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Abstract algorithms. List-based scheduling is very popular for
heterogeneous environments due to its low complexity

We propose a new duplication-basedDAG scheduling and good quality of resulting schedules [2, 3, 8, 10, 12,
algorithm for heterogeneous computing environments. 13]. Cluster based scheduling on the other hand, is not
Contrary to the traditional approaches, proposed algo- extensively investigated except a few studies [4, 7].
rithm traverses the DAG in a bottom-up fashion while One of the most popular algorithms in heterogeneous
taking advantage of task duplication and task insertion. DAG scheduling is the HEFT algorithm [13]. HEFT
Experimental results on random DAGs and three differ- schedules each task on the processor that provides the
ent application DAGs show that the makespans gener- earliest possible finish time and employs task inser-
ated by the proposed DBUS algorithm are much better tion. However, HEFT does not allow task duplication.
than those generated by the existing algorithms, HEFT, HCPFD [10] is a duplication based algorithm and simi-
HCPFD and HCNF lar to HEFT, a task is scheduled on a processor that pro-

vides the earliest finish time. In addition, the critical
parent of the task is also duplicated on the selected pro-

1 Introduction cessor only if this duplication improves the task's finish
time. HCPFD does not allow task insertion, therefore
tasks can only be scheduled after the latest scheduled

Task scheduling for multiprocessor systems has been ts napoesr ncnrs oHPD nte u
a wel stdiedprobem fr may deades Numrous task on a processor. In contrast to HCPFD, another du-a well studied problem for many decades. Numerous ...

algorithms have been proposed to achieve speedup on plication based algorithm, HCNF [3], checks on all pro-

parallel applications represented in the form of directed cessors if duplicating the task together with its critical
acyclic graphs (DAGs). Task scheduling problem is NP- parent can yield a better finish time for the task, before
complete [9], therefore proposed approaches are mainly selecting where to schedule the task.
heuristics except for some special cases [2, 6]. We have chosen the above three algorithms, HEFT,

There are many algorithms that produce high qual- HCPFD and HCNF, to compare with the DBUS algo-
ity solutions [1, 5] for the case of homogeneous com- rithm we are proposing in this work, since these algo-
puting systems. However, scheduling in heterogeneous rithms have different scheduling properties and compa-
computing systems is a far more complicated problem rable time complexities (see Table 1). There are many
due to non-uniform processor speeds and communica- other algorithms for heterogeneous DAG scheduling
tion link bandwidths. Two of the most important classes with slightly different focus. For example, LDBS algo-
of scheduling algorithms are list-based and cluster-based rithm [8] aims at minimizing the schedule length at the

expense of a high time complexity of 0(|A1j 3g Fl¶ 2),
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Algorithm Task insertion Restrictions on duplication Complexity
HEFT [ 1 3] Yes No duplication O(INAS 2 I 1I)
HCPFD [10] No Only critical parent of a task 0(IAfJ2 1pI1)
HCNF [3] No Only critical parent of a task O(1Af12(logINI + IPI)
DBUS Yes No restriction O(IJA12 p1 2)

Table 1. Comparison of scheduling algorithms

slightly worse than HEFT, however, it has a smaller time munication cost from task ni scheduled on processor pi
complexity of O(JAFJloglPl + 8£1). Finally, TDS algo- to task nj scheduled on processor Pk is calculated as
rithm [2] is proved to produce optimal schedules if a set c(ni, pie, nj, Pk) = Si,k + vi,j x tf,k. Here, it is assumed
of conditions is met. However, TDS algorithm is de- that the links in the heterogeneous computing network is
signed for networks with homogeneous links and does contention free. The average communication cost asso-
not handle heterogeneous links. ciated with edge (ni, nj) is defined as ci= +tx

