
Rapid, Accurate Optimizationof Di�cult ProblemsUsing Fast Messy Genetic AlgorithmsDavid E. Goldberg, Kalyanmoy Deb,Hillol Kargupta, & Georges HarikIllinois Genetic Algorithms LaboratoryUniversity of Illinois at Urbana-ChampaignUrbana, IL 61801IlliGAL Report No. 93004February 1993
Illinois Genetic Algorithms LaboratoryDepartment of General EngineeringUniversity of Illinois at Urbana-Champaign117 Transportation Building104 South Mathews AvenueUrbana, IL 61801

Rapid, Accurate Optimization of Di�cult ProblemsUsing Fast Messy Genetic AlgorithmsDavid E. Goldberg, Kalyanmoy Deb, Hillol Kargupta, & Georges HarikIllinois Genetic Algorithms LaboratoryUniversity of Illinois at Urbana-ChampaignAbstractResearchers have long sought genetic algorithms (GAs) that can solve di�cult search, optimization,and machine learning problems quickly. Despite years of work on simple GAs and their variants it isstill unknown how di�cult a problem simple GAs can solve, how quickly they can solve it, and withwhat reliability. More radical design departures than these have been taken, however, and the messy GA(mGA) approach has attempted to solve problems of bounded di�culty quickly and reliably by takingthe notion of building-block linkage quite seriously. Early e�orts were apparently successful in achievingpolynomial convergence on some di�cult problems, but the initialization bottleneck that required a largeinitial population was thought to be the primary obstacle to faster mGA performance. This paper replacesthe partially enumerative initialization and selective primordial phase of the original messy GA withprobabilistically complete initialization and a primordial phase that performs building-block �ltering viaselection and random gene deletion. In this way, the fast mGA is able to evaluate the best building blocksfrom modestly sized populations of longer strings, thereafter cutting down the string length by throwing o�the genes of lesser importance. Design calculations are performed for population sizing, selection-deletiontiming, and genic thresholding. On problems of bounded di�culty, ranging from 30-bits to 150-bits, thefast mGA �nds global optima reliably in a time that both theoretically and empirically grows no morequickly than a subquadratic function of the number of decision variables. The paper outlines the keyremaining challenges and suggests extension of the technique to other-than-binary structures.1 IntroductionGenetic algorithms (GAs) are receiving increased attention in di�cult search, optimization, and machinelearning applications, but despite this increased interest, genetic algorithms still lack an integrated theory ofoperation that predicts how di�cult a problem GAs can solve, how long it takes to solve them, and withwhat probability and how close to a global solution the GA can be expected to come. On the one hand, itseems odd that such a theory still eludes us. Researchers have spent considerable e�ort trying to understandGAs, and important bits and pieces of such a theory have been around since the late 1960s and early 1970s.On the other hand, the simplest GAs are nonlinear, stochastic, highly dimensional algorithms operating onproblems of in�nite variety. Although recognizing these facts of GA life may not reduce our impatience, itmay help increase our understanding of why the lock to fast selectorecombinative processing has not yet beencompletely picked.Despite the lack of a completely operational theory, progress has been made in obtaining portions of one.Holland's (1975) pioneering theoretical results have led to more recent e�orts that concentrate on e�ectivebuilding-block processing through competent supply, growth, exchange, and decision making; these have ledto the threshold of a theory of the limits of simple GA processing (Goldberg, Deb, & Clark , 1992). It isunclear how far these ideas can take us, but recent e�orts have made it clear that the process is dependenton a better understanding of building-block mixing (Goldberg, Deb, & Thierens, 1993). Although many havesuggested that uniform crosses and other kinds of linkage-independent crossover operators can be adjustedto ensure building-block growth, the issue ultimately hinges on whether those surviving building blocks canactually be exchanged in a timely and stable fashion.For several years another tack has been taken toward the design of well-grounded GAs. Work on so-calledmessy genetic algorithms (mGAs) started in 1988 and was �rst published somewhat later (Goldberg, Korb, &1

Deb, 1989). That work took Holland's calls for tight linkage (Holland, 1975) quite seriously and attempted toget the linkage right prior to subsequent genetic processing. Those e�orts were fairly successful, apparentlyachieving global solutions in polynomial times in a sense similar to that of the probably almost correct (PAC)algorithms of computational learning theory (Deb, 1991; Goldberg, Deb, & Korb, 1990, 1991). In some sensethese e�orts were both good news and bad news. The good news was that hard problems could be solved inpolynomial time, and this o�ered promise that perhaps all problems of bounded di�culty could be solved asquickly. The bad news was that there appeared to be a mismatch between the amount of processing requiredfor di�erent phases of the original mGA. Although the latter phases were shown to require O(` log `) functionevaluations, where ` is the number of boolean decision variables in the problem, the initialization of the mGArequired O(`k) function evaluations, where k is an exponent that goes up as the problem becomes increasinglydi�cult. This mismatch indicated that design e�orts had not yet sharpened the mGA pencil su�ciently.In this paper, we consider one way to overcome this initialization bottleneck. In some ways we harken backto the earliest days of messy GA investigation, when strings longer than the building-block length were usedto try to get multiple copies of needed substructures in a more modestly sized population. Those originalexperiments were unsuccessful, but in the current incarnation, we try to use such probabilistically completeinitialization with a method of building-block �ltering to obtain well-tested, tight building blocks from randominitial populations of modest size. Together these two techniques allow us to obtain a collection of good buildingblocks that can then be fed to the normal apparatus of the messy GA, permitting successful juxtaposition andthe discovery of global optima with high probability with modest computational e�ort.We start by briey reviewing the mechanics of the original messy GA. We continue by describing themechanics and analysis of probabilistically complete initialization and building-block �ltering. The modi�edGA is then applied to a number of di�cult test functions, starting with a previously used order-three functionof modest size and going on up to 150-bit problems of order-�ve deception. Theoretical predictions andempirical results suggest that the procedure may be as good as subquadratic in a probably almost-correctsense. The paper concludes by outlining the investigation necessary to determine whether these results carryover to arbitrary problems of bounded di�culty.2 A Brief Review of Messy GAsIn this section, we briey review messy GAs. Readers interested in more detail should consult other sources(Deb, 1991; Deb & Goldberg, 1991; Goldberg, Deb, & Korb, 1990, 1991; Goldberg & Kerzic, 1990; Goldberg,Korb, & Deb, 1989). Speci�cally, the following topics are reviewed:1. messy codes;2. handling over- and underspeci�cation;3. mGA inner and outer loops;4. basic mGA theory;5. time-complexity estimates.In the remainder of this section, each of these is discussed in more detail.2.1 Messy codesMessy GAs are messy because they allow variable-length strings that may be under- or overspeci�ed withrespect to the problem being solved. Although many of the theoretical results are for binary strings, messyoating-point GAs have been suggested (Goldberg, Korb, & Deb, 1989) and tried (Deb, 1991), and otheroptimization, classi�cation, and machine-learning structures have been suggested. That we emphasize bitstrings is not a case of being radical bit �ddlers for its own sake; rather we are radical bit �ddlers in the nameof understanding all GAs and in the hope of developing well-grounded algorithms that converge on problemsof bounded di�culty quickly and reliably.Messy GAs relax the �xed-locus assumption of most simple GAs. This is accomplished �rst by de�ninga messy gene as an ordered pair that identi�es the gene by its name and value and then by de�ning a messy2

