
Algorithmica (2015) 72:430–449
DOI 10.1007/s00453-013-9859-z

Resequencing a Set of Strings Based on a Target String

Chih-En Kuo · Yue-Li Wang · Jia-Jie Liu ·
Ming-Tat Ko

Received: 8 September 2012 / Accepted: 16 December 2013 / Published online: 28 December 2013
© Springer Science+Business Media New York 2013

Abstract Given a set S = {S1, S2, . . . , Sl} of l strings, a text T , and a natural num-
ber k, find a string M , which is a concatenation of k strings (not necessarily distinct,
i.e., a string in S may occur more than once in M) from S, whose longest common
subsequence with T is largest, where a string in S may occur more than once in M .
Such a string is called a k-inlay. The resequencing longest common subsequence
problem (resequencing LCS problem for short) is to find a k-inlay for each query
with parameter k after T and S are given. In this paper, we propose an algorithm for
solving this problem which takes O(nml) preprocessing time and O(ϑkk) query time
for each query with parameter k, where n is the length of T , m is the maximal length
of strings in S, and ϑk is the length of the longest common subsequence between a
k-inlay and T .

Keywords Dynamic programming · Longest common subsequences ·
Resequencing · Inverted indexing · Totally monotone matrices

This work was supported in part by the National Science Council of the Republic of China under
contracts NSC 100-2221-E-011-067-MY3 and NSC 101-2221-E-011-038-MY3.

C.-E. Kuo · Y.-L. Wang (B)
Department of Information Management, National Taiwan University of Science and Technology,
Taipei, Taiwan
e-mail: ylwang@cs.ntust.edu.tw

J.-J. Liu
Department of Information Management, Shih Hsin University, Taipei, Taiwan

M.-T. Ko
Institute of Information Science, Academia Sinica, Taipei, Taiwan

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-013-9859-z&domain=pdf
mailto:ylwang@cs.ntust.edu.tw


Algorithmica (2015) 72:430–449 431

1 Introduction

The longest common subsequence problem, abbreviated LCS problem, is a well-
known problem in computer science which has been extensively studied in many
apparently unrelated fields, such as data comparison, speech recognition, genetic en-
gineering, editing, error correction, mathematics, syntactic pattern recognition, and
especially bioinformatics, etc., [2, 7, 8, 11, 13, 22]. Many algorithms use the dynamic
programming technique for solving the LCS problem [14, 21, 23]. A lot of variations
of LCS problems were researched such as LCS applied to matrix substructures [4],
weighted sequences [5], tree edit distances [12, 24], run length encoded strings [20],
etc. In this paper, we investigate the resequencing LCS problem which is defined as
follows:

Definition 1.1 Given a set S = {S1, S2, . . . , Sl} of l strings, a text T , and a natural
number k, a string M is called a k-mosaic string if it is a concatenation of k strings
(not necessarily distinct, i.e., a string in S may occur more than once in M) from S.
A k-mosaic string is called a k-inlay if the length of its LCS with T is maximum,
denoted by ϑk . The resequencing LCS problem is to find a k-inlay for each query
with parameter k.

For example, let S = {agc, act, aatg, ttcg} and T = agactagtc in which S1 =
agc,S2 = act, S3 = aatg, and S4 = t tcg. Both S1S1 = agcagc and S1S4 = agcttcg

are 2-inlays, and the length of their LCSs with T is 6. For k = 4, S1S2S1S4 =
agcactagcttcg is a 4-inlay, and the length of its LCS with T is ϑ4 = 9.

In [14], Hirschberg discussed a special case of the resequencing LCS problem with
k = 2. In [17], Komatsoulis and Waterman solved a special case of the resequencing
LCS problem which is described as follows. Given a database S of DNA sequences
and a query sequence T , finding two sequences C1 and C2 from S such that C1C2
has the maximum chimeric alignment score with respect to T . Komatsoulis and Wa-
terman also applied their algorithm to detect chimeric 16S rRNA artifacts in biology
[18]. Their algorithm takes O(nml) time where n is the length of T , m is the max-
imal length of strings in S, and l is the number of strings in S. In [15], Huang et
al. proposed two algorithms for solving the resequencing LCS problem. One of their
algorithms takes O(n2ml) preprocessing time and O(n3 logk) query time for find-
ing out k-inlays with respect to all substrings of T while the other algorithm takes
O(nml) preprocessing time and O(nkl) query time when considering all substrings
of T in the form T (1, j), 1 ≤ j ≤ n, i.e., the prefix of T with j characters. In this
paper, we propose two algorithms for solving the resequencing LCS problem. One of
them is for all substrings of T and the other is for all substrings in the form T (1, j),
1 ≤ j ≤ n. The former takes O(nml) preprocessing time and O(nϑk logk) query time
for finding out k-inlays with respect to all substrings of T . The latter which is modi-
fied from the former can also find out k-inlays with respect to T (1, j), for 1 ≤ j ≤ n,
in O(nml) preprocessing time and O(ϑkk) query time. Note that the query time of
our second algorithm is unrelated to n.

The main contribution of this paper is described briefly as follows. To achieve
the improvements, two inverted index representations are successively introduced to



432 Algorithmica (2015) 72:430–449

reformulate the problem. The first inverted index representation is used frequently
in the LCS problem so that the time-complexity is related to the length of an LCS.
This also improves the time-complexity of the algorithm proposed in [15] to be in
O(nϑ2

k logk) time for each query. Based on the first inverted index representation,
the second inverted index representation is introduced and we show that the second
representation has the totally monotone property. Thus the time-complexity of the
above algorithm can be done in O(nϑk log k) time. Here we want to point out that
our second inverted index representation can be used to solve the problems efficiently
when the inverted index representation is used repeatedly on its previous inverted
index table.

The remaining part of this paper is organized as follows. In Sect. 2, we briefly
introduce a modified version of Algorithm Formosa1 which was proposed in [15].
In Sect. 3, we introduce an inverted index representation of the LCS table used in
Algorithm Formosa1. Furthermore, we also propose a recurrence formula for ob-
taining all inverted indexing tables. In Sect. 4, for computing the inverted indexing
tables efficiently, we transform an inverted indexing table to another table which has
the totally monotone property. In Sect. 5, we modify our algorithm so that k-inlays
with respect to T (1, j), 1 ≤ j ≤ n, can be found in O(ϑkk) query time. Finally, the
last section contains our concluding remarks.

2 Preliminaries

Let X = x1x2x3 · · ·xr and T =t1t2 · · · tn be two strings over a finite alphabet set Σ .
Let T [i, j ] = ti ti+1 · · · tj be a substring of T . If j < i, then T [i, j ] = ε, i.e., an empty
string. Moreover, when i = 1, T [i, j ] is abbreviated as Tj . For brevity, Tn is simply
written as T . A subsequence of T [i, j ] is obtained by deleting zero or some (not
necessarily consecutive) characters in this string. A common subsequence of X and
T [i, j ] is a subsequence occurring in both X and T [i, j ]. A longest common subse-
quence (LCS for short) of X and T [i, j ] is a common subsequence of X and T [i, j ]
with the maximum length.

Definition 2.1 The length of the LCS of X and T [i, j ] is denoted by LX(i, j) for
1 ≤ i ≤ j ≤ n. Note that LX(i, j) = 0 if j < i. When X is a k-inlay with T [i, j ], we
use Lk(i, j) to replace LX(i, j) so that we can easily describe recurrence formulas
for Lk(i, j).

Definition 2.2 Let kα stand for the number bαbα−1 · · ·b0 for 0 ≤ α ≤ w if the binary
representation of k is bwbw−1 · · ·b0 and let Lkα (i, j) represent the length of the LCS
of a kα-inlay and T [i, j ]. Note that the LCS length of a k-inlay with T , i.e., ϑk , is
equal to Lk(1, n).

In [14], Hirschberg proposed a formula described in Lemma 2.3 which can be
used to solve the resequencing LCS problem. Lemma 2.4 can be proved directly by
Lemma 2.3.



