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Abstract

Let 〈a1, a2, . . . , an〉 be a sequence of compara-
ble elements. In this paper, we study two con-
strained versions of the longest increasing subse-
quence (LIS) problem. The first problem is the
range-constrained longest increasing subsequence
(RLIS) problem. Given 0 < LI ≤ UI < n and 0 ≤
LV ≤ UV , the objective of the RLIS problem is to
deliver a maximum-length increasing subsequence
〈ai1 , ai2 , . . . , ail

〉 satisfying LI ≤ ik+1 − ik ≤ UI

and LV ≤ aik+1
− aik

≤ UV for all 1 ≤ k < l. We
give an O(n log(UI −LI))-time and O(n)-space al-
gorithm for solving the RLIS problem. The second
problem is the slope-constrained longest increasing
subsequence (SLIS) problem. Given a nonnegative
slope m, the objective of the SLIS problem is to
obtain a maximum-length increasing subsequence
〈ai1 , ai2 , . . . , ail

〉 satisfying
aik+1

−aik

ik+1−ik
≥ m for all

1 ≤ k < l. Our algorithm for the SLIS problem
runs in O(n log r) time and O(n) space, where r
is the length of an SLIS.

1 Introduction

The longest increasing sequence (LIS) problem
is a very classical problem in computer science [15].
Fredman [11] showed a lower bound Ω(n logn) of
the LIS problem in the decision tree model. Knuth
[13] and Schensted [16] gave an optimal time algo-
rithm for this problem where the input is an arbi-
trary sequence of n numbers. The expected length
of an LIS of a random permutation has been shown
to be 2

√
n − o(

√
n) [3].

Recently, researchers have found several new
applications related to the LIS problem in bioin-

formatics [8, 10, 18, 21]. For example, MUM-
mer [8, 9, 14], a large-scale DNA sequence align-
ment tool, extracts the longest possible set of
matches found in the MUM (maximal unique
match) alignment by solving an LIS problem.
When extending the tool to align three or more
sequences, Yang et al. [20] formulated the prob-
lem as the longest common increasing subsequence
(LCIS) problem which combines the LIS prob-
lem with the longest common subsequence (LCS)
problem. Further results in this line of investiga-
tion can be found in [5, 6, 12].

Albert et al. [2] defined a problem called
LISW, which is to find the LIS in sliding windows
over a sequence of n elements. Chen et al. [7]
solved the LISW problem by maintaining a canon-
ical antichain partition in windows. While deal-
ing with the special case in which the input se-
quence is a permutation of 〈1, 2, . . . , n〉, Bespamy-
atnikh and Segal [4] gave an algorithm running
in O(n log log n) time by utilizing a data structure
called van Emde Boas (vEB) tree [19].

In some situations, it might be desirable to im-
pose some constraints between two consecutive el-
ements in the resulting subsequence. For exam-
ple, we might require two consecutive MUMs or
HSPs (high-scoring segment pairs) not too close
or too far away [8, 10]. Therefore, in this pa-
per, we define two constrained versions of the LIS
problem, namely, the range-constrained longest in-
creasing subsequence (RLIS) problem and slope-
constrained longest increasing subsequence (SLIS)
problem, respectively. Let A be a sequence
〈a1, a2, . . . , an〉 whose elements are comparable,
for example, a sequence of real numbers. An LIS of
the sequence A is a subsequence 〈ai1 , ai2 , . . . , ail

〉
of A with maximum length, where i1 < i2 < . . . <
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il and ai1 < ai2 < . . . < ail
. The RLIS and SLIS

problems are formally defined as follows.

The RLIS Problem:
Input: a sequence of comparable elements

〈a1, a2, . . . , an〉 and 0 < LI ≤ UI < n,
0 ≤ LV ≤ UV

Output: an RLIS 〈ai1 , ai2 , . . . , ail
〉, which is a

maximum-length increasing subse-
quence satisfying LI ≤ ik+1 − ik ≤
UI and LV ≤ aik+1

−aik
≤ UV for all

1 ≤ k < l

An element can be plotted on a 2-D plane us-
ing its index as the x-ordinate and value as the
y-ordinate. Consequently, the sequence A would
become n points on a 2-D plane and any pair of
points makes a slope.