In this work, we propose a novel scheduling algo- where s is the average communication startup cost and
rithm DBUS that benefits both from task insertion and t is the average time required to transfer a unit of data in
task duplication. The proposed algorithm traverses the the network.
DAG in a bottom-up fashion contrary to the traditional The DBUS algorithm to be introduced in the next sec-
approaches and does not impose any restrictions on the tion schedules the tasks in the DAG in a bottom-up fash-
number of task duplication. We start with some prelim- ion, scheduling all children of a task before scheduling
inaries in the next section and the details of the DBUS the task itself. Therefore, for the sake of simplicity in
algorithm are presented in Section 3. Experimental re- the presentation, the finish time of the first scheduled
sults presenting the performance of DBUS in compari- task (exit task) is taken to be 0 and the start time of a
son with HEFT, HCPFD and HCNF algorithms are pre- task ni scheduled on processor pi is computed as
sented in Section 4 and we conclude with Section 5.

st(nir,pi) = ft(ni,pi) + wi,e

2 Preliminaries Here, ft(ni,pi) denotes the finish time of task ni on
processor p . If a task ni is not scheduled on a pro-

A DAG g = (g\,) consists of a set of nodes P1 cessor pi, its start time is set to 0, i.e. st(ni,pi) = 0.
representing the tasks and a set of directed edges S rep- Schedule length is defined as
resenting dependencies among tasks. The edge set

S

contains edges (np,nj) E £ for each task np (parent) ScheduleLength = miax stnj,pe)
that nj (child) depends on. A child task depends on its
parent tasks such that the execution of a child task can- The objective of proposed scheduling algorithm is to
not start before it receives data from all of its parents. A schedule the tasks of a DAG such that the schedule
task having no parents is called an entry task whereas a length is minimized.
task having no children is called an exit task. We define coveri1st(ni,pf,Pk) as the latest start

The set of processors in a heterogeneous computing time of task ni on processor Pk such that the children
environment is denoted by XP, where each processor in of ni on Pe can receive data in time from the copy of
this set is assumed to execute each task without preemp- ni on Pk. A special case, coveri1st(ni, P- 1,pk), de-
tion. The non-zero weight wi e of a task ni represents notes the latest start time of ni on Pk regardless of any
the expected execution time of the task on processor Pi dependency between ni and its children. coverlst can
and it is assumed to be known a priori. There are several be computed as:
techniques in the literature such as statistical prediction coverIst(ni,Pi,Pk) = SlOt(Pk, Wik, lSte,kQfni))
[11] and analytical benchmarking [14] to estimate these
weights. The average execution time of a task ni can be where slOt(pk, w, t) denotes the start of first empty slot
found as wi- = iTZ7eY Wi e on processor Pk of size w before time t. Recall that

The communication volume associated with a di- our time line is backward, hence slot(pi,w,t) > t.
rected edge (ni, nj) is represented by vi,. Let Se,, lste,k(rt) is the latest allowable start time of task ni
and tek denote the communication startup cost and the on processor pk to satisfy dependency requirements be-
expected time required to transfer a single unit of data tween rnj and its children scheduled on Pe. istek(ni)
between processors Pe and Pkm, respectively. The com- can be computed as follows:
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ni 2 1 3 2.00
Wik, if i=-1 n2 4 2 7 4.33