chromosome as a collection of messy genes. For example, imagine a problem of length ` = 3 and considerthe messy chromosome as follows: ((1 0) (2 1) (1 1)). In this string, the �rst entry is gene one withvalue one, the second entry is gene two with value one, and the third entry is gene one with value one. Sinceboth name and value are speci�ed, arbitrary building blocks may achieve tight linkage simply by having orrearranging the constituent alleles of the building block in close proximity to one another. Taking linkagetheory seriously was one of the primary design guidelines adopted throughout the mGA development process.This was important for two reasons. With tight building blocks, there is a low probability of good onesbeing destroyed by crossover and other genetic operators. Additionally, the existence of tight linkage makesit easy to exchange di�erent building blocks (Goldberg, Deb, & Thierens, 1993), thereby getting the positiverecombination of the best substructures that goes into the creation of optima or near-optima.By de�ning a messy chromosome as a collection of messy genes, notice that we have not required all genesto be present, nor have we precluded the possibility of multiple, possibly contradictory, genes. Returning tothe previous example, ((1 0) (2 1) (1 1)), notice that gene one is speci�ed in two di�erent places, andnotice that the speci�ed values are contradictory. We must have some way of overcoming this problem ofoverspeci�cation, a matter to be discussed in a moment. Moreover, if this is truly a 3-bit problem then thestring is underspeci�ed, because there is no mention of gene three. Handling over- and underspeci�cation werechallenges that were successfully addressed in the original study, and we briey consider the computationsadopted therein.2.2 Over- and underspeci�cation: Expression and competitive templatesIn the original study and all subsequent work, overspeci�cation has been handled through a gene expres-sion operator that employs a �rst-come-�rst-served rule on a left-to-right scan. For example, the string((1 0) (2 1) (1 1)) would be expressed as ((1 0) (2 1)), because the second instance of gene one wouldbe dropped on the left-to-right scan. First-come-�rst-served expression was adopted instead of alternativevoting or averaging rules, because the possibility of a proliferation of low-order, incorrect building blocks thatcan occur early as a result of population sampling and selection on misleading problems makes these alter-native schemes unreliable. It also turns out that �rst-come-�rst-served expression sets a lower bound of 0.5on the possible crossover disruption, which in turn ensures building-block growth when appropriate selectionschemes are adopted.In some problems, underspeci�cation is not a problem because any structure of any size can be interpretednaturally. In parameter optimization problems over some �xed number of parameters all decision variablesmust be supplied to the objective function to obtain a value. In messy GAs the unspeci�ed bits of a messychromosome are �lled in by a competitive template, a string that is locally optimal to the previous level. In amoment we will discuss the performance of level-wise messy GAs, but the idea here is that a locally optimalstructure is obtained at one level and substrings that overlay the locally optima structure and obtain functionvalues higher than that of the template must by de�nition contain building blocks at the next level or higher.In this way, good evaluation can be obtained of partial strings containing building blocks, and with this reliableevaluation in hand the building blocks may be recombined with other reliably evaluated building blocks toform better structures.2.3 Inner loop, outer loopThe basic inner loop of the original mGA has three phases:1. initialization;2. primordial phase;3. juxtapositional phase.This inner loop may be repeated at each building-block level, thereby ensuring that the competitive templateat the next level is su�ciently optimal to guarantee a good objective function value signal for building blocksat the next level.Initialization. Initialization in the original work was performed by creating a population with a single copyof all substrings of length k. By doing this, we know that all building blocks of the desired length are present,3