The SLIS Problem:
Input: a sequence of comparable elements

〈a1, a2, . . . , an〉 and a nonnegative slope
boundary m

Output: an SLIS 〈ai1 , ai2 , . . . , ail
〉, which is a

maximum-length increasing subse-
quence such that the slope between
two consecutive points is no less
than the input ratio, i.e.,

aik+1
−aik

ik+1−ik
≥

m for all 1 ≤ k < l

Notice that the inputs of the RLIS and SLIS
problems are constrained on 0 < LI ≤ UI < n,
0 ≤ LV ≤ UV , and m ≥ 0, respectively. If LV = 0
or m = 0, the output subsequence would be a non-
decreasing subsequence. Moreover, our algorithm
for the RLIS problem still works if LV < 0, and
the output would be another related subsequence
where any two consecutive elements may decrease
by at most −LV .
The rest of this paper is organized as follows.

Section 2 gives an O(n log(UI−LI)) time and O(n)
space algorithm for the RLIS problem. In Section
3, an O(n log r) time and O(n) space algorithm is
proposed for solving the SLIS problem, where r
is the length of an SLIS. Concluding remarks are
given in Section 4.

2 The RLIS Problem

The input of the RLIS problem contains an ar-
ray A = 〈a1, a2, . . . , an〉, 0 < LI ≤ UI < n, and
0 ≤ LV ≤ UV . For any two elements ai and aj

in A, ai is said to dominate aj , or said to be a
dominating element of aj , denoted by ai ≺ aj , if
and only if aj can be the successive element of ai

in the subsequence. In this section, we define that
ai ≺R aj if and only if LV ≤ aj − ai ≤ UV and
LI ≤ j − i ≤ UI .

2.1 The Algorithm

The Rank of element ai, denoted by Ranki, is
defined as the length of an RLIS ending at ai and
computed by the following lemma.

Lemma 1: If aj ⊀R ai for all j, let Ranki = 1,
and max1≤j<i{Rankj |aj ≺R ai}+ 1 otherwise.

Our algorithm utilizes a data structure called
the dynamic RMQ [17] described as follows. Let
S be a set of items which is initially an empty set
and maintained by an AVL tree [1]. Each item
(v, r) of S includes two given values v and r, and
can be inserted to or deleted from S by the key v
at any time. For any pair (p, q), the maximum r
among the items in S whose v value is within the
range [p, q] can be queried by this data structure.
All operations run in O(log |S|) time, where |S| is
the cardinality of S at the operation time.
In the RLIS problem, let v and r be the value

and Rank of ai, respectively. In other words, each
item in S has the form (ai, Ranki). We define
three operations specific to this problem, in which
all of them run in O(log |S|) time by the dynamic
RMQ datastructure.

1. Insert(ai, Ranki) — inserts the item
(ai, Ranki) into S.

2. Delete(ai) — deletes the item (ai, Ranki)
from S.

3. Query(p, q) — returns the item (ai, Ranki)
with maximum Rank among all elements in
S, where p ≤ ai ≤ q.

The strategy of this algorithm is using the dy-
namic programming to parse each element ai from
i = 1 to n. At the ith iteration, S maintains the
set of items (ak, Rankk) where the index k is in
the range [i−UI , i−LI ], and Ranki is computed.
Then, any element in S dominates ai if and only if
its value is in the range [ai −UV , ai −LV ]. Query-
ing in the dynamic RMQ datastructure with the
range [ai−UV , ai−LV ] obtains the element which
dominates ai with maximum Rank.
The pseudo code for the RLIS problem is given

in Figure 1. At the first step of for loop, in or-
der to fit in with the constraint of LI and UI , it
adjusts the set S by deleting ai−UI−1 and insert-
ing (ai−LI

, Ranki−LI
). Secondly, querying the
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Algorithm RLIS

Input: A = 〈a1, a2, . . . , an〉, UI , LI , UV , LV

Output: an RLIS
for i ← 1 to n do
if i − UI − 1 ≥ 1 then Delete(ai−UI−1);
if i − LI ≥ 1 thenInsert(ai−LI

, Ranki−LI
);