Algorithmica (2015) 72:430–449 433

Lemma 2.3 ([14]) Given a string Tn and a string M = S1S2, there exists a position r ,
0 ≤ r ≤ n, in Tn such that LM(1, n) = LS1(1, r) + LS2(r + 1, n).

Lemma 2.4 Given a substring T [i, j ] of Tn and a set S = {S1, S2, . . . , Sl} of l strings,

L2α (i, j) =
{

max1≤p≤l{LSp(i, j)} if α = 0

maxi−1≤r≤j {L2α−1(i, r) + L2α−1(r + 1, j)} if α ≥ 1

where 1 ≤ i ≤ j ≤ n.

Based on Lemma 2.4, Algorithm Formosa1 proposed in [15] solves the rese-
quencing LCS problem as follows.

Algorithm Formosa1
Input: A string Tn, a set S = {S1, S2 · · · , Sl} of l strings, and a positive integer k whose

binary representation is bwbw−1 · · ·b0.
Output: Lk(1, n).
Step 1. /* Merge all LCS tables of Si , for 1 ≤ i ≤ l, and T to the LCS table L20 . */

Let L1(i, j) = max1≤p≤l{LSp
(i, j)}, where 1 ≤ i ≤ j ≤ n.

Step 2. /* Compute L2α (i, j), for 1 ≤ α ≤ w, by using Lemma 2.4. */
Compute L2α (i, j) = maxi−1≤r≤j {L2α−1 (i, r) + L2α−1(r + 1, j)}, for α =
1,2, . . . ,w, where 1 ≤ i ≤ j ≤ n.

Step 3. /* Compute Lk(i, j) by using tables L2α , for 1 ≤ α ≤ w. */
If k �= 2w , then compute Lkα

(i, j) = maxi−1≤r≤j {bα · L2α (i, r) + Lkα−1(r +
1, j)}, for α = 1,2, . . . ,w, where 1 ≤ i ≤ j ≤ n.

Step 4. Return Lk(1, n).

We use the example mentioned in Sect. 1 to illustrate Algorithm Formosa1 in
which S = {agc, act, aatg, ttcg} and T = agactagtc. In Step 1, LCS tables LS1 ,
LS2 , LS3 , and LS4 are computed. By definition, L2α (i, j) is the largest LCS value be-
tween T [i, j ] and all possible 2α-mosaic strings for some 0 ≤ α ≤ �logk�. Therefore,
table L20(i, j) as shown in Fig. 1(a) can be obtained from tables LSi

, for 1 ≤ i ≤ 4.
Note that table L20(i, j) is also computed in Step 1. Then, by Lemma 2.4, L2α+1(i, j)

can be computed by using the values in table L2α for α = 0,1, . . . , �logk� − 1 in
Step 2. Figures 1(a), 1(b), and 1(c) are tables L20 , L21 , and L22 , respectively. Note
that Figs. 1(b) and 1(c) are obtained from Figs. 1(a) and 1(b), respectively, by using
the formula described in Lemma 2.4. For example,

L21(1,4) = max
{
L20(1,1) + L20(2,4),L20(1,2) + L20(3,4),L20(1,3)

+ L20(4,4),L20(1,4)
}

= max{1 + 2,2 + 2,2 + 1,3}
= 4.



434 Algorithmica (2015) 72:430–449

j

1 2 3 4 5 6 7 8 9

L20 (1, j) 1 2 2 3 3 3 4 4 4
L20 (2, j) 0 1 1 2 3 3 3 3 3
L20 (3, j) 0 0 1 2 3 3 3 3 3
L20 (4, j) 0 0 0 1 2 2 2 2 3
L20 (5, j) 0 0 0 0 1 1 2 2 3
L20 (6, j) 0 0 0 0 0 1 2 2 3
L20 (7, j) 0 0 0 0 0 0 1 1 2
L20 (8, j) 0 0 0 0 0 0 0 1 2
L20 (9, j) 0 0 0 0 0 0 0 0 1

(a) L20 (i, j)

j

1 2 3 4 5 6 7 8 9

L21 (1, j) 1 2 3 4 5 5 5 5 6
L21 (2, j) 0 1 2 3 4 4 5 5 6
L21 (3, j) 0 0 1 2 3 4 5 5 6
L21 (4, j) 0 0 0 1 2 3 4 4 5
L21 (5, j) 0 0 0 0 1 2 3 3 4
L21 (6, j) 0 0 0 0 0 1 2 3 4
L21 (7, j) 0 0 0 0 0 0 1 2 3
L21 (8, j) 0 0 0 0 0 0 0 1 2
L21 (9, j) 0 0 0 0 0 0 0 0 1

(b) L21 (i, j)

j

1 2 3 4 5 6 7 8 9

L22 (1, j) 1 2 3 4 5 6 7 8 9
L22 (2, j) 0 1 2 3 4 5 6 7 8
L22 (3, j) 0 0 1 2 3 4 5 6 7
L22 (4, j) 0 0 0 1 2 3 4 5 6
L22 (5, j) 0 0 0 0 1 2 3 4 5
L22 (6, j) 0 0 0 0 0 1 2 3 4
L22 (7, j) 0 0 0 0 0 0 1 2 3
L22 (8, j) 0 0 0 0 0 0 0 1 2
L22 (9, j) 0 0 0 0 0 0 0 0 1

(c) L22 (i, j)

�

1 2 3 4

L−1
20 (1, �) 1 2 4 7

L−1
20 (2, �) 2 4 5 0

L−1
20 (3, �) 3 4 5 0

L−1
20 (4, �) 4 5 9 0

L−1
20 (5, �) 5 7 9 0

L−1
20 (6, �) 6 7 9 0

L−1
20 (7, �) 7 9 0 0

L−1
20 (8, �) 8 9 0 0

L−1
20 (9, �) 9 0 0 0

(d) L−1
20 (i, �)

Fig. 1 Tables L20 , L21 , L22 , and L−1
20 where S = {agc, act, aatg, ttcg} and T = agactagtc

If k = 4, then Lk(1, n) = L22(1,9) = 9. If 4 < k ≤ 7, then, by combining related
tables of L2α for α = 0,1, . . . , �logk� − 1, Lk(i, j), for 1 ≤ i ≤ j ≤ n, can also be
obtained in Step 3.

Intuitively, Step 1 of Algorithm Formosa1, which can be regarded as the pre-
processing step, takes O(n2ml) time. Steps 2–4 can be regarded as the query pro-
cedure which takes k as an input parameter. The most time-consuming steps of Al-
gorithm Formosa1 are Steps 2 and 3 which take O(n3 logk) time. Therefore, the
query time of Algorithm Formosa1 is O(n3 logk) [15]. In the next two sections, we
propose an efficient algorithm for finding Lk(i, j) with O(nml) preprocessing time
and O(nϑk logk) query time. With a minor modification, our algorithm can find out
Lk(1, n) with O(nml) preprocessing time and O(ϑkk) query time.

3 An Inverted Index Representation

First, let us observe Step 1 of Algorithm Formosa1. Intuitively, it takes O(n2m)

time to compute the lengths of LCSs between each string in S and all substrings
of T . Thus it takes O(n2ml) time for all strings in S. However, in [3], Alves et al.
presented an algorithm which can compute the lengths of LCSs between one string
and all substrings of T in O(nm) time. Hence, by using their algorithm, Step 1 can
be done in O(nml) time. To compute Lk(i, j) efficiently, we use an inverted index



Algorithmica (2015) 72:430–449 435

representation [16] to represent Lk(i, j) in the rest of this section. The resulting table
is called an inverted indexing table. That is, a nonzero value � in entry (i, j), i.e., row
i and column j , of Lk(i, j) yields a value j in entry (i, �) of the inverted indexing
table. Note that if more than one entry has the same value in a row of Lk(i, j), then
only the smallest index will be stored as the entry value in the inverted indexing table.