and if the genetic processing respects the good building blocks and recombines them, they can be expected togrow and form good solutions. The downside of having all these building blocks present, is that each must beevaluated to determine which are the best. This requires a population size, n = 2k �k̀�, because in a problemof `, there are a total of �k̀� gene combinations of size k, and for each gene combination there are a total of2k di�erent allele combinations.Primordial phase. Having to evaluate each of these substrings is bad enough, but if population afterpopulation requires evaluation of this many strings, the mGA becomes a very expensive a�air, indeed. Inturns out that because the initial evaluation is reliable, it is not performed repeatedly during the so-calledprimordial phase. In this phase, selection alone is run to dope the population with a high proportion of thebest building blocks. In the primordial phase, it is also common to adjust the population size to be appropriatefor the processing of the recombinative or juxtapositional phaseJuxtapositional phase. After the population is rich in copies of the best building blocks, processing proceedsthat more closely resembles that of simple GAs. During the juxtapositional phase, selection is used togetherwith a cut-and-splice operator. Although various mutation operators have been de�ned, mGA tests have neverused them. This has been done to put the algorithm to the most stringent test of its ability to exploit initialdiversity properly.The cut-and-splice operator replaces ordinary crossover operators, and the coordination of the operatoris discussed elsewhere (Goldberg, Korb, & Deb, 1989); sample code is available (Deb & Goldberg, 1991;Goldberg & Kerzic, 1989). Because the probability of cutting a parent string goes up as the string gets longer,cut and splice have two limiting types of behavior. Early on when strings are short, the chance of a cut is low,but splicing proceeds at normal rates. Therefore, early in the game, cut-and-splice behaves like splice alone,roughly doubling string lengths at each invocation. Later in a run when string lengths are long, parent stringsget cut with near certainty, and the combination of cut-and-splice acts something like the one-point crossoveroperator of simple GAs.Level-wise processing. The initial tests of the mGA were performed at a particular level, with the worstpossible competitive template, but the need for a competitive template that is optimal with respect to theprevious level has always recommended the idea of level-wise processing. Starting at level k = 1 implies theneed for an order-zero optimal template|any random string. If the mGA does its job, the resulting structuresshould be optimal to order-one and can be used as competitive templates for k = 2 processing, and so on.Deciding when to stop is not easy, and unfortunately global solutions do not come with nametags that say\Hello, I am global." Nonetheless, the mGA can be run level by level until a a good-enough solution is obtainedor the algorithm may be terminated after some speci�ed number of levels have passed with no improvement.2.4 Why do mGAs work?Like all GA theory, mGA theory of operation is something of a patchquilt, but this is not an apology. Asthe invention of the airplane and other complex systems has shown, one must divide hard design problemsinto quasi-separate subproblems (Bradshaw & Lienert, 1990; Goldberg, in press) and work relentlessly andrelatively independently on each subproblem. This is the approach that has been adopted in mGA work, andthe following subproblems have been tackled:1. Obtain and evaluate tight building blocks.2. Increase proportions of the best building blocks.3. Make good decisions among building blocks.4. Exchange building blocks well.5. Test against bounding, hard problems so results transfer to a large class of easier problems.We outline the basic argument, and although the discussion will not yet satisfy hardcore theorem-provers, webelieve that the argument is tight and leads to proofs similar to the probably almost-correct (PAC) results ofcomputational learning theory. 4

We have already seen how mGAs obtain tight building blocks through partial enumeration, and we haveseen how they are evaluated by overlaying them on top of a competitive template. Ensuring that proportionsof the best building blocks increase is a matter of satisfying an mGA-appropriate schema theorem. Duringthe juxtapositional phase, binary tournament selection is used, meaning that the best strings get somethinglike two copies. First-come-�rst-served expression ensures that currently expressed building blocks continueto survive and be expressed with a probability of roughly 0.5. Thus, calculating a growth factor, we recognizethat good building blocks get something like 2[1� 0:5] = 1 times their original numbers.In order that good decisions be made during the juxtapositional phase requires that decisions be madewell in the presence of noise. This question has been addressed elsewhere (Goldberg, Deb, & Clark, 1992),and it turns out that if populations are sized using statistical decision theory, the actual best structures willbe preferred on average over the course of a run.The question of exchanging building blocks properly has received surprisingly little attention. A recentstudy (Goldberg, Deb, & Thierens, 1993) calculated and veri�ed a control map for simple GAs processingeasy problems. These results are germane here, because mGAs that use tightly linked building blocks onhard problems are analogous to simple GAs processing alleles on easy problems. The control map shows thattypical mGA control values (binary tournament selection with s = 2 copies to the best, and splice probabilityps = 1) ensures reliably accurate mixing in the mGA.Together, these results suggest that the mGA should converge to good answers in hard problems as long aswe have some idea what hard is. mGAs have general been tested with problems by using sums of fully deceptivesubfunctions. Some (Grefenstette, in press; Mitchell & Forrest, 1991) have explicitly asked questions about therelevance of deception and implicitly (sometimes explicitly) cast doubts on studies that use deception in oneway or another. A paper devoted to doing something positive is not the place to examine the largely negativediscussions of others; however, despite these criticisms, we believe that our methodology has been sound, andthat mGA convergence and speed will hold up under other types of problem di�culty. We know now and haveknown for a long time that there is indeed more to GA hardness than deception. Isolation, misleadingness,building-block crosstalk, noise, and massive multimodality can all play a role in throwing GAs o� the track.This would seem to argue that our focus on deception has been misguided, except that deception encompassestwo of the trickiest GA roadblocks|isolation and misleadingness|and other of our e�orts have tackled theother di�culties in isolation. As was mentioned before, the lesson from the invention of the airplane and othercomplex systems is that di�cult systems must be designed by breaking the big design problem up into little,more-manageable, quasi-independent subproblems. This is what we have done.The critics criticize this and call for more elegant, highfalutin mathematics and models as the way to go;we are not at all sure how the critics know this, because we have yet been able to �nd their papers on thesesubjects. Those of us who have tried more complex analyses know that the tools|things such as di�erenceequations, di�usion models, Markov chains, information theory, and the like|are powerful, but cumbersome,and in design, cumbersome tools can be the kiss of death. Instead we have used our intuition, we have usedour imagination, we have used dimensional analysis, we have used careful bounding experiments, and we haveexibly used bailing wire and chewing gum to tie together a series of simple models that are easy to applyand have enough predictive power to guide the design process. This permits us more time to think aboutintegrating mechanism, and it gives us enough information to get the GA's parameters in the right ballparkwithout the problem-speci�c manipulation recommended elsewhere (Grefenstette, 1986). The latest fruits ofthe approach advocated here will be presented in a later section, and we will soon see how this methodologyhas apparently achieved accurate, subquadratic results on hard problems. Whether this is an importantachievement is for others to judge, but we know we would not have gotten to this threshold by prematurelycalling for rigor or elegance. Ultimately, our disagreement with these critics is a methodological dispute, andif we were engaged in science|if we were engaged in description|perhaps we could longer tolerate awedmethodologies (and ideologies and theologies) to proliferate as they have done in the complex sciences such aseconomics, psychology, political science, and the like. But since we are engaged in the design or engineeringof complex systems|since we are engaged in complex systems prescription|it seems to us that competingmethodologies and their advocates must be put to the acid test of practice. Therefore, we challenge our criticsto show similar results using their methodologies, or we ask them to join us in our patchquilt approach, or weask them to remain silent for a time while others do the heavy lifting that needs to be done. The moment willcome for their theorem proving and elegance, but that time is not now. Now is the time to invent, experimentwith, and use so-called \harmful" models like the schema theorem, deception, rough population sizing, and5

