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A Parallel Pairwise Local Sequence
Alignment Algorithm
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Abstract—Researchers are compelled to use heuristic-based
pairwise sequence alignment tools instead of Smith–Waterman
(SW) algorithm due to space and time constraints, thereby los-
ing significant amount of sensitivity. Parallelization is a possi-
ble solution, though, till date, the parallelization is restricted to
database searching through database fragmentation. In this paper,
the power of a cluster computer is utilized for developing a par-
allel algorithm, RPAlign, involving, first, the detection of regions
that are potentially alignable, followed by their actual alignment.
RPAlign is found to reduce the timing requirement by a factor of
upto 9 and 99 when used with the basic local alignment search tool
(BLAST) and SW, respectively, while keeping the sensitivity simi-
lar to the corresponding method. For distantly related sequences,
which remain undetected by BLAST, RPAlign with SW can be
used. Again, for megabase-scale sequences, when SW becomes
computationally intractable, the proposed method can still align
them reasonably fast with high sensitivity.

Index Terms—Basic local alignment search tool (BLAST),
message passing interface (MPI), parallel computing, Smith–
Waterman (SW).

I. INTRODUCTION

PAIRWISE sequence alignment is a challenging task be-
cause of the exponential growth of genomic informa-

tion, necessitating large-scale comparison of two input strings.
The size of GenBank/the European Molecular Biology Labora-
tory (EMBL)/the DNA DataBank of Japan (DDBJ) nucleotide
database is now doubling in every 15 months [1]. To search
databases to find out sequences similar to a given query se-
quence, the search programs compute an alignment score for
every sequence in the database. This score represents the de-
gree of similarity between the query and database sequence. A
dynamic programming algorithm for computing the optimal lo-
cal alignment score was first described by Smith and Waterman
[2], and later improved in [3] for linear gap penalty functions.
Though dynamic programming is the best alignment procedure
so far, but it is not suitable for large strings in terms of both
time and space. For two strings of lengths m and n, the time and
space complexities of the Smith and Waterman (SW) algorithm
are O(mn). The time and space complexity had been improved
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to O(rn) in [4], where r is the amount of allowed error, by con-
sidering only the useful part of the distance matrix. However,
for large error rates, r is O(m), so the complexity is still O(mn).
Later on, the space complexity of SW was improved to O(n) [5].
Dynamic programming has been accelerated through GLASS
by first finding exactly matching long substrings, but the time
and space complexity are still high [6]. LAGAN [7] is another
implementation of dynamic programming, but is not applicable
on a genome scale without prior information (“anchors”) that
directs comparison to orthologous regions.

There are many heuristic-based search tools, and they can
be categorized into hash-table-based search tools and suffix-
tree-based tools. FASTA [8], basic local alignment search
tool (BLAST) [9], [10], MegaBLAST [11], BL2SEQ [12],
WU-BLAST [13], PipMaker [14], Pattern Hunter [15], BLAT
[16], and SSAHA [17] are methods that belong to the cate-
gory of hash-table-based tools. These are basically achieved
by “seed-and-extend” methods. Current hash-table-based search
tools handle short queries well, but become very inefficient, in
terms of both time and space, for long queries. The limitation
of seed-and-extend methods has been overcome in [18]–[20].
In [20], a parallel technique called Pash was designed to com-
pare genome-sized datasets. However, it is not the best choice
when indels are prevalent. As mentioned in [20], Pash is rela-
tively inefficient when mapping a relatively small dataset onto
a relatively larger one.

Suffix tree is another efficient approach on which various
search tools have been developed. These include MUMmer [21],
QUASAR [22], REPuter [23], and AVID [24]. There are many
significant problems with the suffix-tree-based approach: they
manage mismatches inefficiently (they are good for highly sim-
ilar strings, but fail to recognize more distant homologies) and
they have a high space overhead.