Definition 3.1 Let L−1
k denote the inverted indexing table of Lk . Assume that

Lk(i,0) = 0 for 1 ≤ i ≤ n. If Lk(i, j) = � and Lk(i, j − 1) �= �, for 1 ≤ i ≤ j ≤ n,
then L−1

k (i, �) = j . If no such j exists, then L−1
k (i, �) = 0.

Clearly, the values of Lk(i, j) can be obtained easily through the values of
L−1

k (i, �). In Sect. 4, we shall propose an efficient way for obtaining the inverted
indexing tables. By the definition of L−1

k , we can obtain Propositions 3.2 and 3.3
directly.

Proposition 3.2 Lk(i,L
−1
k (i, �)) = � when L−1

k (i, �) �= 0 for 1 ≤ i ≤ n.

Proposition 3.3 If L−1
k (i, � − 1) = j1 and L−1

k (i, �) = j2, then Lk(i, j) = � − 1 for
1 ≤ i ≤ n and j1 ≤ j < j2.

Definition 3.4 Let δk(i) stand for the maximum value in row i of table Lk for a
k-inlay and substring T (i, n).

By Definition 3.4, δ0(i) = 0, for i = 1,2, . . . , n. It is obvious that if δk(i) �= 0,
then L−1

k (i, �) = 0, for all � > δk(i). Figures 1(d), 2(a), and 2(b) show all values
in L−1

20 , L−1
21 , and L−1

22 , respectively, for the tables in Fig. 1. Recall that the values

in L−1
20 can be obtained from the LCS table computed by the algorithm in [3]. For

example, L−1
20 (1,1) = 1 since L20(1,1) = 1 and L20(1,0) = 0. L−1

20 (1,2) = 2 since

L20(1,2) = 2 and L20(1,1) = 1. L−1
20 (1,3) = 4 since L20(1,4) = 3 and L20(1,3) =

2 and so on. In addition, δ20(1) = 4, δ20(2) = δ20(3) = · · · = δ20(6) = 3, δ20(7) =
δ20(8) = 2, and δ20(9) = 1. Therefore, L−1

20 (2,4) = L−1
20 (3,4) = · · · = L−1

20 (6,4) = 0,

L−1
20 (7,3) = L−1

20 (7,4) = L−1
20 (8,3) = L−1

20 (8,4) = 0, and L−1
20 (9,2) = L−1

20 (9,3) =
L−1

20 (9,4) = 0.
In the following, Proposition 3.5 describes the difference between two adjacent

values in table L2α . Proposition 3.6 states the fact that all values in tables L−1
k0

and Lk0

are zero when b0 = 0. Proposition 3.7 describes the fact that the values of L−1
kα

(i, j)

can be obtained from L−1
kα−1

(i, j) directly when bα = 0. Lemmas 3.8 and 3.9 present
formulas for computing Lkα (i, j) and L2α (i, j), respectively, by using the values in
tables L−1

2α and L−1
2α−1 , respectively. Lemmas 3.10 and 3.11 provide formulas for com-

puting δkα (i) and δ2α (i), respectively, by using the values in tables L−1
2α and L−1

2α−1 ,
respectively. Note that δkα (1) (respectively, δ2α (1)) is equal to the number of columns
of table L−1

kα
(respectively, L−1

2α ). Thus we can determine the size of L−1
kα

(respec-

tively, L−1
2α ) before constructing it.



436 Algorithmica (2015) 72:430–449

Proposition 3.5 L2α (i, j + 1) − L2α (i, j) ∈ {0,1}, for 1 ≤ i ≤ j ≤ n − 1, and
L2α (i, j) − L2α (i − 1, j) ∈ {0,1}, for 2 ≤ i ≤ j ≤ n.

Proposition 3.6 If b0 = 0, then L−1
k0

(i, j) = 0 and Lk0(i, j) = 0 for 1 ≤ i ≤ j ≤ n.

Proof By Definition 2.2, if b0 = 0, then k0 = 0, and Lk0 is exactly L0. By Defini-
tion 1.1, there is no 0-mosaic string. Thus all entries in Lk0 and L−1

k0
are zero. �

Proposition 3.7 If bα = 0, then L−1
kα

(i, j) = L−1
kα−1

(i, j) for 1 ≤ α ≤ �logk�, where
1 ≤ i ≤ j ≤ n.

In Lemma 2.4, the formula L2α−1(i, r) + L2α−1(r + 1, j) is used to com-
pute L2α (i, j). Assume that r = L−1

2α−1(i, �). Then the above formula becomes

L2α−1(i,L
−1
2α−1(i, �)) + L2α−1(L

−1
2α−1(i, �) + 1, j). Since the term L−1

2α−1(i, �) + 1 is
used frequently in the rest of this paper, for brevity, we use βα(i, �) to stand for it,
i.e., βα(i, �) = L−1

2α−1(i, �) + 1.

Lemma 3.8

Lkα (i, j) =
⎧⎨
⎩

0 if L2α (i, j) = 0
Lkα−1(i, j) if bα = 0
max0≤�≤L2α (i,j){� + Lkα−1(βα+1(i, �), j)} ifbα = 1,

where 1 ≤ i ≤ j ≤ n.

Proof If L2α (i, j) = 0, then clearly L2x (i, j) = 0, for x = 0,1, . . . , α − 1. When
bα = 0, kα = kα−1. Thus, in this case, it is obvious that Lkα (i, j) = Lkα−1(i, j). For
the case where bα = 1, by Lemma 2.4 and Proposition 3.5,

Lkα (i, j) = max
i−1≤r≤j

{
L2α (i, r) + Lkα−1(r + 1, j)

}

= max
0≤�≤L2α (i,j)

{
L2α

(
i,L−1

2α (i, �)
) + Lkα−1

(
βα+1(i, �), j

)}
(1)

= max
0≤�≤L2α (i,j)

{
� + Lkα−1

(
βα+1(i, �), j

)}
. (2)

We explain the reason why setting 0 ≤ � ≤ L2α (i, j) in Eq. (1) as follows. Note that
the value of L2α (i, i − 1) is 0. The values from L2α (i, i − 1) to L2α (i, j) are consecu-
tively in the range from 0 to the value of L2α (i, j). Therefore, the range [L2α (i, i−1),

L2α (i, j)] is exactly [0,L2α (i, j)]. Note that L2α (i, j) = L−1
2α (i,L2α (i, j)). This im-

plies that 0 ≤ � ≤ L2α (i, j). By Proposition 3.2, Eq. (1) can be simplified as Eq. (2). �

Lemma 3.9 L2α (i, j) = max1≤�≤L2α−1 (i,j){� + L2α−1(βα(i, �), j)}, where 1 ≤ i ≤
j ≤ n.



Algorithmica (2015) 72:430–449 437

Proof Using a similar argument as in Lemma 3.8, we can have the following deriva-
tion:

L2α (i, j) = max
i−1≤r≤j

{
L2α−1(i, r) + L2α−1(r + 1, j)

}

= max
1≤�≤L2α−1 (i,j)

{
L2α−1

(
i,L−1

2α−1(i, �)
) + L2α−1

(
βα,(i, �), j

)}

= max
1≤�≤L2α−1 (i,j)

{
� + L2α−1

(
βα(i, �), j

)}
.

This completes the proof. �

To illustrate Lemma 3.9, we use the table in Fig. 1(d) as an example to show the
computation of L21(2,9).

L21(2,9) = max
1≤�≤L20 (2,9)

{
� + L20

(
β1(2, �),9

)}

= max
1≤�≤3

{
� + L20

(
L−1

20 (2, �) + 1,9
)}

= max
{
1 + L20

(
L−1

20 (2,1) + 1,9
)
,2 + L20

(
L−1

20 (2,2) + 1,9
)
,3

+ L20

(
L−1

20 (2,3) + 1,9
)}

= max
{
1 + L20(3,9),2 + L20(5,9),3 + L20(6,9)

}
= max{1 + 3,2 + 3,3 + 3}
= 6.