Table 1: Complexity Estimates for the Original mGA (Goldberg, Deb, & Korb, 1990)Phase SerialInitialization O(`k)Primordial 0Juxtapositional O(` log `)Overall mGA O(`k)mixing control maps to design better GAs. In our view, denigrating such useful models and replacing themwith the mysterious vaporware of unspeci�ed and uninvestigated mathematics and models is the truly harmfulact here, an act that both misunderstands the di�culty of the design task before us and is ignorant of howother complex systems have been successfuly designed.2.5 mGA time complexityOne trademark of mGA work has been the explicit concern for algorithm time complexity. The serial timecomplexity estimate of another study (Goldberg, Deb, & Korb, 1990) is presented in table 1. Looking at thetabulation it is clear that the computation is dominated by the initialization phase. Moreover, the di�erencebetween initialization at O(`k) and normal juxtapositional processing of O(` log `) is so signi�cant, we havelong wondered whether there isn't a way to get the initialization more in line with the requirements of the restof the algorithm. In the next section, we describe a modi�cation to the initialization and primordial phasesthat does just that, reducing the computational requirements of the modi�ed mGA to O(` log `) overall.3 Modi�cations for Fast mGA ProcessingAs was just pointed out, the original messy GA faces something of an initialization bottleneck, where the pricefor having all building blocks of a given size present is the need to evaluate a population of O(`k) structures.Having all structures present is certainly one way to go, but in a sense such partial enumeration seems unGA-like, and one colleague has questioned whether mGAs weren't in some sense partially substituting explicitparallelism for implicit parallelism. That criticism is correct, and in the earliest days of mGA investigation werebelled against the need for partial enumeration. Even back then we tried to run populations with smallernumbers of members and longer strings. In this way, it was hoped, we could get one or more copies of allbuilding blocks probabilistically. Those early e�orts were unsuccessful, but the idea stuck with us, and itturns out to be one of the keys to eliminating the initialization bottleneck. In this section we develop aninitialization technique called probabilistically complete initialization that permits us to create a controllednumber of copies of building blocks of speci�ed size.One of the reasons early e�orts at probabilistically-complete initialization failed was because we tried to usethe longer strings directly in the mGA. As we later found out in subsequent mGA investigation (Goldberg, Deb,& Korb, 1990), the use of long structures with a large number of errors places too much of a load of parasiticbits on the system, mistakes that cannot easily be corrected once they are tagging along. This observationsuggests that keeping long strings long is part of the problem, and the second part of our e�ort toward fastmGAs is to create a mechanism of building-block �ltering. In this way, we start with long structures, butalternatively apply selection and random deletion at speci�ed intervals. By alternating between selection anddeletion we �rst pump up the good stu� enough so that when deletion destroys some of the building blockswe need, there still remain a substantial number for subsequent processing. It turns out that the schedulingof these operators is not too tricky, and bounding calculations have been performed to guide the processprobabilistically.In what follows, we �rst examine design calculations for probabilistically complete initialization and followup with calculations that guide the sequence of operations involved in building-block �ltering. Together,these techniques replace the old initialization and primordial phases of the original mGA. The new procedurespresent the remainder of the old mGA (the juxtapositional phase) with what it needs to do its search|an6

1

10

100

1000

2 4 6 8 10 12 14 16 18 20

P
o
p
u
l
a
t
i
o
n

s
i
z
e
,

n
_
g

Initial string length, l’

k=4
k=3
k=2
k=1

Figure 1: The population size required to have one expected instance of a building block of size k in strings oflength `0 is plotted against `0. The problem size ` = 20 is assumed. The sizing requirement is about an orderof magnitude less with the reduction of building block size by one.adequate supply of good, clean building blocks|with similar reliability and much lower computational cost.3.1 Probabilistically complete initializationThere are two decisions important to the initialization of an mGA: selection of the initial string length andselection of the population size. In this subsection, we consider the e�ect each of these has on the adequacythe processing. We start by examining the e�ect of string length and continue by considering the e�ect ofpopulation size.Imagine that the initial strings are of length `0 larger than k and smaller than `. The initial populationneeds to be sized so that all gene and allele combinations of size k are included in the population. We considerthe gene-wise and allele-wise calculations separately. To have all gene combinations to order k, we calculatethe probability that a random string of size `0 contains a gene combination of size k. The number of stringsof size `0 created with ` genes is �`̀0�. The number of ways a string of size `0 contains a gene combination ofsize k may be calculated by assigning k genes to the string and then choosing the total number ways `0 � kgenes can be created from `� k genes. This quantity is �` � k`0 � k�. Thus, the probability of randomly selectinga gene combination of size k in a string of length `0 with a total number of genes ` isp(`0; k; `) = �` � k`0 � k��`̀0� : (1)Inverting this computation suggests that in each subpopulation of size ng = 1=p(`0; k; `) strings of size `0created at random, one string on average will have the desired gene combination of size k. Figure 1 showsthe variation of ng versus `0. The �gure shows that the subpopulation size reduces faster than exponentiallywith the initial string length `0. It can be shown that for large values of ` and `0, ng � (`=`0)k. For `0 � `,ng is a constant and does not depend on `. It is also interesting to note that ng reduces drastically with thereduction of k.To include all allele combinations to order k, we have to multiplyng by an appropriate factor that takes intoaccount all 2k allelic combinations and the noise faced by building-block evaluations. Elsewhere (Goldberg,7

