for Heterogeneous Computing
Systems”, Proc. Int’l conf. Parallel Processing (ICPP’02).

[10] Sanjeev Basker and Prashanth C.SaiRanga, “Scheduling
Directed A-cyclic Task Graphs On Heterogeneous Network
of Workstations to Minimize Schedule Length”, Proc.
ICPPW, 2003.

[11] Rashmi Bajaj and D.P. Agrawal, “Improving Scheduling of
Tasks in a Heterogeneous Environments,”, IEEE Trans. on
Parallel and Distributed Systems, vol. 15, No.2, Feb’ 2004.

[12] S.J. Kim and J.C. Browne, “A General Approach to a
Mapping of Parallel Computation upon Multiprocessors
Architectures,”, Proc. int’l conf. parallel processing, vol. 2,
pp. 1-8,1988.

Algorithm PETS HEFT CPOP LMT COMBINED

PETS
Better
Equal
Worse

*
441
198
81

498
140
82

607
72
41

71%
19%
10%

HEFT
Better
Equal
Worse

81
198
441

*
556
38

126

657
27
36

61%
12%
27%

CPOP
Better
Equal
Worse

82
140
498

126
38

556
*

634
40
46

39%
10%
51%

LMT
Better
Equal
Worse

41
72

607

36
27

657

46
40

634
*

7%
9%

84%

Proceedings of the 4th International Symposium on Parallel and Distributed Computing (ISPDC’05)
0-7695-2434-6/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on September 08,2020 at 03:54:22 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