Lemma 3.10

δkα (i) =
⎧⎨
⎩

L20(i, n) if α = 0
δkα−1(i) if α > 0 and bα = 0
max1≤�≤δ2α (i){� + δkα−1(βα+1(i, �))} if α > 0 and bα = 1,

where 1 ≤ i ≤ n.

Proof By definition, if α = 0, then δkα (i) = L20(i, n). For the case where α > 0
and bα = 0, by Lemma 3.8, Lkα (i, j) = Lkα−1(i, j). This implies δkα (i) = δkα−1(i).
It remains to prove the case where α > 0 and bα = 1. We can have the following
derivations.

δkα (i) = Lkα (i, n) (3)

= max
1≤�≤L2α (i,n)

{
� + Lkα−1

(
βα+1(i, �), n

)}
(4)

= max
1≤�≤δ2α (i)

{
� + δkα−1

(
βα+1(i, �)

)}
. (5)



438 Algorithmica (2015) 72:430–449

Equation (3) is obtained by definition. By applying Lemma 3.8 on Lkα (i, n), it
yields Eq. (4). By definition, L2α (i, n) = δ2α (i) and Lkα−1(L

−1
2α (i, �) + 1, n) =

δkα−1(L
−1
2α (i, �) + 1). This results in Eq. (5) and the lemma follows. �

Lemma 3.11 δ2α (i) = max1≤�≤δ2α−1 (i){� + δ2α−1(βα(i, �))} for 1 ≤ α ≤ �logk� and
1 ≤ i ≤ n.

Proof Using a similar argument as in Lemma 3.10 and applying Lemma 3.9 on
L2α (i, n), we can have the following derivation:

δ2α (i) = L2α (i, n)

= max
1≤�≤L2α−1 (i,n)

{
� + L2α−1

(
βα(i, �), n

)}

= max
1≤�≤δ2α−1 (i)

{
� + δ2α−1

(
βα(i, �)

)}

This completes the proof. �

We also use the previous example for computing δ21(2) to illustrate Lemma 3.11.

δ21(2) = max
{
1 + δ20

(
β1(2,1)

)
,2 + δ20

(
β1(2,2)

)
,3 + δ20

(
β1(2,3)

)}
= max

{
1 + δ20

(
L−1

20 (2,1) + 1
)
,2 + δ20

(
L−1

20 (2,2) + 1
)
,3

+ δ20

(
L−1

20 (2,3) + 1
)}

= max
{
1 + δ20(2 + 1),2 + δ20(4 + 1),3 + δ20(5 + 1)

}
= max{1 + 3,2 + 3,3 + 3}
= 6.

After finding all entries of table L−1
20 , all entries of table L−1

2α can be computed by

using only the entries of L−1
2α−1 , for 1 ≤ α ≤ �logk�. Lemma 3.12 describes how to

do in this way.

Lemma 3.12

L−1
2α (i, �) =

⎧⎪⎪⎨
⎪⎪⎩

L−1
2α−1(i,1) if � = 1

min 1≤p≤δ2α−1 (i)
1≤�−p≤δ

2α−1 (βα(i,p))

{L−1
2α−1(βα(i,p), � − p)} if � ≥ 2

0 otherwise

for 1 ≤ i ≤ n, 1 ≤ � ≤ δ2α (i), and 1 ≤ α ≤ �logk�.

Proof By Lemma 2.4 and Proposition 3.5, it is obvious that if δ2α−1(i) �= 0, then
L−1

2α (i,1) = L−1
2α−1(i,1); otherwise, L−1

2α (i,1) = 0 for 1 ≤ α ≤ �logk�. All we
have to consider is the case where � ≥ 2. By definition, if L2α (i, j) = � and



Algorithmica (2015) 72:430–449 439

�

1 2 3 4 5 6

L−1
21 (1, �) 1 2 3 4 5 9

L−1
21 (2, �) 2 3 4 5 7 9

L−1
21 (3, �) 3 4 5 6 7 9

L−1
21 (4, �) 4 5 6 7 9 0

L−1
21 (5, �) 5 6 7 9 0 0

L−1
21 (6, �) 6 7 8 9 0 0

L−1
21 (7, �) 7 8 9 0 0 0

L−1
21 (8, �) 8 9 0 0 0 0

L−1
21 (9, �) 9 0 0 0 0 0

(a) L−1
21 (i, �)

�

1 2 3 4 5 6 7 8 9

L−1
22 (1, �) 1 2 3 4 5 6 7 8 9

L−1
22 (2, �) 2 3 4 5 6 7 8 9 0

L−1
22 (3, �) 3 4 5 6 7 8 9 0 0

L−1
22 (4, �) 4 5 6 7 8 9 0 0 0

L−1
22 (5, �) 5 6 7 8 9 0 0 0 0

L−1
22 (6, �) 6 7 8 9 0 0 0 0 0

L−1
22 (7, �) 7 8 9 0 0 0 0 0 0

L−1
22 (8, �) 8 9 0 0 0 0 0 0 0

L−1
22 (9, �) 9 0 0 0 0 0 0 0 0

(b) L−1
22 (i, �)

Fig. 2 L−1
21 (i, �) and L−1

22 (i, �) where S = {agc, act, aatg, ttcg} and T = agactagtc

L2α (i, j − 1) = � − 1, then L−1
2α (i, �) = j . According to Lemma 3.9, L2α (i, j) =

max1≤p≤L2α−1 (i,j){p +L2α−1(βα(i,p), j)} = �. This means that there exists a p,1 ≤
p ≤ L2α−1(i, j), such that p + L2α−1(βα(i,p), j) = �. By rearranging the previous
formula, this yields L2α−1(βα(i,p), j) = �−p. Since L2α (i, j) is an inverse function
of L−1

2α (i,p) when L−1
2α (i,p) �= 0, L−1

2α−1(βα(i,p), � − p) = j . This implies that the

computation of L−1
2α (i, �) can be expressed as min1≤p≤δ2α−1 (i){L−1

2α−1(βα(i,p), � −
p)}, for 1 ≤ i ≤ n and 1 ≤ � ≤ δ2α (i), if 1 ≤ � − p ≤ δ2α−1(βα(i,p)). Recall that
L−1

2α (i,p) = 0, for all p > δ2α (i). Thus if � − p > δ2α−1(i), then L−1
2α−1(i, � − p) = 0.

This establishes the lemma. �

We use the computation of L−1
21 (1,5) to illustrate Lemma 3.12. From L−1

21 (1,5),
we know that α = 1, i = 1, and � = 5. Thus 1 ≤ p ≤ δ2α−1(i) = δ20(1) = 4. Fur-
thermore, β1(1,1) = L−1

20 (1,1)+ 1 = 2, β1(1,2) = 3, β1(1,3) = 5, and β1(1,4) = 8.
Accordingly, δ20(β1(1,1)) = δ20(2) = 3, δ20(β1(1,2)) = δ20(3) = 3, δ20(β1(1,3)) =
δ20(5) = 3, and δ20(β1(1,4)) = δ20(8) = 2. Thus we have the following derivation.

L−1
21 (1,5) = min

1≤p≤4

1≤5−p≤δ
21−1

(
β1(1,p)

)
{
L−1

20

(
β1(1,p),5 − p

)}

= min
{
L−1

20

(
β1(1,2),5 − 2

)
,L−1

20

(
β1(1,3),5 − 3

)
,L−1

20

(
β1(1,4),5 − 4

)}
= min

{
L−1

20 (3,3),L−1
20 (5,2),L−1

20 (8,1)
}

= min{5,7,8}
= 5.

Note that, in the above example, it is not necessary to consider the case where
p = 1 since δ20(β1(1,1)) = δ20(2) = 3 which does not satisfy the inequality 1 ≤ � −
p ≤ δ2α−1(βα(i,p)). Figures 2(a) and 2(b) show the resulting L−1

21 (i, �) and L−1
22 (i, �),

respectively.