Deb, & Clark, 1991), a population-sizing equation has been developed for simple GAs to account for thebuilding block evaluation noise: na = 2c(�)�2(m � 1)2k: (2)Here the population size is calculated in a manner so that the selection error between two competing buildingblocks is no more than a desired value �. The parameter c(�) is the square of the ordinate of a normal randomdeviate whose tail has area �, �2 is the maximum signal-to-ratio, m is the number of subfunctions. In stringsof length (`0 < `), the building block evaluation noise may be smaller than that in simple GAs, because asmaller number of stray bits are associated in the former case. The overall population size n may now becalculated by multiplying the two factors as follows:n = ngna= �`̀0��` � k`0 � k�2c(�)�2(m � 1)2k: (3)To �nd a good initial string length `0, we should try to minimize the total number of function evaluations, andsince the number of generations to convergence is roughly O(logn), minimizing n will minimize the number offunction evaluations. Looking at the population-size estimate, assuming �xed �, the primary factor to consideris ng. Since ng reduces faster than exponentially with increased `0, the best choices of `0 are likely to be veryclose to `. In our simulations, we have used `0 = `� k. With this choice, and assuming problems of �xed andbounded di�culty, na is O(`) (Goldberg, Deb, & Clark, 1991). Therefore, overall the above population sizingis O(`). This is a substantial improvement of the initialization phase from that in the original messy GAs.3.2 Building-block �ltering via selection and deletionIn the initialization procedure described in the previous subsection, strings start o� at a length near theproblem length: (`0 � `). The trick to getting the mGA to function properly is to reduce this initial lengthdown to something like the building-block length k. In this subsection, we propose to do this by alternatelyperforming selection and random deletion from strings in the population. The key to getting this to workright is to pump up enough copies of the good building blocks so that even after random deletion eliminates anumber of copies there remain one or more copies for subsequent processing. We might view this as a schematheorem for selectodeletive �ltering, and here we perform a rough analysis su�cient for design of the �lteringtechnique.We start by introducing some notation. Imagine a sequence of string-length values, starting with an initiallength �(0) = `0 and continuing with successive lengths �(1); �(2) and so on until a reduction has occurred toa size near the building-block length k. De�ne the ith length-reduction ratio as �i = �(i)=�(i�1). At the ithstage, �(i�1) � �(i) genes are randomly deleted from each string. After the reduction, selection is invoked forsome number of generations (without new evaluation) to pump the proportion of good building blocks up toa reasonable level. Thereafter another round of deletions is performed and on the process goes.To make this work we need to make sure that the disruption caused by deletion is less than the pumpingaction of selection. By analogy to the analysis of probabilistically-complete initialization calculations, tocorrectly choose a building block of size k from strings of length �(i�1) by picking �(i) genes at random, we needa building-block repetition factor = ��(i�1)�(i) � =��(i�1) � k�(i) � k � strings to have one expected copy remaining ofthe desired building block. For large values of �(i�1) and �(i) compared to k, varies as (�(i�1)=�(i))k. We maychoose �(i) so that is smaller than the number of duplicates generated by the selection operator. Di�erentstrategies can be adopted to reduce the string length from `0 down to the order k. We choose to �x to aconstant value much less than 2ts , where ts is the number of selection repetitions per length reduction. Thisis done because we expect binary tournament selection to roughly double the proportion of best individualsduring each invocation. Using the asymptotic relation for = (�(i�1)=�(i))k = ��ki , we recognize that theassumed �xed roughly implies a �xed length-reduction ration � = �i, for all i, and we calculate the totalnumber of length reductions required to reduce the string length to O(k). Assuming �nal string length equalto �k, where � � 1, the number of length reductions (tr) required is given by the equation`0=�tr = �k: (4)8

Initialize a population of strings of size `0 at randomRepeatSuccessive selections fno evaluationsgChoose `00(< `0) genes at randomSet `0 = `00Evaluate all new stringsUntil (`0 � �k)Figure 2: Some pseudo-code shows the modi�ed initialization and primordial phase with repeated selectionand deletion.Simplifying we obtain, tr = log(`=�k)= log�. This suggests that if the �(i) values are chosen to make thedeletion so that the length-reduction factor � is a constant, tr varies as O(log `). Since the population sizeis of O(`) and since the evaluation of strings is performed only once after each length reduction, the overallcomplexity of initialization and primordial phases is expected to be O(` log `). Some pseudo-code showing thecoordination of selection and deletion is presented in �gure 2. It is nice that the constant-� length reductionyields O(` log `) steps, because this matches the computational requirements of the remainder of the messyGA; however, even if this reduction were done no more quickly than bit by bit, it may be shown that theselectodeletive primordial phase requires only O(`2) time steps.Note that there is an interesting reversal here compared to the original messy GA. In the original mGAduring the original primordial phase short strings required �ll-in from the competitive template throughoutthe primordial phase. In the modi�ed procedure, the competitive template is still required, but early on itplays very little role in string evaluation, and good building-block comparison depends on good statisticaldecision making alone. As the strings shorten, the competitive template takes on a greater role, but thereduction in the role for the competitive template should make the modi�ed mGA less sensitive to the errorsin the competitive template, thereby giving a more robust procedure. Nonetheless, we still recommend thatlevel-wise processing be adopted using the best strings of one level to serve as templates for the next.4 Thresholding RevisitedTo restrict competition between building blocks with little in common, a genic thresholding mechanism hasbeen used (Goldberg, Deb, & Korb, 1990), where tournament selection between two strings is only permittedif they share a greater than expected number of genes in common. In random strings of two di�erent lengths,�1; �2, the expected number of genes in common is �1�2=`. This procedure has proven not to be adequatein the current application, and we increase the threshold value probabilistically to improve the procedure'se�ectiveness.Speci�cally, we increase the threshold by some multiple of the standard deviation:� = d�1�2` + c0(�0)�e; (5)where � is the standard deviation of the number of genes two randomly chosen strings of possibly di�eringlengths have in common, and the parameter c0(�0) is simply the ordinate of a one-sided normal distribution withtail probability �. In our simulations, we use a constant value of c0 = 3. The variance of the hypergeometricdistribution may be calculated as follows (Deb, 1991):�2 = �1(`� �1)�2(`� �2)`2(` � 1) : (6)As in the original thresholding implementation, a �rst string is chosen for the tournament, and otherstrings are checked to see if they meet the threshold requirement. As it is possible that no strings meet therequirement, a limit is placed on the number of candidate strings that can be checked to prevent checking allstrings in the population or an in�nite loop. In the original implementation this limit was called nsh, and avalue nsh = ` was found to be su�cient. Since the threshold value here is more stringent, a larger nsh value9