max(,,,,)l)EC(st(nj, pt)) n3 6 5 8 6.33
1St,k(ni) = +Wi,k iff= k n4 2 2 1 1.67

max(nf,ln)c(st(nj, pe)+ n5 2 3 3 2.67

c(ni,Pk, rnj,pi)) + Wi,k if t 7& k
Table 2. Entry wi represents execution

3 DBUS: Duplication-based Bottom-Up time of task ni on processor pi.
Scheduling Algorithm

The DBUS algorithm consists of a critical path-based which one to schedule next is a heuristic choice. There
listing phase followed by a duplication-based schedul- are techniques in the literature that assigns priorities to
ing phase. In the traditional approach of top-down DAG tasks, so that the task having the highest priority among
traversal, duplication is carried out when a task's fin- the ready tasks is selected to be scheduled next. We
ish time can be improved with duplication of its critical have implemented 6 popular techniques, namely, prior-
parent on the same processor with the task itself. This itizing based on critical path, top-levels, bottom-levels,
means that a task with multiple children can be dupli- static top-levels, static bottom-levels and average task
cated on multiple processors if its duplication helps im- weights [13, 10]. While using one of these techniques as
proving its children's finish time on those processors. the main method, we used another one as a tie breaker.
The drawback in this approach is that, the duplication of We tested every possible permutation of the mentioned
the parent task on each of such processors is done inde- techniques and decided on prioritizing based on critical
pendently. Therefore the positions of the parent task on path as the main method and static top-levels as the tie
relevant processors are decided without any optimiza- breaker being the best choices for our DBUS algorithm.
tion with respect to each other. By traversing the DAG in In critical path based prioritizing, nodes on the crit-
a bottom up fashion, the proposed algorithm first sched- ical path are determined and they are attempted to
ules all children of a task before scheduling the task be scheduled before other tasks. The bottom level
on as many processors as necessary. Consequently, it bilevel(ni) of a task ni is computed by traversing
is more likely to make good duplication decisions since the DAG upward starting from the exit tasks. It is
all copies of the parent task are considered at the same defined as b-level(ni) = wi- + max(,njT)c8(ci,J +
time. In addition, the stop criterion for duplication is bievel(nj)). The bilevel of an exit task ni is defined
not determined by the number of duplications already to be WiJ. Similarly, top level tilevel(ni) for task ni
carried out, but by the quality of the current schedule. is computed by traversing the DAG downward starting
Since the number of beneficial duplications may differ from the entry tasks and is defined as tlevel(ni) =
significantly across different problems, DBUS offers su- max(3

& (j(w + cpj- + tievel(n)). Static top level,
perior performance compared to algorithms that limit denoted by st evel, is defined similar to tlevele,how-
duplication by the number of duplicates. Furthermore, ever communication cost is not taken into account:
the DBUS algorithm is an insertion based algorithm that st-level(ni) = max(nj ,ni)c8(Wj + tlevel(nj)). The
allows tasks to be scheduled at the first available time tilevel and stilevel of an entry task are both defined to
slot that can accommodate themselves. Task insertion be 0.
based algorithms have better chances of finding shorter A node ni is on the critical path (CP) if tilevel(ni) +
schedule lengths compared to non-insertion based ones. bilevel(ni) = max, GA(tiLevel(nj) + bievel(nj)).
In the remainder of this section, the phases of the DBUS The listing heuristic presented in Algorithm 1 deter-
algorithm are presented in more detail. mines and sorts the CP nodes in non-increasing tilevel

order. In order to schedule a CP task, all of its children
3.1 Listing Phase should have been scheduled. The recursive ADDToLIST

function makes sure that the children of each task are in-
DBUS algorithm schedules tasks in a bottom-up fash- serted into the priority list R at an earlier position than

ion. Therefore, in order to prevent any dependency vi- the task itself. The child of the task that has a higher
olation, a task is said to be ready for scheduling only if stilevel will be considered for scheduling before others
all of its children are already scheduled. At any point and hence it is inserted into Ri at an earlier position.
during the progress of the algorithm, there may be more In the example given in Figure 1, a DAG with 5 tasks
than one task ready for scheduling. Among these tasks, is to be scheduled on a heterogeneous system with three
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Algorithm 1 Listing
1: function LISTING(!g)
2: calculate b level(nr), tilevel(n,) and stilevel(n,) Vni c A'\
3: cplist +- CP tasks in non-increasing tilevel order
4: ADDToLiST (R, 0, cpilist)
5: return 1i
6: function ADDTOLIST(Q,pos, list)
7: for t= 0 to length(list) do
8: child-list v- children of list[C] f 1Z in non-increasing stilevel order
9: poS +- ADDTOLIST (IZ, pos, child-list)

10: R[pOS] +- list[t]
11: pos - pos+1
12: return pos

processors. Entry wj,f in Table 2 represents the exe-
cution time of task ni on processor pi and entry tf,k
in Table 3 represents per unit data transfer time from