440 Algorithmica (2015) 72:430–449

Lemma 3.13 describes a recurrence formula for computing L−1
kα

(i, �) when kα is
not an integer to the power of 2.

Lemma 3.13

L−1
kα

(i, �) =

⎧⎪⎪⎨
⎪⎪⎩

L−1
2α (i,1) if � = 1

min 1≤p≤δ2α (i)
1≤�−p≤δkα−1

(βα+1(i,p))

{L−1
kα−1

(βα+1(i,p), � − p)} if � ≥ 2

0 otherwise,

for 1 ≤ i ≤ n, 1 ≤ � ≤ δkα (i), and 1 ≤ α ≤ �logk�.

Proof By definition, if � < 1, then L−1
kα

(i, �) = 0. For the case where � = 1, by the

property that L−1
2α (i,1) = L−1

2α−1(i,1), the value of L−1
2α (i,1), say j , will be the small-

est index such that Lkα (i, j) = 1. Thus, by definition, L−1
kα

(i,1) = L−1
2α (i,1). Now

we consider the case where � ≥ 2. The argument for this case is similar to that of
Lemma 3.12. We only need to replace 2α and 2α−1 with kα and kα−1, respectively.
By Lemma 3.8, we can obtain Lkα−1(βα+1(i,p), j) = � − p. After simplifying, the
resulting formula follows. �

Here, we want to point out that a k-inlay can also be constructed from table L−1
kα

(or L−1
2α ). For example, if the given k of the resequencing LCS problem is equal

to 2, then Fig. 2(a) contains all of the lengths of the LCSs between k-inlays and
all substrings of T . For example, the length of the LCS between a k-inlay and T

is δ21(1) = 6 through which we can find L−1
21 (1,6) = 9 (see Fig. 2(a)). By using

Lemmas 3.9 and 3.12 to traverse back, we can find that, by Lemma 3.12, L−1
21 (1,6) is

obtained from L−1
20 (5,3) when h = 3, and, by Lemma 3.9, p = 3 occurs at L20(1,4)

(see Fig. 1(d)). From table L−1
20 , L−1

20 (5,3) corresponds to L20(5,9). By keeping track
of the corresponding segments of S in table L20 , the value in L20(1,4) (respectively,
L20(5,9)) is obtained from LS1 (respectively, LS1 or LS4 ). Therefore, we can obtain
two 2-inlays S1S1 or S1S4 with respect to T .

4 An Efficient Way for Finding Inverted Indexing Tables

By Lemmas 2.4, 3.9, 3.12, and 3.13, a k-inlay with respect to any substring of T can
be found in O(nϑ2

k logk) time after table L−1
20 is already constructed from S and T

in the preprocessing step where S is a set of strings and T is a target string. The total
time for constructing all aforementioned inverted indexing tables takes O(nϑ2

k logk)

time. In this section, we propose an efficient way for computing each entry in tables
L−1

kα
and L−1

2α , for 1 ≤ α ≤ �logk�, in constant time so that constructing all inverted
indexing tables can be done in O(nϑk logk) time.

To build each row, say i, of table L−1
2α+1 efficiently, we construct a new inverted

indexing table. Note that, in the inverted index representation of L2α (i, j), the index
of each row is still i, for 1 ≤ i ≤ n, the index of each column becomes �, i.e., the



Algorithmica (2015) 72:430–449 441

Fig. 3 R−1
20,1

(p, �) and R−1
20,2

(p, �)

length of L2α (i, j), and its corresponding content is j . The new inverted indexing
table is denoted by R−1

2α,i . Both row and column indexes of R−1
2α,i are lengths and the

content of R−1
2α,i (p, �) is j such that L2α (L−1

2α (i,p) + 1, j) = � − p. By collecting

those nonzero items considered in Lemma 3.12 on computing L−1
2α+1(i, �), for 1 ≤

� ≤ δ2α (i), R−1
2α,i (p, �) is defined as follows:

R−1
2α,i (p, �) =

⎧⎨
⎩

L−1
2α (i,p) if � ≤ p,

L−1
2α (x, � − p) if 1 ≤ � − p ≤ δ2α (x) and x ≤ n,

n + δ2α (i) − p + 1 otherwise,
(6)

for 1 ≤ p ≤ δ2α (i), 1 ≤ � ≤ δ2α+1(i), 0 ≤ α ≤ �logk� − 1, and 1 ≤ i ≤ n where
x = βα+1(i,p).

Table R−1
2α,i is also an inverted indexing table. The value of R−1

2α,i(p, �) is the small-
est position, say j , in T such that L2α+1(i, j) = L2α (i, r) + L2α (r + 1, j) = � with
L2α (i, r) = p and L2α (r + 1, j) = � − p. Note that L2α (i, r) + L2α (r + 1, j) is the
formula used in Lemma 2.4 to find the length of the LCS of a 2α+1-inlay with T [i, j ].
For example, R−1

20,1
is an auxiliary table for computing the first row of table L−1

2 , i.e.,

L−1
2 (1, j), for 1 ≤ j ≤ n (see Fig. 3(a)). Since δ20(1) = 4 and δ21(1) = 6, R−1

20,1
is

a 4 × 6 table. The first entry in the first row of table R−1
20,1

is equal to L−1
2α (1,1)

since � ≤ p when p = � = 1. The next three entries in the first row of table R−1
20,1

are
computed as follows:

R−1
20,1

(1, �) = L−1
20

(
β1(1,1), � − 1

)

= L−1
20 (2, � − 1),

for 1 ≤ � − 1 ≤ δ20(β1(1,1)) = 3, namely 2 ≤ � ≤ 4. We can find that R−1
20,1

(1,2) =
L−1

20 (2,2 − 1) = 2,R−1
20,1

(1,3) = L−1
20 (2,3 − 1) = 4, and R−1

20,1
(1,4) = L−1

20 (2,4 −
1) = 5. Finally, the last two entries of the first row are computed by n + δ2α (i) −
p + 1 = 9 + 4 − 1 + 1 = 13. Figures 3(a) and 3(b) depict R−1

20,1
(p, �) and R−1

20,2
(p, �),

respectively.
In Fig. 4(a), we use a line to indicate the two related positions in table L20 for

each of the above computations. The first four entries in the first row of table R−1
20,1



442 Algorithmica (2015) 72:430–449

Fig. 4 An illustration for the meaning of R−1
20,1

are computed by

L1(1,1) + L1(2,1) = 1 + 0 = 1,

L1(1,1) + L1(2,2) = 1 + 1 = 2,

L1(1,1) + L1(2,4) = 1 + 2 = 3, and

L1(1,1) + L1(2,5) = 1 + 3 = 4.

Each of the above equations are indicated by a line in Fig. 4(a). Figure 4(b) shows the
values of those related entries. Note that the entries in the lower and upper triangles
of Fig. 4(b) have no values. However, to prove that this table has the totally monotone
property, we add some values to those empty entries which are defined in table R−1

2α,i .
That is, if an entry in the lower triangle (as shown in Fig. 4(b)) is empty, then its
value is set to the smallest value in that row. For an empty entry in the upper triangle,
its value is set to n + δ2α (i) − p + 1. The values inside a circle in Fig. 3(a) and 3(b)
are the values of the entries in the first and second, respectively, rows of table L−1

21 in
Fig. 2(a).

Lemma 4.1 describes the relation between tables L−1
2α and R−1

2α−1,i
.

Lemma 4.1 L−1
2α (i, �) = min1≤p≤min{�,δ2α−1 (i)}{R−1

2α−1,i
(p, �)}, for 1 ≤ α ≤ �logk�,

1 ≤ i ≤ n, and 1 ≤ � ≤ δ2α (i).