(ak, Rankk)← Query(ai − UV , ai − LV ))
if ((ak, Rankk) = NULL then Ranki ← 1;
else Ranki ← Rankk + 1;

Make backtracking link (i → k);
end for
Find j s.t. Rankj = max1≤i≤n Ranki;
Output Rankj and the sequence in reverse order

by backtracking from j;

Figure 1: An algorithm for the RLIS problem.

range [ai−UV , ai−LV ] returns the element which
dominates element ai with maximum Rank. If it
returns NULL, ai will be the starting sequence
with Rank = 1. Otherwise, Ranki equals to the
Rank of returned element plus one, and we make
a backtracking link from i to the index of returned
element.
After the loop, the maximum value Rankj in

{Ranki|1 ≤ i ≤ n} will be the length of an RLIS.
Tracing back through the backtracking links from
j obtains the reverse order of the RLIS of the input
sequence A.

2.2 Correctness and Efficiency

Lemma 2: Ranki computed by Lemma 1 is the
length of an RLIS ending with ai.

Proof: We prove it by induction on i. If
i = 1 or there does not exist any element that
dominates ai, the subsequence only contains
ai, and this lemma is true. Assume that the
lemma holds when i = 2 to k. Now we con-
sider the condition i = k + 1. Let aj have the
maximum Rank value and dominate ak+1. If
Rankk+1 > Rankj + 1, the Rank value of ak+1’s
preceding element in the subsequence will be equal
to Rankk+1 − 1 > Rankj , and it also dominates
ak+1, a contradiction. If Rankk+1 < Rankj + 1,
it is easy to see that aj ⊀R ak+1 because
Rankj ≥ Rankk+1, also a contradiction. Then
we have Rankk+1 = Rankj + 1. By the induction
hypothesis, the lemma holds.

By controlling the index in the set S and query-
ing the value range in the dynamic RMQ data
structure, the for loop in Algorithm RLIS main-
tains Lemma 2 to get the correct Rank of all el-
ements. The following theorem analyzes the time
and space complexities of Algorithm RLIS.

Theorem 3: Algorithm RLIS takes O(n log(UI−
LI)) time and O(n) space where n is the size of
input and (UI − LI) < n.

Proof: In each round of the for loop, each
operation of Delete, Insert and Query is per-
formed once which runs in O(log|S|) time. The
cardinality of S is not bigger than UI − LI

because S only keeps the elements whose indices
are in the range [i − UI , i − LI ]. Thus, the total
time complexity is O(n log(UI − LI)). The space
complexity used by the dynamic RMQ is O(|S|).
The total space complexity is O(|S|+ n) = O(n).

3 The SLIS Problem

The input of this problem contains an array
A = 〈a1, a2, . . . , an〉 and a nonnegative ratio m.
For any two elements ai and aj in A, we define
that ai ≺S aj if and only if

aj−ai

j−i ≥ m and j > i
in this section. A main observation is that the
property of transitivity holds for the relation ≺S .
That is, if a ≺S b and b ≺S c, we have a ≺S c.
Note that this property does not hold for the re-
lation ≺R in Section 2 because of two constraints
LI and LV . The objective of the SLIS problem is
to find a maximum-length increasing subsequence
〈ai1 , ai2 , . . . , ail

〉 satisfying aik+1
−aik

ik+1−ik
≥ m for all

1 ≤ k < l.

3.1 The Algorithm

In this problem, the Rank of element ai is de-
fined as the length of an SLIS ending at ai and
computed by the following lemma.

Lemma 4: If aj ⊀S ai for all j, let Ranki = 1,
and max1≤j<i{Rankj |aj ≺S ai}+ 1 otherwise.