Table 2: The Order-Three Subfunction.String function value String function value000 28 100 14001 26 101 0010 22 110 0011 0 111 30is required and nsh = 1=�0 is used. This calculation is conservative, because the most di�cult condition isthe random population; after selection, there will be multiple copies of building blocks, and the probability of�nding similar strings is higher.5 Simulation ResultsWe present computational results using the mGA with modi�ed initialization and primordial phase on variousproblems of bounded di�culty. Results on the baseline 30-bit, order-three problem (Goldberg, Korb, & Deb,1989) are presented �rst, followed by order-�ve problems of lengths between 50 and 150.5.1 Base-line resultsThe 30-bit, order-three deceptive problem was the �rst problem that was solved using the original mGAs.Since then, a number of researchers have used that function in their studies (Dymek, 1992; Eshelman, 1991;Muhlenbein, 1991, 1992; Whitley, 1991). Ten, order-three deceptive problems are concatenated together toform a 30-bit problem. Each subfunction has two optima|a deceptive optimum (000) and a global optimum(111). With 2 optima and 10 subfunctions the problem has a total of 210 or 1,024 optima of which only oneis global. The function values of the order-three subfunction is shown in table 2. The initial string length isassumed to be 27. The population sizing is calculated using equation 3. Calculating the signal-to-noise ratiofor each subfunction using table 2, we calculate that the required population size is 3,331. A splice probabilityof one and a bit-wise cut probability of 0.03 is used. A template with all zeros is used.Figure 3 shows the population best and average function value versus generation number, where an averageof �ve runs is shown. The primordial phase lasts 28 generations. Strings are reduced in length from 27 tothree in three steps, roughly cutting by half each time. After seven generations, the string length is reducedfrom 27 to 15. At generation 15, the string length is reduced to seven, and in generation 22 the string lengthis reduced to three. Even though the primordial phase continues for 28 generations, strings are evaluated onlyfour times|generations zero, eight, 15, and 22. At generation 29, the juxtapositional phase begins. At thispoint, the building blocks are of length three and do not contain any stray bits. It takes only four generations(the minimumnumber of generations required to form a 30-bit string from three-bit building blocks by splicingalone) to �nd an instance of the global solution. In �ve randomly restarted runs, the global optimum wasfound each time, and the number of function evaluations required to �nd the global solution was no more than26,650. The original mGA was able to solve this problem in roughly 40,600 function evaluations, and althoughwe observe some improvement with the new procedure, the leverage of using fast mGAs is not substantialin smaller problems. In the following, we apply the modi�ed mGAs on large-size problems and compare thecomputational complexity with that of the original mGAs.5.2 Large-scale optimizationTo investigate whether the modi�ed mGAworks on large-scale problems, a class of order-�ve di�cult problemshas been designed. Ten, fourteen, and thirty size-�ve subfunctions are concatenated together to form 50, 70,and 150-bit problems. The order-�ve problem used here is a trap function (Deb & Goldberg, 1992) as shownin �gure 4. The �gure shows the function values as a function of unitation|the number of 1s in the bitstring. In such a function, all strings of identical unitation have identical function values. The function is fullydeceptive, as can be veri�ed with the conditions developed elsewhere (Deb & Goldberg, 1992).10

140

160

180

200

220

240

260

280

300

0 7 14 21 28 35

F
u
n
c
t
i
o
n

v
a
l
u
e

Generation Number

Juxtapositional
Phase

Primordial
Phase

Best

Average

l’=27 l’=15 l’=7 l’=3Figure 3: Population best and average function value are plotted versus generation number for the 30-bit,order-three deceptive problem using the modi�ed mGA. An average of �ve runs is shown. The primordialphase continues till generation 28. The string length reductions during the primordial phase are also shown.At each instance of string length reduction in the primordial phase, all strings are evaluated.
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5

F
u
n
c
t
i
o
n

v
a
l
u
e

UnitationFigure 4: The �ve-bit subfunction is shown versus unitation (the number of 1s in a string). The subfunctionhas two attractors, one deceptive attractor at 00000 and one global attractor at 11111.11

100000

1e+06

1e+07

1e+08

1e+09

1e+10

50 70 100 150

F
u
n
c
t
i
o
n

e
v
a
l
u
a
t
i
o
n
s

Problem length

Messy GA Complexity

Original mGA

O(l^2)

O(l)Figure 5: A graph of the number of function evaluations (averaged over �ve runs) to �nd an instance of a globalsolution is plotted versus problem length using the modi�ed messy GAs and is compared to the estimatednumber of function evaluations required by original messy GAs. The original mGA for the order-�ve problemis O(`5), but the modi�ed procedure is apparently subquadratic.The population size in each problem is calculated with equation 3. In each case the initial string lengthstarts at `0 = `�k. Thereafter the string lengths are reduced so that = 3. In all simulations, we work at levelk = 5 and use a worst-case template of all zeros. In a practical problem we should have performed levelwiseprocessing at k = 1; 2; 3; 4 and �nally 5., and this would have increased the number of function evaluations butnot the asymptotic time complexity. According to our analyses, the computational complexity of the modi�edmGAs should not be more than O(`2) and should be more like O(` log `). Figure 5 plots the total numberof function evaluations versus problem length. The ordinate is calculated as the total number of functionevaluations required to �nd one instance of the global solution. Fixing ` = 50 as the base point, two lines withO(`2) and O(`) are drawn. The experimental points are shown to be no worse than the O(`2) line.These are large, di�cult problems. For example, in the 150-bit problem the search space is of size 2150 =1:43(1045), and it has a total of 230 or more than a billion optima of which only one is the global attractor. Themodi�ed mGA required only 1:9(105) function evaluations to �nd a global optimum, which is much less thanthe number of local optima and far less than the size of the search space. Even had we performed levelwiseprocessing, the fast mGA would have remained subquadratic in asymptotic convergence rate, even thoughmore function evaluations would have been required, and clearly this is to be much preferred to the O(`5)computations of the original scheme and simple hillclimbing (Muhlenbein, 1992).Even though the modi�ed mGA compares favorably to the original scheme. It should be pointed out thatthese results were not obtained through parameter �ddling. The original mGA settings together with thedesign calculations of this paper give good results without parameter adjustment, and these results shouldscale to other problem because of the sound theoretical basis for these settings.12