Proof By Lemma 3.12 and the definition of R−1
2α,i(p, �), for 1 ≤ i ≤ n and 1 ≤ α ≤

�logk�,

L−1
2α (i, �) = min

1≤p≤min{�,δ2α−1 (i)}
1≤�−p≤δ

2α−1 (βα(i,p))

{
L−1

2α−1

(
βα(i,p), � − p

)}

= min
1≤p≤min{�,δ2α−1 (i)}

{
R−1

2α−1,i
(p, �)

}
.

This completes the proof. �



Algorithmica (2015) 72:430–449 443

We use the third column of Fig. 3(a), i.e., R−1
20,1

(p,3), to illustrate Lemma 4.1. That

is, we can find the smallest j such that L21(1, j) = 3, equivalently L−1
21 (1,3) = j ,

through the values in column 3 of table R−1
20,1

. Namely,

j = min
1≤p≤min{3,δ1(1)}

{
R−1

20,1
(p,3)

}

= min
{
R−1

20,1
(1,3),R−1

20,1
(2,3),R−1

20,1
(3,3)

}
= {4,3,4}
= 3.

Analogous to the definition of R−1
2α,i (p, �), we also define R−1

kα,i (p, �) as follows
when kα is not an integer to the power of 2.

R−1
kα,i(p, �) =

⎧⎪⎨
⎪⎩

L−1
2α (i,p) if � ≤ p,

L−1
kα−1

(x, � − p) if 1 ≤ � − p ≤ δkα−1(x) and x ≤ n,

n + δ2α (i) − p + 1 otherwise,

for 1 ≤ p ≤ δ2α (i), 1 ≤ � ≤ δkα (i), 0 ≤ α ≤ �logk� − 1, and 1 ≤ i ≤ n where x =
βα+1(i,p).

Lemma 4.2 describes the relation between tables L−1
kα

and R−1
kα,i .

Lemma 4.2 L−1
kα

(i, �) = min1≤p≤min{�,δ2α (i)}{R−1
kα,i (p, �)} for 1 ≤ α ≤ �logk�, 1 ≤

i ≤ n, and 1 ≤ � ≤ δkα (i).

Proof By Lemma 3.13 and the definition of R−1
kα,i(p, �), for 1 ≤ i ≤ n and 1 ≤ α ≤

�logk�,

L−1
kα

(i, �) = min
1≤p≤min{�,δ2α (i)}

1≤�−p≤δkα−1
(L

−1
2α (i,p)+1)

{
L−1

kα−1

(
L−1

2α (i,p) + 1, � − p
)}

= min
1≤p≤min{�,δ2α (i)}

{
R−1

kα,i (p, �)
}
.

This completes the proof. �

For example, Figs. 5(a) and 5(b) are R−1
k1,1

(p, �) and R−1
k1,2

(p, �), for k = 3 =
21 + 20. After finding the minimum values in each column of R−1

k1,1
(p, �) and

R−1
k1,2

(p, �), we can find the corresponding values of L−1
k1

(1, �) and L−1
k1

(2, �), re-
spectively (see Fig. 6).

By the definition of R−1
2α,i (p, �) (respectively, R−1

kα,i(p, �)), each entry of table

R−1
2α,i (respectively, R−1

kα,i ) can be computed in constant time. Thus, by Lemma 4.1

(respectively, Lemma 4.2), L−1
2α (i, �) (respectively, L−1

kα
(i, �)) can be calculated in

O(δ2α−1(i)) (respectively, O(δ2α (i))) time when table L−1
2α−1 (respectively, tables



444 Algorithmica (2015) 72:430–449

�

1 2 3 4 5 6 7 8
1 1 2 4 5 15 15 15 15
2 2 2 3 4 5 14 14 14

p 3 3 3 3 4 5 9 13 13
4 4 4 4 4 5 7 9 12
5 5 5 5 5 5 6 7 9
6 9 9 9 9 9 9 10 10

(a) R−1
k1,1(p, �)

�

1 2 3 4 5 6 7 8
1 2 3 4 5 15 15 15 15
2 3 3 4 5 9 14 14 14

p 3 4 4 4 5 7 9 13 13
4 5 5 5 5 6 7 9 9
5 5 5 5 5 6 7 9 9
6 9 9 9 9 9 9 10 10

(b) R−1
k1,2(p, �)

Fig. 5 R−1
k1,1(p, �) and R−1

k1,2(p, �)

Fig. 6 L−1
k1

(i, �) �

1 2 3 4 5 6 7 8

L−1
k1

(1, �) 1 2 3 4 5 6 7 9

L−1
k1

(2, �) 2 3 4 5 6 7 9 9

L−1
k1

(3, �) 3 4 5 6 7 8 9 0

L−1
k1

(4, �) 4 5 6 7 8 9 0 0

L−1
k1

(5, �) 5 6 7 8 9 0 0 0

L−1
k1

(6, �) 6 7 8 9 0 0 0 0

L−1
k1

(7, �) 7 8 9 0 0 0 0 0

L−1
k1

(8, �) 8 9 0 0 0 0 0 0

L−1
k1

(9, �) 9 0 0 0 0 0 0 0

L−1
2α and L−1

kα−1
) is given. Obviously, table L−1

2α (respectively, L−1
kα

) can be built in
O(nδ2α (i)δ2α−1(i)) (respectively, O(nδkα (i)δ2α (i))) time. In the following, we ap-
ply a technique introduced in [1] to speed up the computations of the values in tables
L−1

2α and L−1
kα

so that these two tables can be built in O(nδ2α (i)) time and O(nδkα (i)))
time, respectively.

An m×n matrix M = (ci,j )m×n is called totally monotone [19] if either condition
(1) or (2) below holds:

(1) ci,r ≤ cj,r implies ci,s ≤ cj,s

(2) ci,r ≥ cj,r implies ci,s ≥ cj,s

for all 1 ≤ i < j ≤ m and 1 ≤ r < s ≤ n.
Totally monotone matrices have many nice properties and important applications.

For surveys and recent applications of totally monotone matrices, please refer to [6,
9, 10, 19]. Lemma 4.3 describes that all row and column minima can be found effi-
ciently.

Lemma 4.3 ([1]) All column minima of an m × n totally monotone matrix can be
determined in time O(m) when m ≥ n and O(m logn/m) when m < n, provided that
each entry in the matrix can be accessed in time O(1).

In Lemma 4.6, we show that both tables R−1
2α,i and R−1

kα,i satisfy condition (2) of
the totally monotone property. In the proof of Lemma 4.6, we shall use a property



Algorithmica (2015) 72:430–449 445

described in Lemma 4.5 which is derived from a result proposed by Alves, Cáceres,
and Song in [3] which is described in Lemma 4.4.

Lemma 4.4 (Property 2.1(3) in [3]) For all i and all j (1 ≤ i < j ≤ n), if LX(i −
1, j) = LX(i − 1, j − 1) + 1, then LX(i, j) = LX(i, j − 1) + 1.

Lemma 4.5 For all i and all j (1 ≤ i < j ≤ n), if LX(i −x, j) = LX(i −x, j −y)+
1, then LX(i, j) = LX(i, j − y) + 1, for some 1 ≤ x ≤ i and some 1 ≤ y < j − i.

Proof By repeatedly applying Lemma 4.4, this lemma follows. �

Lemma 4.6 Tables R−1
2α,i and R−1

kα,i are totally monotone matrices, for 0 ≤ α ≤
�logk� − 1 and 1 ≤ i ≤ n.

Proof We only prove that matrix R−1
2α,i is a totally monotone matrix. With a simi-

lar reasoning, we can also prove that matrix R−1
kα,i is a totally monotone matrix. By

the definition of totally monotone matrices, it suffices to show that if R−1
2α,i (p, �) ≥

R−1
2α,i (p + x, �), then R−1

2α,i(p, � + 1) ≥ R−1
2α,i (p + x, � + 1) for 1 ≤ x ≤ δ2α (i) − p.

By the construction of R−1
2α,i , we consider the following three cases.