VI 2=si ^ vi 4-2 w processor pi to processor Pk. For simplicity in the pre-
cj 467Ei j/ / 7\cl4 1 17 sentation, communication start time (se,k) is considered

v15X12 negligible. There are two weights associated with each
v

X n4 edge in the DAG. The first one corresponds to commu-
4 =-24 c5=23.33 nication volume v,j, and the second one corresponds
C4 -14 to average communication cost Cj,j between tasks ni

=Is-G \ \ / and nj. According to Table 3, the average per unit data
c2,6_j .5 <0 / transfer time between two distinct processors, t, is com-

puted to be 0.58 time units, therefore cij = 0.58 x vij .
Please note that average execution and communication
times are only relevant for the listing phase, and have
no significance in the actual scheduling phase. The re-
sults of the listing phase for the example DAG is given

Figure 1. An example DAG.Vtm j repre- in Table 4. First, n5 is inserted into R since it is on
sents communication volume and nrep- the critical path and has no child. It is followed by n3,
resents average communication time on which is the only task other than n5 on the critical path.
the example system between tasks ri and Among the remaining tasks, n2 and n4 have the largest

stilevels, and n2 is randomly chosen as the next task.
Finally n4 and n1 are inserted in 1i into last two posi-
tions.

3.2 Scheduling Phase

Pi tt, 1 tf2 tf,3 The pseudocode of the scheduling phase of the
Pi - 1 0.25 DBUS algorithm is given in Algorithm 2. DBUS sched-
P2 1 - 0.5 ules the tasks in a bottom-up fashion as determined in
p3 0.25 0.5 - the listing phase. The next task in 1i to be considered for

scheduling is denoted by nt. Initially, nt is considered
for duplication on every processor, rather than only on

Table 3. Entrytf,k represents per unit data processors that a child of nt is scheduled. This choice
transfer time from processor pt to proces- allows exploration of scheduling alternatives where a
sor pk- better latest start time (Ist) for rtt can be found by

scheduling Ttt on a processor that none of its children
has been scheduled. Therefore coverlist(nt, Pm,7 Pm)
is calculated for each processor Pm E 'P. Note that
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ni tilevel(ni) b-level(ni) tJlevel(ni) + b-level(ni) st-level(ni) position inH
ni 0.00 21.50 21.50 0.00 5
n2 6.67 10.50 17.17 2.00 3
n3 0.00 32.33 32.33 0.00 2
n4 3.17 18.33 21.50 2.00 4
n5 29.67 2.67 32.33 6.33 1

Table 4. Results of the listing phase (Algorithm 1) for the example DAG in Figure 1.

Algorithm 2 DBUS: Duplication-based Bottom-Up Scheduling Algorithm
1: for i = 0 to length(R1) do
2: nt RN4i]
3: De 0
4: C fp{Pmpm c P and 3(nt,rnj) E S such that st(nj,Pm) f O}
5: if C = 0 then D nt is an exit task
6: schedule nt on the processor that gives minp, cp cover ist(nt,pi, pi)
7: else
8: INSERT(lStQ,pm, cover-Ist(nt,pm,pm)) for all Pm C P
9: while C 74 0 do

10: < pi, Ist level >+- EXTRACTMAX (lstQ)
11: if pe EC then
12: minUcover-Ist +- minpk,EjstQ coveri1st(nt,Pf, Pk)
13: Pk +- the processor associated with minrcoverlst
14: if minrcoverlst > Istilevel then
15: SCHEDULE (nt, pi, Ist level)
16: else
17: SCHEDULE (nt, Pk, minrcoverilst)
18: UPDATE (lstQ, Pk, mnincoverilst)
19: free-lst v- cover-Ist(nt,p-1, Pi)
20: if freelst < Ist-level then
21: INSERT (lstQ,pe, free 1st)