Recent advances in parallelization make it possible to imple-
ment BLAST (http://www.ncbi.nlm.nih.gov/BLAST) in a par-
allel setup as well. Earlier works on parallel sequence search
mostly focus on distributing the query set across several cluster
nodes [25]–[27], each of which executes a serial job. Through-
put is increased, but the time for a particular query to complete
is unchanged. Other existing parallel techniques have been fo-
cusing mostly on database segmentation. In this approach, the
database is partitioned among cluster nodes and an assigned
part of the database is searched for the same query [28], [29].
This approach of database splitting was developed in the mpi-
BLAST [30]. Among the several published parallel BLAST
codes, mpiBLAST reported the highest speedup, underwent the
largest scalability tests, and has been directly integrated with the
National Center for Biotechnology Information (NCBI) toolkit.
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A subsequent efficient algorithm pioBLAST [31] was devel-
oped that has reduced nonsearch overheads of mpiBLAST by
focusing on the use of collective I/O and dynamic database parti-
tioning. The other useful works on the parallelization of BLAST
are ParAlign [32], pp-Blast [33], and ScalaBLAST [34]. All the
aforementioned parallel BLAST implementations are based on
searching database sequences in parallel by segmenting and
distributing the set of query sequences or database sequences.

Although BLAST is widely used in the bioinformatics com-
munity, it is well known to suffer from low sensitivity as com-
pared to SW. In particular for the sequences, which are distantly
related, BLAST may be unable to throw up any hit, a problem
that SW can overcome. However, SW is known to be unable
to compare two large DNA sequences due to its computational
complexity. Some attempts in developing faster, parallel imple-
mentations of the SW algorithm can be found in [35] and [36],
but these are essentially database searching algorithm. In [36], a
vector implementation of SW makes the rigorous SW competi-
tive with BLAST (within a factor of 5 or less), but for large-scale
DNA sequence, it is not practical. Few attempts have been made
for developing parallel algorithms for comparing a pair of large-
scale sequences. This requires proper fragmentation of the two
sequences, and distribution of the fragments to the different
nodes of a parallel computer. Not much work is available in
this direction probably because it has been difficult to parallelly
identify those subsequences that are actually alignable in the
two sequences, though some sequential algorithms have been
attempted in this regard [19].

In this paper, we propose an efficient algorithm, which can
overcome this problem and can align two DNA or protein se-
quences in parallel by identifying regions that are potentially
alignable (RPAs). Once this is done parallelly, the task of align-
ing these subsequences can be easily parallelized, resulting in a
gain in computation time. Such a parallel algorithm, referred to
as RPAlign, is developed in this paper.

It employs frequency counts in windows to detect the RPAs
in the two subsequences. A cluster computer is utilized for
implementing RPAlign using message passing interface (MPI).
Note that our task is not to propose a new alignment algorithm,
but to improve the time requirement, through the use of judicious
parallelism, of any pairwise local sequence alignment method.

II. SYSTEMS AND METHODS

The code is written in C using MPI. A cluster of 18 nodes is
used with Linux WS 3.0 standard operating system. Master node
consists of Intel Xeon 2.8 GHz single CPU and 1 GB RAM.
Each slave or worker node consists of Pentium IV 2.8 GHz
CPU and 512 MB RAM. The bl2seq module of NCBI BLAST
toolkit (version 2.2.15) [10] and SW implementation, ssearch34
(downloaded from the Web site of the University of Virginia),
are used for both DNA and protein sequence comparison.

III. ALGORITHM AND IMPLEMENTATION

The detection of RPA between two DNA or protein sequences
is based on the computation of the frequency of each type of
element. The system incorporates one master processor (MP)

Fig. 1. Parallel I/O and dynamic partition of the larger sequence (here, Sl ).

and n − 1 worker processors (WPs). The proposed algorithm is
described shortly in detail.

A. Efficient Data Handling for Parallel Processing

The MP and WPs parallelly read the two input sequences
Sl and Ss , assuming |Sl | > |Ss |, and determine their lengths.
Each processor (including the MP, which is treated as WP1 in
the following discussion) then extracts one overlapping subse-
quence from the larger sequence Sl . Considering that the length
of the overlapping window is denoted by w, the length of each
subsequence or fragment Fi , i = 1, 2, . . . , n, is given by

|Sl |
n

+ w

where n is the number of nodes in the cluster (see Fig. 1).
Therefore, the start and end positions of fragment Fi , denoted
by Starti and Endi , respectively, are given by

Starti = (i − 1) × |Sl |
n

+ 1

and

Endi = i × |Sl |
n

+ w.