5.3 An interesting connectionThe revised algorithm was designed with speed and accuracy in mind, and in one set of problems it hasapparently achieved that goal, but the overall pattern of processing makes an interesting connection withDavidor's observation of another variable-length GA (Davidor, 1989). Speci�cally, Davidor observed hisvariable-length GA going from long structures to shorter structures to longer structures, and later (Davidor,1991) labeled this an adaptation anomaly. He also gave examples of other natural systems where such anomaliestake place. Our work was not directly inspired by this example, but after we stood back from our designand results, the similarity in pattern became evident, and the long-short-long signature of the fast mGA isabsolutely essential to obtaining fast results quickly. This lends support to Davidor's having singled out theanomaly as an interesting phenomenon, and it lends support to any hypothesis that suggests that the anomalyis a necessary part of fast, e�cient processing.6 Key ChallengesThese �rst results using fast mGAs o�er more-than-a-little hope that we may be able to solve problems ofbounded di�culty quite quickly. The �ve types of function di�culty that have been identi�ed are1. isolation;2. misleadingness (deception)3. noisiness;4. crosstalk;5. massive multimodality.With these di�culties in mind there appear to be three primary challenges that must be addressed beforeclaims of mGA robustness will stand up:1. Solve problems of nonuniform scale and size.2. Attack problems with signi�cant crosstalk and noise.3. Attack massively multimodal problems.In the following, each of these is described in some detail.The test functions used here have simply taken a number of copies of the same deceptive subfunction andadded their values. This type of test function adequately tests the mGA's ability to solve either problems ofbounded isolation or bounded deception, but in mGAs there is the additional di�culty of separately evaluatingseparate building blocks. This problem has been addressed elsewhere (Goldberg, Deb, & Korb, 1990), butthese issues must be examined with the modi�ed primordial phase as well. The need to adequately evaluatebuilding blocks with lower marginal �tness contribution places the thresholding and population sizing undera stringent test, and we believe that it will be necessary to develop a model of the e�ect of thresholding onbuilding-block noise to properly account for these e�ects in the population sizing. The problems associatedwith mixed-size building-blocks appear less di�cult, and connect with previous work on null bits and variable-length substructures (Goldberg, Deb, & Korb, 1990). To solve problems with nonuniform building blocks, thelength-reduction phase should be discontinued when the string length is smaller than the maximum size ofthe building blocks. Null bits may be required to allow the smaller building blocks to be expressed withoutinhibiting other building blocks. In its present form, when a string reduction is performed, all strings arereduced to a �xed length. Variable-length reduction may be used so that the number of stray bits taggingalong with building blocks reduces.By adding together independent subfunctions, we have temporarily ignored the possibility of signi�cantsubfunction crosstalk. A reasonable model of a more di�cult problem would be one where misleading orotherwise di�cult subfunctions determined the building blocks, but the presence or absence of bit combinationsacross subfunction boundaries causes additional changes in �tness values without changing the underlyingstructure. Thinking about such functions is facilitated by some Walsh analysis (Goldberg, 1989a, 1989b), but13

another approach is simply to add noise of speci�ed variance to the underlying objective function. Experimentswith such functions is encouraging, and it appears that appropriate population sizing that accounts for thecrosstalk is all that is required to permit fast, accurate solutions. Of course such experiments should alsovalidate the fast mGA's ability to deal with noisy functions robustly.Massive multimodality challenges GAs in two ways. First, the presence of many local optima providesmany opportunities for a population to get stuck locally instead of proceeding to a global or more nearlyglobal solution. Additionally, in multimodal problems with a solution set containing more than one member,it might be desirable to have the population converge stably to all solutions or a representative subset of thesolutions. This requires the introduction of mechanisms to allow the formation of multiple, stable specieswithin separate niches or demes. Both of these issues have been addressed in the context of simple GAsunder the assumption of tight linkage (Goldberg, Deb, & Horn, 1992). In that study simple GAs without aniching mechanism were able to �nd one of a set of global solutions reliably as long as the population wasproperly sized on signal-to-noise grounds. Moreover, with niching, all global solutions were retrieved as longas the global solutions were made salient with respect to the locals through a scaling mechanism. The �rstobservation is likely to carry over to fast mGAs, but it needs to be tested, and experiments are currentlyunderway. Introducing niching techniques should address the second concern, but some means of handlingcompetitive templates is necessary. Various schemes are under consideration, from isolated subpopulations,to subpopulations with migration, to integrated niching schemes. Enough is known about various niching anddeming schemes that carrying these over to fast mGAs should be feasible. Doing so is not only importantfor solving multimodal optimization problems, but it is also critical to those genetics-based machine learningsystems in which the population contains multiple structures responsible for covering di�erent parts of asolution.Solutions to these challenges should permit fast mGAs to solve a very large spectrum of hard problemsquickly. Carrying over these techniques from binary codes to permutation codes, oating-point codes, classi�ercodes, and program codes should be relatively straightforward once the basic technique is consolidated.7 ConclusionsThe holy grail of genetic-algorithm research has been robustness|broad competence and e�ciency|becauseGA users would ultimately like to solve di�cult problems quickly with high reliability, without having totwiddle with operators, codes, or GA parameters. The search for this GA chalice has been thwarted by thelack of a fully integrated theory of GA operation, but even without the whole story in hand, the crusade hasbeen much aided by Holland's crucial illumination of the role of building blocks. Current e�orts investigatingthe critical role of building-block mixing should soon yield predictions on the limits of simple GA performanceand whether such often-suggested \�xes" as parameterized crossover, elitism, niching, and mating restrictioncan help simple GAs solve di�cult problems quickly.Early returns are mixed, but as we await these results a di�erent branch of the search-for-robustness tree hasborne its second fruit. Speci�cally, this paper has presented �rst results on fast messy genetic algorithms thatdeliver reliable solutions to certain large-scale, di�cult problems in what appears to be subquadratic time. Thisremarkable speedup over the apparent di�culty-dependent polynomial convergence of the original messy GAwas achieved by (1) initializing the population probabilistically with long structures instead of enumerativelywith short structures and (2) replacing the old selective primordial phase with a �ltering procedure thatcombines alternative invocation of selection and gene deletion. Together these two changes permit a collectionof highly �t, reliable building blocks to be found in a population of modest, O(`), size. These building blockscan then be processed by a somewhat modi�ed juxtapositional phase that requires the addition of a morestringent genic thresholding operator.The full demonstration of this capability across a spectrum of problems will be one of the most forcefulrealizations of implicit parallelism to date, but a number of challenges remain, including the investigation ofproblems with mixed size and scale, problems with crosstalk and noise, and problems with massive multimodal-ity. Techniques to tackle each of these are in hand or are in development, but among competing alternatives, itappears that mGAs o�er some of the best near-term prospects for solving hard problems quickly and reliably,once and for all. 14