coveri1st(nt, pm, pm) is the latest start time of nt on minates only after all processors in set C are covered.
Pm such that nt will be executed before its children At each iteration of the loop, the maximum value in the
scheduled on Pm. Processors are inserted into a pri- IstQ is extracted and assigned to Istilevel and pi is
ority queue (IstQ) using their cover 1st times as their assigned the processor associated with this value. If pi
keys by the INSERT function in step 8 of the algorithm. is in set C, it is searched (step 12) if duplication of nt
If a task needs to be scheduled on a processor, the key on a processor other than pi can provide a better latest
of that processor represents the task's computed latest start time than Istilevel while providing data to all chil-
start time. As a greedy choice, we will go over the pro- dren of nt on pe . If no such processor is found, nt is
cessors in that queue one-by-one in non-increasing key duplicated on pi to start at Ist-level (step 15).
order and check whether the duplication on that proces-
sor iS required or another processor can cover for that IfadpiteoUtnaohrpocsrPkht

can cover its children on pt with a smaller latest startone. time (called minmcoverlst) can be found, nt is du-
The set C is defined as the set of processors that plicated on Pk to start at minrcover-lst. Then, Pk,

should be covered by task nt. A processor Pi is re- minrcoveri1st pair is inserted into the lstQ by the UP-
ferred to as covered for task ni only if all children of ni DATE function as minicoverlst is smaller than the
on pi are guaranteed to receive data from a copy of ni current lstilevel The reason is that, processor Pk may
before their scheduled start time. Initially, all processors be used to cover some other processor (by rescheduling
on which at least one of Ut 's children is scheduled are Ut on an earlier time on pk) as long as mim coverilst
included in the set C. is not the maximum value in the lstQ (step 18). Since

The while loop in steps 9-21 of the algorithm ter- the children of Ut on P.e are now covered by the dupli-
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Algorithm 3 Schedule
1: function SCHEDULE(nt, pe, Ist)
2: if pec D then
3: remove duplicate of nt on pi D new copy can cover all tasks that the existing one covers
4: st(nt,pi) F Ist
5: D - DU {pt}
6: for each Pm E C do
7: if lst > coveristQnt,Pm, pf) then
8: C * C-{Pm}

| lstQ: pi, Pk, Dest. ] P P2 P$
nt coverlst mirncoveri1st proc. Covered J, nl i
n5 pl,22_ n2

PiP ,8 P3, 20 |pl P1
f3 , f_X_'_

2,

p_*, 12 P2, 10 __p2 Pipl
n 2 P3, 7 ll.. ... /

P2,22 X
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ . __ ........$

I_ pI 1 P3, 9 1 2 P
|n4 P2,22

.t 0..... . .

pTp,12 P2," T p2 _p2,p3
n *, 11 l| Figure 2.Schedulegenerated bytheDBUS

Pi, 10 algorithm for the example in Figure 2.
I T P2, 11 T lI

ni }*T p3,8 P3 Pi
I P1 33 11

Table 5 shows the scheduling steps for the example
DAG in Figure 1. The identity of the tasks are given

Table 5. Scheduling steps for the example under column nt in the order they are considered for
DAG in Figure 1. scheduling. All p., cover lst pairs in the IstQ are

listed in the second column. Here, coveri1st is used to
represent cover 1st(nt, p.,p.). The processors marked
with an asterisk superscript in this column are the ones

cate on Pk, nt is no longer required to start before its in set C during the current iteration. While considering a
children on pi. Consequently, the latest start time of pair in the 1stQ, the corresponding Pk, mitncoverilst
nt on pi regardless of any children dependency, called pair is given in the next column, whenever it is calcu-
free lst, is computed (step 19). If freeiJst is smaller lated. The destination processor that the task being con-
than the lst level, pe can still be used to cover other sidered is duplicated at the end of the iteration and the
processors, and hence pe, freeist pair is inserted into processors initially in set C that are covered by this du-
lstQ in step 21. plication are given in the last two columns, respectively.