Parallel file I/O in a shared memory framework is used
through which load balancing is performed and copying over-
head is reduced.

B. Computing Frequencies and Composite Scores

The tasks performed by processor Pi , i = 1, 2, . . . , n, are
outlined in Fig. 2. These are now described in detail.

Fi , the fragment of Sl read by Pi , is further divided into
substrings of length w by sliding it one letter at a time to
generate substrings Fij , j = 1, 2, . . . , |Fi| − w + 1. The sec-
ond sequence Ss is also divided into substrings of length w
by shifting w letters at a time to yield Ssk substrings, where
k = 1, 2, . . . , �|Ss |/w�. Then, for every possible substring Fij

or Ssk , the frequencies of each type of element are deter-
mined as fe(Fij ) or fe(Ssk ) for e = 1, 2, . . . , 5 for DNA and
e = 1, 2, . . . , 20 for protein sequence. For the DNA sequence,
elements are A, T, G, C, and N, where N stands for the unknown,
and for protein sequence, there are 20 different types of amino
acids present. A score is then computed, which is called com-
posite score (CS), on the basis of f for a substring pair. On the
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Fig. 2. Flowchart of BINARY matrix formation in each processor.

basis of this score, RPA will be detected. As protein sequences
are more complex in nature than the DNA sequences, and as
substitution matrix plays an important role for the alignment,
computation of RPA for protein sequences is much more com-
plicated than for DNA sequences. This is first described in the
following. On the other hand, as DNA sequences are usually
much larger than protein sequences, efficient data handling is
essential. For this reason, an optimization technique has been
developed.

1) Protein Sequences: For protein sequences, two different
substitution matrices, BLOSUM62 and BLOSUM50 [37], are
used, though other standard substitution matrices can also be im-
plemented. After computing the frequency fe, e = 1, 2, . . . , 20,
of all the substrings, CSs are now computed as follows:

CS(Fij , Ssk) =
20∑

e=1

Min(fe(Fij), fe(Ssk))×Mat Score(Ae,Ae)

(1)
where Mat_Score is the score for the two identical elements
(Ae ) given by the substitution matrix.

2) DNA Sequences: Here, the minimum frequencies of A,
T, G, C, and N, corresponding to each pair Fij and Ssk , are
computed. On the basis of the frequencies fe , e = 1, 2, . . . , 5,
CS is now computed as

CS(Fij , Ssk ) =
5∑

e=1

Min(fe(Fij ), fe(Ssk )). (2)

C. Generating the BINARY Matrix

It may be noted that CS is a gross overestimation of the actual
alignment score of the two substrings. This is done to ensure
that even after such an overestimation, if CS < θ, where θ is
a threshold value, then the corresponding substrings need not
be considered as they are not alignable. Now, a matrix called
BINARY of dimension �|Ss |/w� × �|Fi |/w� is generated in
node i, where each row and column represents w length of
nonoverlapping letters of Ss and Fi , respectively. Initialize BI-
NARY matrix to all 0’s. For each Ssk , k = 1, 2, . . . , �|Ss |/w�,
w consecutive fragments from Fi are used to compute w differ-
ent CS values. If any of these CS values exceeds a threshold θ,
then cells (k, j) and (k, j + 1) of BINARY matrix are set to 1

Fig. 3. Computation of BINARY matrix in processor Pi .

as w consecutive CS values cover 2w − 1 letters. Fig. 3 states
this process formally.

Note that all the w CS values need not be computed. As
soon as a value exceeding θ is obtained, the remaining substring
pairs are not considered any further. Since DNA sequences can
be extremely long, leading to high computational cost for com-
paring all the CS values with θ, a procedure for optimizing this
computation is described shortly.

The substring Fij+1 is generated by sliding Fij by one letter
to the right, i.e., to generate a new substring Fij+1 , one letter
is removed from the leftmost position and one new letter is
inserted at the rightmost position of the current substring. It can
generate two possible effects on Fij+1 .