Case 1. � ≤ p. In this case, R−1
2α,i (p, �) = L−1

2α (i,p) and R−1
2α,i(p + x, �) =

L−1
2α (i,p + x). Since L−1

2α (i,p + x) > L−1
2α (i,p), R−1

2α,i(p, �) < R−1
2α,i(p + x, �), for

1 ≤ x ≤ δ2α (i) − p. Thus this case is impossible.
Case 2. 1 ≤ � − p ≤ δ2α (βα(i,p)) and βα(i,p) ≤ n. By the assumption that

R−1
2α,i (p, �) ≥ R−1

2α,i (p + x, �), we may assume that R−1
2α,i(p, �) = j and R−1

2α,i (p +
x, �) = j ′ with j ′ ≤ j . By R−1

2α,i (p, �) = j , this implies that there exists i ≤
r ≤ j such that L2α+1(i, j) = L2α (i, r) + L2α (r + 1, j) = � with L2α (i, r) = p

and L2α (r + 1, j) = � − p. By R−1
2α,i(p + x, �) = j ′, this implies that there ex-

ist r < r ′ ≤ j ′ ≤ j such that L2α+1(i, j ′) = L2α (i, r ′) + L2α (r ′ + 1, j ′) = � with
L2α (i, r ′) = p + x and L2α (r + 1, j ′) = � − (p + x). Accordingly, R−1

2α,i (p, � + 1)

yields L2α+1(i, j + d1) = L2α (i, r) + L2α (r + 1, j + d1) = � + 1 with L2α (i, r) = p

and L2α (r +1, j +d1) = �+1−p, and R−1
2α,i (p+x, �+1) yields L2α+1(i, j ′ +d2) =

L2α (i, r ′)+L2α (r ′ + 1, j ′ +d2) = �+ 1 with L2α (i, r ′) = p +x and L2α (r ′ + 1, j ′ +
d2) = � + 1 − (p + x). All we have to prove is that d2 ≤ d1 holds. By Lemma 4.5, if
LX(r + 1, j + d1) = LX(r + 1, j) + 1, then LX(r ′ + 1, j + d1) = LX(r ′ + 1, j) + 1,
for r < r ′ ≤ j < j + d1. That is, if L2α (r + 1, j + d1) = L2α (r + 1, j) + 1, then
L2α (r ′ + 1, j + d1) = L2α (r ′ + 1, j) + 1, for r < r ′ ≤ j < j + d1. As a consequence,
L2α (r ′ + 1, j + d1) = L2α (r ′ + 1, j) + 1 ≥ L2α (r ′ + 1, j ′) + 1 = � + 1 − (p + x).
This implies that there exists d2 with d2 ≤ d1 such that L2α (r ′ + 1, j ′ + d2) =
� + 1 − (p + x). Thus this case holds.

Case 3. � − p > δ2α (βα(i,p)) or βα(i,p) > n. In this case, by definition,
R−1

2α,i (p, �) = R−1
2α,i (p, � + 1) = n + δ2α (i) − p + 1. If 1 ≤ (� + 1) − (p + x) ≤

δ2α (βα(i,p + x)) and βα(i,p + x) ≤ n, then, by definition, R−1
2α,i (p + x, � + 1) =

L−1
2α (βα+1(i,p + x), (� + 1) − (p + x)) ≤ n < n + δ2α (i) − p + 1 = R−1

2α,i (p, � + 1);



446 Algorithmica (2015) 72:430–449

otherwise, R−1
2α,i(p + x, � + 1) = n + δ2α (i) − (p + x) + 1 < n + δ2α (i) − p + 1 =

R−1
2α,i (p, � + 1). This completes the proof. �

By Lemmas 4.3 and 4.6, it is easy to see that all entries in a row of L−1
2α (respec-

tively, L−1
kα

) can be computed in O(δ2α (i)) (respectively, O(δkα (i))) time. Therefore,

all entries of table L−1
2α (respectively, L−1

kα
) can be computed in O(nδ2α (i)) (respec-

tively, O(nδkα (i))) time. Now we are at a position to describe our algorithm for
solving the resequencing LCS problem. For simplicity, we only describe the query
procedure as follows.

Algorithm Mosaic1

Input: A positive integer k and table L−1
20 (i, �), for 1 ≤ i ≤ n and 1 ≤ � ≤ δ20(1).

Output: Lk(i, j) for 1 ≤ i ≤ j ≤ n.
Step 1. Compute L−1

2α (i, �) by using the formula in Lemma 4.1, for 1 ≤ α ≤ �log k�,
1 ≤ i ≤ n, and 1 ≤ � ≤ δ2α (i).

Step 2. If k = 2w , then find Lk(i, j), for 1 ≤ i ≤ j ≤ n, from table L−1
2w and return.

Step 3. If k �= 2w , then do the following substeps.

Substep 3.1. Compute L−1
kα

(i, �) by using the formulas in Lemma 4.2 and
Propositions 3.6 and 3.7, for 1 ≤ α ≤ �log k�, 1 ≤ i ≤ n, and 1 ≤ � ≤ δα(i).

Substep 3.2. Find Lk(i, j), for 1 ≤ i ≤ j ≤ n, from table L−1
kw

and return.

We summarize our result as the following theorem.

Theorem 4.7 The preprocessing procedure of the resequencing LCS problem can be
done in O(nml) time. The query procedure of the resequencing LCS problem can be
done in O(nϑk logk) time. Furthermore, inlays with respect to all substrings of T

can also be found.

Proof The correctness of Algorithm Mosaic1 directly follows from Proposi-
tions 3.6 and 3.7, Lemmas 3.8, 3.9, and 4.6. Now we analyze the time-complexity
of Algorithm Mosaic1. Using the formulas in Lemmas 4.1 and 4.2, Step 1 and
Substep 3.1, respectively, can be done in O(nϑk log k) time. Clearly, in Step 2
and Substep 3.2, Lk(i, j), namely the lengths of the LCSs of all k-inlays with T ,
for 1 ≤ i ≤ j ≤ n, can be found in O(nϑk) time. Therefore, the query time is
O(nϑk log k). This completes the proof. �

5 Computing Lk(1, j)

In this section, we introduce how to compute Lk(1, j) for 1 ≤ j ≤ n efficiently. Since
Lk(1, j), for 1 ≤ j ≤ n, are always from position 1 of T , we can modify tables L−1

kα



Algorithmica (2015) 72:430–449 447

Fig. 7 R−1
4 (p, �) �

1 2 3 4 5 6 7 8 8
1 1 2 4 5 17 17 17 17 17
2 2 2 3 4 5 16 16 16 16
3 3 3 3 4 5 9 15 15 15

p 4 4 4 4 4 5 7 9 14 14
5 5 5 5 5 5 6 7 9 13
6 6 6 6 6 6 6 7 9 12
7 7 7 7 7 7 7 7 8 9
8 9 9 9 9 9 9 9 9 10

and R−1
kα,i so that they can be computed efficiently. The modified tables are named

as L−1
h (�) and R−1

h (p, �), respectively, for 1 ≤ h ≤ k. First, we define L−1
h (�) as

follows:

L−1
h (�) =

⎧⎪⎪⎨
⎪⎪⎩

L−1
h−1(1) if � = 1

min 1≤p≤δh−1(1)

1≤�−p≤δ
20 (β′

h
(p))

{L−1
20 (β ′

h(p), � − p)} if � ≥ 2

0 otherwise,

for 1 ≤ � ≤ δh(1) and 2 ≤ h ≤ k, where β ′
h(p) = L−1

h−1(p) + 1.

In addition, table R−1
h (p, �) is defined as follows.

R−1
h (p, �) =

⎧⎪⎨
⎪⎩
L−1

h−1(p) if � ≤ p,

L−1
20 (β ′

h(p), � − p) if 1 ≤ � − p ≤ δ20(β ′
h(p)) and β ′

h(p) ≤ n,

n + δh−1(1) − p + 1 otherwise,

for 1 ≤ p ≤ δh−1(1), 1 ≤ � ≤ δh(1), and 2 ≤ h ≤ k.
Analogous to Lemma 4.1, Lemma 5.1 describes the relation between tables L−1

h

and R−1
h and we also omit the proof. Note that we use R−1

h as an auxiliary table for
computing L−1

h but not L−1
h+1.