AcknowledgmentsWe acknowledge the support provided by the US Army under Contract DASG60-90-C-0153 and by the NationalScience Foundation under Grant ECS-9022007.ReferencesBradshaw, G. L., & Lienert, M. (1991). The invention of the airplane. Proceedings of the Thirteenth AnnualConference of the Cognitive Science Society, 605{610.Davidor, Y. (1989). Genetic algorithms for order dependent processes applied to robot path planning. Un-published doctoral dissertation, Imperial College for Science, Technology, and Medicine, London.Davidor, Y. (1991). An adaptation anomaly of a genetic algorithm. Proceedings of the International Confer-ence on Simulation of Adaptive Behavior, 510{517.Deb, K. (1991). Binary and oating-point function optimization using messy genetic algorithms (Doctoraldissertation, University of Alabama). Dissertation Abstracts International, 52(5), 2658B. (Also availableas IlliGAL Report No. 91004).Deb, K., & Goldberg, D. E. (1991). mGA in C: A messy genetic algorithm in C (IlliGAL Report No. 91009.Urbana: University of Illinois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory.Deb, K., & Goldberg, D. E. (1992). Su�cient conditions for deceptive and easy binary functions (IlliGALReport No. 91008). Urbana: University of Illinois at Urbana-Champaign, Illinois Genetic AlgorithmsLaboratory.Deb, K., & Goldberg, D. E. (in press). Analyzing deception in trap functions. Foundations of GeneticAlgorithms.Dymek, A. (1992). An examination of hypercube implementations of genetic algorithms. (Masters thesis andReport No. AFIT/GCS/ENG/92M-02.) Ohio: Air Force Institute of Technology, Wright-Patterson AirForce Base.Eshelman, L. J. (1991). The CHC adaptive search algorithm: How to do safe search when engaging innontraditional genetic recombination. Foundations of Genetic Algorithms, 265{283.Goldberg, D. E. (1989a). Genetic algorithms and Walsh functions: Part I, a gentle introduction. ComplexSystems, 3, 129-152.Goldberg, D. E. (1989b). Genetic algorithms and Walsh functions: Part II, deception and its analysis.Complex Systems, 3, 153-171.Goldberg, D. E. (in press). Making genetic algorithms y: A lesson from the Wright Brothers. AdvancedTechnology for Developers.Goldberg, D. E., Deb, K., & Clark, J. H. (1992). Genetic algorithms, noise, and the sizing of populations.Complex Systems, 6, 333{362.Goldberg, D. E., Deb, K., & Horn, J. (1992). Massive multimodality, deception, and genetic algorithms.Parallel Problem Solving from Nature 2, 37{46.Goldberg, D. E., Deb, K., & Korb, B. (1990). Messy genetic algorithms revisited: Studies in mixed size andscale. Complex Systems, 4, 415{444.Goldberg, D. E., Deb, K., & Korb, B. (1991). Don't worry, be messy. Proceedings of the Fourth InternationalConference in Genetic Algorithms and their Applications, 24{30.Goldberg, D. E., Deb, K., & Thierens, D. (1993). Toward a better understanding of mixing in geneticalgorithms. Journal of the Society for Instrumentation and Control Engineers, 32(1), 10{16.15

Goldberg, D. E., & Kerzic, T. (1990). mGA1.0: A common LISP implementation of a messy geneticalgorithm (TCGA Report No. 90004). Tuscaloosa: University of Alabama, The Clearinghouse for GeneticAlgorithms.Goldberg, D. E., Korb, B., & Deb, K. (1989). Messy genetic algorithms: Motivation, analysis, and �rstresults. Complex Systems, 3, 493{530.Grefenstette, J. J. (1986). Optimization of control parameters for genetic algorithms. IEEE Transactions onSystems, Man, and Cybernetics, SMC-16(1), 122-128.Grefenstette, J. J. (in press). Deception considered harmful. Foundations of Genetic Algorithms.Mitchell, M., & Forrest, S. (1991). What is deception anyway? And what does it have to do with GAs?Unpublished manuscript, Los Alamos National Laboratory, Los Alamos, NM.Muhlenbein, H. (1991). Evolution in time and space|The parallel genetic algorithm. Foundations of GeneticAlgorithms, 316{337.Muhlenbein, H. (1992). How genetic algorithms really work I: Mutation and hillclimbing. Proceedings ofParallel Problem Solving from Nature 2, 15{26.Whitley, L. D. (1991). Fundamental principles of deception in genetic search. Foundations of GeneticAlgorithms, 221-241.

16