1) If the inserted and deleted letters are the same, then f
vector of Fij and Fij+1 are the same.

2) If the inserted and deleted letters are not identical, then
the frequency of one element type (A, T, C, G, or N) is
decreased by one, and the other one is increased by one.

On the basis of the previous logic, it is clear that CS values
for DNA sequences can be changed by at most 1. Now, for
computing the value in cell (k, j) and (k, j + 1) of the BINARY
matrix, CS is first computed between Ssk and Fij . If CS >
θ, then as before, computation is discontinued and BINARY
(k, j) = BINARY(k, j + 1) = 1. However, if CS < θ, then let
θ′ = θ−CS. In this case, the next comparison needs to be made
between Fi(j+θ ′+1) and Ssk . In this way, when (j + θ′ + 1) >
w, then the search is discontinued, since under no circumstance
can any of the CS value exceed θ. If (j + θ′ + 1) < w, then the
process is repeated.

D. Merging and Redistribution

After each WPi completes the computation of the BINARY
matrix, these are transmitted to the MP. Here, the matrices are
collated side by side to yield a matrix called RPA_DETECTION
matrix. In this matrix, diagonals that are strings of all 1’s are
found. The start and end positions of these diagonals define the
RPAs. Note that there is a possibility for multiple overlapping
surfaces of similarity (diagonals) in RPA_DETECTION matrix.
As a result, there is a chance that a particular sequence fragment
may be included in multiple aligned segments. In RPAlign, this
problem is reduced by merging the adjacent overlapping diago-
nals. But the overlapping diagonals, which are not adjacent, are
also considered as RPAs, the reason being that prior knowledge
about which RPA will provide the best score is absent. The diag-
onal, which is a subset of another diagonal, is not considered as
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TABLE I
NUCLEOTIDE SEQUENCE PAIRS AND THEIR RESPECTIVE IDS AND LENGTHS

TABLE II
PROTEIN SEQUENCE PAIRS AND THEIR RESPECTIVE IDS AND LENGTHS

an RPA. Finally, all these RPAs are redistributed to each node,
including the MP, in such a way that the load balancing will be
achieved. Thereafter, each node performs the actual alignment
either by BLAST (providing RPAlign BLAST) or by SW im-
plementation (providing RPAlign SW), and alignment output is
stored in a shared memory space.

IV. RESULTS

The speed and, more importantly, the quality of alignment
of the proposed method is evaluated using a set of ten protein
and eight DNA sequence pairs, and seven megabase-scale DNA
sequence pairs. The lengths of the input sequences range from
145 to 8797 residues for protein sequences and from 723 bp
to 11.1 mb for DNA and megabase-scale DNA sequences. The
DNA sequences are described in Table I and the protein se-
quences are described in Table II. The window length w is
chosen for DNA sequences in general, as min (|Sl | /40, 25 000)
and for protein sequences of length >3 kb, w = 500 is recom-
mended. The variation of the performance of RPAlign is studied
for different values of the threshold θ in terms of the window
size (or, different values of θ/w). To ensure that the proposed
method provides high quality of alignment in terms of speed
and sensitivity, a number of experiments have been carried out
using different alignment parameters.

The first two experiments (Tables III and IV) show the sen-
sitivity comparison of DNA sequence pairs (P1–P8) using SW,
RPAlign SW, BLAST, and RPAlign BLAST. The experiments
are based on DNA matrix +5/−4, and two different gap penalties
(gap open (G/O) and gap extension (G/E) penalties) (details of
the input parameters are given in each table). Table V shows the
timing requirement of SW, RPAlign SW, BLAST, and RPAlign
BLAST based on the parameters mentioned in Table III. It also
shows the time gain (TG) attained by RPAlign SW and RPAlign

BLAST with respect to SW and BLAST, respectively. Timing
comparison based on the parameters of the second experiment
(shown in Table IV) is not given as the required time is approx-
imately the same.