We partition the whole sequence into some
groups R1, R2, . . . , Rk according to the value of
Ranki. In other words, ai ∈ Rk if and only if
Ranki = k. The pseudo code for the SLIS prob-
lem is given in Algorithm SLIS. The strategy of
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Algorithm SLIS

Input: A = 〈a1, a2, . . . , an〉, m
Output: an SLIS
for i ← 1 to n do

Find max{j|Rj ≺S ai}; // use binary search
if j = NULL then R1 ← ai;
else Rj+1 ← ai;

Make backtracking link (i ← Rj ’s index);
end for
Find max{j|Rj �= NULL};
Output j and the sequence in reverse order by

backtracking from j;

Figure 2: An algorithm for the SLIS problem.

this algorithm is also using dynamic programming
to parse each element ai from i = 1 to n, and
Ranki is computed at the ith iteration. At the
ith iteration, let Rk be any partition of the ele-
ment set {a1, a2, . . . , ai−1}. An element c ∈ Rk is
called a critical point in Rk if an element in Rk

dominates ai implies that c also dominates ai.
When we want to find out if there exists any

dominating element in a partition Rk, it is suffi-
cient to check only the critical point in Rk. We
shall prove that for any partition Rk, the last in-
serted element is the critical point. Thus, only the
element with maximum index in each partition Rk

should be recorded in our algorithm.
At the ith iteration of the algorithm, suppose

that the critical point which dominates ai with
maximum Rank is in the partition of Rk. We then
have Ranki = k+1, thus ai is inserted into Rk+1.
Similarly, if there does not exist any dominating
element of ai, then ai ∈ R1 and Ranki = 1.
We shall also show that for any element a ∈ Rk

at the ith iteration, if a ≺S ai, then we have
c′ ≺S ai for all critical points c′ in Rj with j < k.
By this property, the algorithm uses binary search
to find the dominating critical point with maxi-
mum Rank. The remaining steps of the algorithm
such as making backtracking links and outputting
length and sequence are the same with Section 2.

3.2 Correctness and Efficiency

Lemma 5 : For any partition Rk, the last in-
serted element (with maximum index) is the crit-
ical point.

Proof: At the ith iteration, let c be the last in-
serted element in Rk and let a ∈ Rk be an element

that dominates element ai. We show that c is the
critical point if c also dominates ai. Suppose each
element is represented on the plane which has been
described above. It forms a triangle with three
vertices a, c, and ai. Note that the index order
will be a, c and ai since c is the last element in Rk

and ai is the current element under processing.
Let the slopes of aai, ac and cai be represented

by maai
, mac and mcai

, respectively. Since
a ≺S ai, we have maai

≥ m. Assume that
c ⊀S ai. Then we have mcai < m. Because maai

is the convex combination of mac and mcai
, it

follows that mac is greater than m. In other
words, a ≺S c and c should not have been inserted
into Rk. This is a contradiction. Therefore, we
conclude that c ≺S ai.

For any element a ∈ Rk, there must exist an
element a′ ∈ Rk−1 such that a′ ≺S a. At the ith
iteration, a ≺S ai implies that a′ ≺S ai by the
property of transitivity. By Lemma 5, we know
that the critical point c in Rk−1 dominates ai, i.e.,
c ≺S ai. Thus, the following lemma holds.

Lemma 6: For any element a ∈ Rk at the ith
iteration, if a ≺S ai, then the critical point of
Rk−1 also dominates ai.

By the property of transitivity and Lemma 6,
we have Corollary 7.

Corollary 7: For any element a ∈ Rk at the ith
iteration, if a ≺S ai, then for all critical points in
Rj with j < i dominates ai.

By Lemma 5, it is obvious to know that Al-
gorithm SLIS implements the Lemma 6. By
the Corollary 7, performing a binary search takes
O(log |R|) time for each element, where |R| is the
number of Rank partitions and does not greater
than the output size r. It takes O(n) space
to record all the critical points and backtracking
links. Therefore, we have the following theorem.

Theorem 8: Algorithm SLIS delivers an SLIS
of an input sequence in O(n log r) time and O(n)
space, where n is the input size and r is the output
size.

4 Concluding Remarks

We investigate two constrained versions of the
LIS problem. By using the dynamic RMQ data
structure, we present an algorithm that solves the

The 25th Workshop on Combinatorial Mathematics and Computation Theory

-229-



RLIS problem in O(n log(UI −LI)) time and O(n)
space, where UI and LI are the upper and lower
bounds of differences on indices, respectively. An-
other algorithm presented in this paper utilizes the
concept of “critical point” to solve the SLIS prob-
lem in O(n log r) time and O(n) space, where r is
the output length.
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