SCHEDULE function given in Algorithm 3 schedules The algorithm starts with scheduling the exit task
the given task nt to start at the provided lst value on n5 on P1 which provides the shortest execution time.
the destination processor Pi. Notice that another copy Then n3 becomes the next task in R and correspond-
of task nt may have already been scheduled on any of ing IstQ is constructed. n3 is considered for duplica-
the processors, therefore this scheduling may result in tion on P1 since P1 is on top of IstQ, and P1 E C.
duplication. If a duplicate of nt already exists on Pe, Since minrcover-Ist is greater than coverlst, n3 is
then it is removed since the new one can cover all the scheduled on P1 to start at 8. Since P1 is the only
tasks that the existing one was covering. After dupli- task in C and it is covered, no more duplication is
cation, all processors in set C are examined to see if considered for r3. When scheduling n2, again P1 is
they are also covered with the current duplication and on top of lstQ initially. However, this time P2 pro-
the covered ones are removedfrom set C. vides a mirLcoverilst of 10, which is smaller than
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coverlst. Therefore, n2 is scheduled on P2 to start see the impact of problem size on scheduling quality.
at minmcoverlst, and it covers P1. n4 is scheduled In random DAG experiments, the number of tasks
on p3 in a similar way to n2. Note that by considering is selected from set {50, 150, 250, 350, 450, 550}, CCR
all processors rather than just the ones in set C, DBUS from set {0.1, 0.5, 1, 5, 10} and average number of par-
algorithm was able to schedule tasks n2 and n4 with ents from set {4, 8, 12, 16, 20}. For a given number
better start times that it would otherwise. Finally, when of tasks and average number of parents, first a random
scheduling nu, the set C consists of all three proces- DAG topology is generated. Then each task is assigned
sors, since each of them has at least one of nl 's chil- an execution weight from interval (0, 2 x 107] with uni-
dren already scheduled on it. First, p3 with cover-Ist form probability. Finally, each edge is assigned a com-
of 12 is considered for scheduling n3. However, since munication volume from interval (0, 2 x 107 x CCR]
min-cover-Ist provided by P2 is smaller, ni is sched- to approximate the desired CCR.
uled on P2. This duplication helps covering P2 as well We also tested the algorithms on tasks graphs from
as p3. Since set C is still non-empty after this duplica- LU decomposition (LU), Laplace equation (LE) and
tion, another duplication is considered for n1. Note that Gaussian elimination (GE) applications. For these ap-
since P2 and p3 are now covered, freeist for each of plications, the shape of the DAG is determined by the
them is calculated and inserted into 1stQ. In the next it- application. Therefore, we only investigated the effects
eration for nl, P2 is on top of the IstQ. However, since of matrix size and CCR. The matrix size is chosen from
P2 is no longer in set C, it is skipped and the next pair, set {5, 15, 25, 35,45, 55} while execution weights and
pl, 10, in lstQ is considered. This time, mi -coverlst communication volumes are generated similar to ran-
provided by p3 is smaller than cover-Ist, therefore n, dom DAG experiments.
is duplicated on p3 to cover the last processor P1 in C.

Pleae nte hatusig tsk nsetio an maingproes- We scheduled the generated DAGs on heterogeneousPleae nte tatsin tas inertin ad mkingproes- configurations with 16 processors unless specified oth-sor p3 available for future duplications after it had been conigurationsnwith 16 processorsune specifiedoh
covered ~.aloe betruiiaino.desos h e erwise. Heterogeneity of processors are simulated bycovered allowed better utilization of idle slots. The re-

rnol hoigtetm eurdt opeeaui
sultingschedueis pesente in Fiure 2.randomly choosing the time required to complete a unit

Theltimescomplexitofesnthe DBUSalgorithmis2domi- computation (tc) for each task from interval (0, 2 x

nated by steps 12, 15 and 17. Computation of coverit 10-7] for each processor. Similarly, link heterogeneityrequire O( y storinginform7Cop'ation bout is simulated by randomly selecting the time required to
requres (JAJ)b prperl stoinginfomaton aout

transfer a unit data (t,, ) from interval (0,7 2 x 10-7] forwhich children of each task are duplicated on each trnfrauidta()fomnevl(02xi-]fr
procesr Thus,reno sepc 12skitroducescatcomplexity o each link. For each and every combination of parameterprocessor. Thus, step 12 introduces a complexity of values and for each application, 30 DAGs are generatedP17) which is also the complexity of SCHEDULE

and average results are presented. While presenting afunction at steps 15 and 17. Together with the while
result for a varying parameter the results are averagedloop at step 9 and the for loop at step 1, the overall com- ' g

o t
g

plexiy oftheDUS agoritm isO(lJW2 lP2).over all tested values of the remaining parameters. Fi-plexity of the DBUS algorithm is g(JA~ 12 'P 12). nally, the schedule lengths generated by each algorithm
are normalized by that generated by HEFT.