To measure the sensitivity for protein sequences, ten pairs
are considered (R1–R10), out of which R5–R10 are distantly
related protein sequences and have significantly less homol-
ogy. Specially, R5 and R6 are taken from ASTRAL database
(http://astral.berkeley.edu/), where sequences have less than
40% similarity in nature [38] (see Table VII). For R1–R4,
the experiments are done based on the substitution matrices
BLOSUM62 and BLOSUM50 (see Table VI). For R5–R10, the
experiments are done based on BLOSUM50 matrix as it works
well for recognizing very distant relationship. For protein se-
quence also, RPAlign SW can achieve a TG with respect to
SW, and this is demonstrated by performing an all against all
pairwise alignment for 100 protein sequences. Note that among
the detected RPAs, there may be a few that are false positives.
In order to determine the statistical significance of the detected
RPAs, Karlin and Altschul statistics [39], [40] is implemented
in the proposed paper. The E( ) value is measured as follows:

E = KSsSle
−λS (3)

where E is the expected frequency of chance occurrence of the
RPA having similarity score S (or higher). K and λ are Karlin–
Altschul parameters, where K is a small adjustment that takes
into account the fact that optimal local alignment scores for
alignments that start at different places in the two sequences
may be highly correlated, and λ is a matrix-specific constant
needed to convert a raw score into a bit score. Since there may
be multiple nonoverlapping statistically significant RPAs, in this
case, we utilize the Karlin–Altschule sum statistics to compute
the final alignment score and E( ) value [40]. The following
equation describes the sum statistics:

Ssum = λ

r∑

i=1

Si − ln(KSsSl) − (r − 1)(ln(K))

+ 2 ln(g) − log(r!) (4)

where Si is the raw score of the ith RPA among r nonoverlapping
RPAs and g is the size of the gaps between the RPAs. The sum
score is then converted to sum probability (P -value) using the
following equation:

Pr ≈ e−S s u m Sr−1
sum

r!(r − 1)!
. (5)

RPAlign groups a set of RPAs only if the P -value is less than
the P -value of any individual RPA. From among all such groups
detected, the one having the lowest Pr -value is selected. Evi-
dently, this set of RPAs provides the optimal alignable region,
and finally, assigns the E( ) value to a group of RPAs. For details,
see [40].

The sensitivity and timing requirement of RPAlign SW, where
the RPAs are selected as before, is compared with SW im-
plementation in the following sections. In the same way, the
sensitivity and timing requirement of RPAlign BLAST is also
compared with BLAST.
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TABLE III
SENSITIVITY COMPARISON OF DNA SEQUENCES BY SW, RPALIGN SW, BLAST, AND RPALIGN BLAST

TABLE IV
SENSITIVITY COMPARISON OF DNA SEQUENCES BY SW, RPALIGN SW, BLAST, AND RPALIGN BLAST

TABLE V
TIME COMPARISON OF DNA SEQUENCES BY SW, RPALIGN SW, BLAST, AND RPALIGN BLAST

A. Sensitivity Analysis

Table III shows a comparative study of SW with RPAlign SW,
and BLAST with RPAlign BLAST with different values of θ/w
in terms of alignment score (scores in bits) and the E( ) values
of the alignments. Here, the sensitivity (S) of RPAlign SW and

RPAlign BLAST denotes the percentage of bit score with re-
spect to those of SW and BLAST, respectively. According to
Tables III and IV, irrespective of the effects of G/O and G/E,
RPAlign SW with θ/w = 0.85 always provides 100% sensitiv-
ity with respect to SW, whereas RPAlign SW with θ/w = 0.9
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TABLE VI
SENSITIVITY COMPARISON OF PROTEIN SEQUENCES BY SW, RPALIGN SW, AND BLAST USING BLOSUM62 AND BLOSUM50