Lemma 5.1 L−1
h (�) = min1≤p≤min{�,δh−1(1)}{R−1

h (p, �)}, for 1 ≤ � ≤ δα(1) and 2 ≤
h ≤ k.

Figure 7 is an illustration for computing L−1
4 by using the formula described in

Lemma 5.1. After finding the minimum value in each column of R−1
4 (p, �), we can

find the corresponding values of L−1
4 (�) (see Fig. 2(b)). Note that R−1

4 (p, �) itself is
computed through tables L−1

3 and L−1
20 (see the first row in Figs. 6 and 1(d), respec-

tively).
Similar to Lemma 4.6, Lemma 5.2 shows that matrices R−1

h are totally monotone
matrices, for h = 2,3, . . . , k, and we omit the proof.

Lemma 5.2 Matrices R−1
h are totally monotone matrices, for h = 2,3, . . . , k.

With a minor modification of Algorithm Mosaic1, Algorithm Mosaic2 is pro-
posed as follows.



448 Algorithmica (2015) 72:430–449

Algorithm Mosaic2

Input: A positive integer k and L−1
20 (i, �), 1 ≤ i ≤ n and 1 ≤ � ≤ δ20 (1).

Output: Lk(1, j), for 1 ≤ j ≤ n.
Step 1. Compute L−1

h
(�) by using the formula in Lemma 5.1 for 1 ≤ � ≤ δh(1) where

h = 2,3, . . . , k.
Step 2. Return Lk(1, j), for 1 ≤ j ≤ n, by scanning L−1

k
(�).

Theorem 5.3 The query procedure for finding inlays with respect to all substrings
T (1, j), 1 ≤ j ≤ n, can be done in O(ϑkk) time.

Proof The correctness of Algorithm Mosaic2 is similar to that of Algorithm Mo-
saic1. In Algorithm Mosaic2, by using the formula in Lemma 5.1, Step 1 can
be done in O(ϑkk) time. Clearly, Step 2 takes at most O(ϑk) time. Note that if con-
secutive entries of T have the same Lk(1, j), we only return one value of Lk(1, j)

companied with this consecutive interval. This completes the proof. �

6 Concluding Remarks

In this paper, we propose two algorithms for solving the resequencing LCS problem.
Both algorithms take O(nml) preprocessing time. The time-complexities of their
query time are O(nϑk logk) and O(ϑkk), respectively, where the former is used to
find inlays with respect to all substrings of T while the latter is for finding inlays with
respect to all substrings T (1, j), 1 ≤ j ≤ n. The reason why our proposed algorithms
can be performed efficiently is that tables R−1

2α,i have the totally monotone property.
This raises the following interesting questions: (1) Is it possible to further improve
the results? (2) Which kind of inverted indexing tables have the totally monotone
property?

Acknowledgements The authors would like to thank anonymous referees for their careful reading with
corrections and useful comments which helped to improve the paper.

References

1. Aggarwal, A., Klawe, M.M., Moran, S., Shor, P., Wilber, R.: Geometric applications of a matrix-
searching algorithm. Algorithmica 2(1), 195–208 (1987)

2. Aho, A., Hirschberg, D., Ullman, J.: Bounds on the complexity of the longest common subsequence
problem. J. ACM 23(1), 1–12 (1976)

3. Alves, C.E.R., Cáceres, E.N., Song, S.W.: An all-substrings common subsequence algorithm. Discrete
Appl. Math. 156(7), 1025–1035 (2008)

4. Amir, A., Hartman, T., Kapah, O., Shalom, R., Tsur, D.: Generalized LCS. Theor. Comput. Sci.
409(3), 438–449 (2008)

5. Amir, A., Gothilf, T., Shalom, R.: Weighted LCS. In: Proceedings of Combinatorial Algorithms: 20th
International Workshop, IWOCA 2009, pp. 36–47 (2009)

6. Bein, W.W., Golin, M.J., Larmore, L.L., Zhang, Y.: The Knuth-Yao quadrangle-inequality speedup is
a consequence of total-monotonicity. In: Proceedings of the 7th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA 2006), pp. 31–40 (2006)



Algorithmica (2015) 72:430–449 449

7. Bergroth, L., Hakonen, H., Raita, T.: A survey of longest common subsequence algorithms. In: Pro-
ceedings of 7th Symposium on String Processing and Information Retrieval (SPIRE 2000), pp. 39–48
(2000)

8. Brent, R.P.: The parallel evaluation of general arithmetic expressions. J. ACM 21, 201–206 (1974)
9. Burkard, R.E.: Monge properties, discrete convexity and applications. Eur. J. Oper. Res. 176(1), 1–14

(2007)
10. Burkard, R.E., Klinz, B., Rudolf, R.: Perspectives of Monge properties in optimization. Discrete Appl.

Math. 70(2), 95–161 (1996)
11. Chvatal, V., Klarner, D.A., Knuth, D.E.: Selected combinatorial research problem. Technical Report

CS-TR-72-292, Stanford University (1972)
12. Demaine, E.D., Mozes, S., Rossman, B., Weimann, O.: An optimal decomposition algorithm for tree

edit distance. In: Proc. 34th International Colloquium on Automata, Languages and Programming
(ICALP). Lecture Notes in Computer Science, vol. 4596, pp. 146–157 (2007)

13. Gusfield, D.: Algorithms on Strings, Trees and Sequences: Computer Science and Computational
Biology. Cambridge University Press, Cambridge (1997)

14. Hirschberg, D.S.: Algorithms for the longest common subsequence problem. J. ACM 24(4), 664–675
(1977)

15. Huang, K.S., Yang, C.B., Tseng, K.T., Peng, Y.H., Ann, H.Y.: Dynamic programming algorithms for
the mosaic longest common subsequence problem. Inf. Process. Lett. 102, 99–103 (2007)

16. Knuth, D.E.: The Art of Computer Programming, pp. 560–563. Addison-Wesley, Reading (1973)
17. Komatsoulis, G.A., Waterman, M.S.: Chimeric alignment by dynamic programming: algorithm and

biological uses. In: RECOMB97: Proceedings of the First Annual International Conference on Com-
putational Molecular Biology, pp. 174–180. ACM Press, New York (1997)

18. Komatsoulis, G.A., Waterman, M.S.: A new computational method for detection of chimeric 16S
rRNA artifacts generated by PCR amplification from mixed bacterial populations. Appl. Environ.
Microbiol. 63(6), 2338–2346 (1997)

19. Landau, G.M., Ziv-Ukelson, M.: On the common substring alignment problem. J. Algorithms 41(2),
338–359 (2001)

20. Liu, J.J., Wang, Y.L., Lee, R.C.T.: Finding a longest common subsequence between a run-length-
encoded string and an uncompressed string. J. Complex. 24, 173–184 (2008)

21. Masek, W.J., Paterson, M.S.: A faster algorithm computing string edit distances. J. Comput. Syst. Sci.
20, 18–31 (1980)

22. Modelevsky, J.: Computer applications in applied genetic engineering. Adv. Appl. Microbiol. 30,
169–195 (1984)

23. Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. J. ACM 21(1), 168–173 (1974)
24. Zhang, K., Shasha, D.: Simple fast algorithms for the editing distance between trees and related prob-

lems. SIAM J. Comput. 18(6), 1245–1262 (1989)


	Resequencing a Set of Strings Based on a Target String
	Abstract
	Introduction
	Preliminaries
	An Inverted Index Representation
	An Efﬁcient Way for Finding Inverted Indexing Tables
	Computing Lk(1,j)
	Concluding Remarks
	Acknowledgements
	References