TABLE VII
SENSITIVITY COMPARISON OF PROTEIN SEQUENCES BY SW, RPALIGN SW, AND BLAST

provides the sensitivity range from 83.69% to 100% and 85.41%
to 100%, respectively. To determine the statistical significance
of the aligned regions detected by the RPAs, the E( ) value is
computed. RPAlign SW with θ/w = 0.85 always provides the
same E( ) values as obtained from SW. Note that in most of
the cases, θ/w = 0.9 also provides 100% sensitivity with E( )
values similar to that of SW (except for P2 and P3 in Table III,
and P2–P4 in Table IV, where both the sensitivities and E( )
values are decreased slightly). The same sequence pairs are
also aligned by BLAST and RPAlign BLAST with θ/w = 0.9
using similar parameters as mentioned in Tables III and IV.
At the time of using G/O = −25 and G/E = −10, BLAST is
unable to align P2 (see Table III), while the sensitivities for
other pairs range from 46.64% to 100%, whereas in case of
using G/O = −8 and G/E = −6, BLAST is unable to align
P2–P4 (see Table IV), while the sensitivities for other pairs
range from 63.87% to 86.22% with respect to SW. This clearly
shows the superiority of RPAlign SW over BLAST and can
become an alternate solution while SW is unable to align two
large sequences. We have measured the sensitivities provided
by RPAlign BLAST with θ/w = 0.9, and except for P3 and P4
in Table III, RPAlign BLAST always provides 100% sensitivity
with respect to BLAST. We have also measured the sensitivities
provided by RPAlign SW with θ/w = 0.95. From Tables III and
IV, it is found that RPAlign SW with θ/w = 0.95 provides sen-
sitivities ranging from 76.93% to 100% and 77.23% to 100%,
respectively, though in a few cases, the E( ) values are not satis-
factory with respect to SW. But it still provides results superior
to BLAST in most of the cases. Based on the previous obser-
vation, we recommend to use θ/w = 0.9 at the time of running

RPAlign SW or RPAlign BLAST as it provides the optimum
sensitivity as compared with SW and BLAST, respectively.

Table VI shows the sensitivity comparisons of protein se-
quences by SW, RPAlign SW, and BLAST using two substitu-
tion matrices: BLOSUM62 and BLOSUM50. On the other hand,
Table VII shows the sensitivity comparison of protein sequences
that are distantly related in nature. From both the tables, it is
clear that among the different values of θ/w (θ/w = 4.5, 4.6,
and 4.7), RPAlign SW provides a performance similar to that of
SW using θ/w value around 4.5. The details of the TG obtained
from each of the alignment is discussed in the following section.

B. Timing Analysis

Parallel implementation of the proposed method makes it ef-
ficient in terms of speedup of the computation. The timing anal-
ysis is provided here based on the same set of DNA sequences
considered earlier. According to the timing results in Table V,
as expected, RPAlign BLAST requires the lowest computation
time followed by that for BLAST. Again SW always requires
the largest computation time, while RPAlign SW with different
values of θ/w, in general, provides an improvement over the SW
time. Among the latter, RPAlign SW with θ/w = 0.95 provides
the largest speedup. P6 presents an interesting case where no
TG is observed for θ/w = 0.85 and 0.9 since the sequences are
very similar. In fact, here the alignment time is the same as that
for SW. The additional RPA detection time results in an overall
negative TG. Moreover, it becomes evident from the result of
P6 that the detection time of RPAs is only a very small factor
of the alignment time. As can be seen from Table V, the TGs
obtained by RPAlign SW with respect to SW (except for P6)
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Fig. 4. Speed comparison among RPAlign SW, RPAlign BLAST, and BLAST.

are 28.57%–83.76%, 31.27%–88.97%, and 85.71%–99.99% for
the different values of θ/w = 0.85, 0.9, and 0.95, respectively.
Table V also shows that BLAST achieves a TG of 70%–99.97%
as compared to SW. RPAlign BLAST further improves upon the
time of BLAST (except P6) while keeping the same quality of
alignment in almost all the cases. Fig. 4 shows the speed com-
parison among RPAlign SW, BLAST, and RPAlign BLAST for
seven pairs of magabase-scale DNA sequences. For these se-
quence pairs, SW is unable to perform the alignment because
of the sequence sizes. The figure shows that RPAlign BLAST
efficiently enhances the performance of BLAST by a significant
margin. The computation time for RPAlign SW, though greater
than that for BLAST, is still manageable. Interestingly, it was
observed that BLAST shows a tendency to come closer. This
presents an interesting application of the proposed method that
can be used in conjunction with SW for megabase-scale se-
quences with high sensitivity, as characteristic of SW, but with
significantly reduced time requirement. We observed that for
the protein sequences also, RPAlign SW can achieve ∼40% TG
with respect to SW. To demonstrate this fact, in a part of the
investigation, an attempt was made to perform an all against all
pairwise alignment for 100 protein sequences (average length
>4 kb), and we obtained a significant TG without losing much
sensitivity. For 100 sequences, a total of 4950 comparisons are
performed. While SW implementation needs 47 min and 32 s,
RPAlign SW takes 29 min and 03 s, i.e., the TG is obtained by
RPAlign SW is 38.88%. BLAST has taken much lesser time,
which is only 5 min and 56 s, but at the cost of much reduced
sensitivity, and it was also unable to align in some cases.

V. DISCUSSION AND CONCLUSION

An MPI-based parallel algorithm for performing pairwise lo-
cal alignment through the detection of RPAs has been proposed.
It has been observed that the proposed method can provide an
alignment quality comparable to that of the SW algorithm while
requiring significantly less time. Although BLAST has reduced
the runtime compared with the best known SW implementation,
it has significantly low sensitivity, particularly for the sequences
that are distantly related, and thus, does not reflect the actual
biological evidence. RPAlign is not a new alignment algorithm;
rather it can be used with any existing pairwise alignment tech-

nique to enhance its performance. RPAlign SW can efficiently
detect multiple statistically significant regions in parallel. This
feature is essential for finding all exons in a multiexon gene se-
quence, all complete or partial copies of a repetitive element in
a genomic sequence or multiple domains of a protein sequence.
In contrast, the original SW implementation can show only one
optimal alignment region. If the proposed algorithm is used with
BLAST, it runs much faster with the same quality of output. If
it is used with SW implementation, then the required time is
much lesser and comparable to that of SW. The RPAlign algo-
rithm thus allows the researchers to obtain SW-like sensitivity,
while requiring significantly less time. Our aim is to enhance
the existing methodologies in terms of speed without losing the
sensitivity provided by them by utilizing the power of parallel
processing. It can efficiently align not only the large DNA se-
quences but also the more complex protein sequences, and even
the sequences that are distantly related. The efficiency of the
proposed method derives from the fact that it is able to appro-
priately prune those regions of the sequence pair that will not
take part in the final alignment (which the SW algorithm unnec-
essarily tries to align). This, in turn, results from the detection of
the regions where alignment is possible. In the case of distantly
related sequence pairs, the gain is much more, since, in these
cases, a large amount of effective pruning is possible. As can be
seen from Tables III and IV, for P7 and P8, RPAlign SW always
provides 100% sensitivity while gaining the time by increas-
ing the value of θ/w. The reason behind is that the alignable
region of the two sequences is comparatively very small with
respect to the length of the input sequences. But SW also needs
to consider unalignable regions to compute the scoring matrix.
Thus, computation time is increased unnecessarily. For exam-
ple, in case of P7 in Table III, the actual alignable region of
the two input sequences detected by the SW are only 3% and
0.82% with respect to the input sequence length. But to align
this region, SW needs to consider the entire length of the two
sequences. On the other hand, RPAlign SW with θ/w = 0.85
and 0.9 prunes the unalignable regions 0% and 71.5% from
the two input sequences, while RPAlign SW with θ/w = 0.95
prunes 70.5% and 91.7%, respectively. Thus, increased TG is
obtained while acquired sensitivity remains the same. RPAlign
SW with θ/w = 0.95 is upto 99 times faster than SW, but loses
some sensitivities in few experiments, whereas RPAlign SW
with θ/w = 0.9 is upto 9 times faster, but provides sensitivity
similar to that of SW. For megabase-scale sequences, RPAlign
BLAST is found to be three to nine times faster than BLAST.
As RPAlign produces high quality of alignment in a signifi-
cantly lesser time, we are currently investigating new multiple
sequence alignment techniques in a parallel framework. Extend-
ing the work to multiple sequence alignment is not trivial, and
will constitute an important area of future research.
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