4 Experimental Results The results on random DAGs (Figures 3 and 4) show
that the DBUS algorithm generates the shortest sched-

We evaluated the performance of the proposed DBUS ules on the average among the four tested algorithms.
algorithm on random DAGs as well as three application The performance of DBUS is especially better than
DAGs on random heterogeneous configurations. We HEFT for small number of tasks and large CCR. The ef-
generated random DAGs with three varying parameters. fect of CCR can be explained by the fact that task dupli-
The first one is the average number of parents of a task cation is more useful when communication costs are rel-
to control dependencies in the DAG. Usually this param- atively high. With the same reasoning, the performance
eter does not change significantly with problem size for of HCPFD and HCNF improves with increasing CCR
DAGs of the same application. However, it may have compared to HEFT as well. However HCNF outper-
different values for different applications. We used ran- forms HEFT only when the number of tasks is smaller
dom DAGs to evaluate the effect of this parameter. The than 150 or CCR is greater than 7. As the number of par-
second parameter is communication to computation ra- ents increases, task insertion becomes less effective. The
tio (CCR), which is defined as the ratio of average com- reason is that, greater number of dependencies impose
munication volume to average task execution weight. a larger earliest finish time for each task and prohibits
Here, task execution weight is the amount of unit com- them to take advantage of idle slots. As shown in Fig-
putation to be carried out to completely execute a task. ure 4, this leads to decreased performance gap between
As the third parameter, we varied the number of tasks to HEFT and HCNF. On the other hand, task duplication
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Figure 4. Normalized schedule length for random DAGs while varying number of parents.
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Figure 5. Normalized schedule length for Laplace Equation DAGs while varying (a) matrix size
(b) CCR.
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Figure 7. Normalized schedule length for Gaussian Elimination DAGs while varying (a) matrix
size (b) CCR.

still proves to be effective with increasing dependencies, one type of heterogeneity from 1 to 200 while keeping
therefore DBUS performs better than HEFT as the num- the other at 200. For this experiment, we used the GE
ber of parents increases. DAG with matrix size 55, since it was the largest appli-

For the application DAGs (Figures 5-7), DBUS sig- cation DAG we had generated. We generated weights
nificantly outperforms other algorithms except for LE corresponding to each CCR value, then averaged the re-
task graphs where HEFT generates results with simi- sults. Figure 8 shows that the effect of heterogeneity on
lar quality as DBUS. This can be explained by the the DBUS is almost the same relative to HEFT and HCNF
fact that tasks in LE graphs have at most two parents. algorithms. In contrast, relative performance of HCPFD
Therefore, task duplication is not very useful except for is adversely affected with increasing heterogeneity espe-
large CCR. Similar to random DAG results, duplication cially with processor heterogeneity.
based algorithms tend to improve their schedule quality As the final experiment, the effect of number of avail-
with increasing CCR compared to HEFT. However, with able processors on schedule length is investigated. We
increasing matrix size m, HCPFD and HCNF sched- used the GE DAG with matrix size 55 for this experi-
ule qualities get worse quickly compared to HEFT and ment as well. Results in Figure 9 shows that the per-
DBUS. The reason is that the number of tasks in these formance gap between DBUS and other algorithms first
application graphs grow proportional to mi2, whereas increases then decreases with increasing number of pro-
average number of parents does not change significantly. cessors. The reason for decreasing performance gap is
Therefore with increasing m there are relatively more due to law of diminishing returns. Since DBUS gener-
tasks independent of each other, which makes task in- ates a high quality schedule with smaller number of pro-
sertion more effective. Consequently, as m increases cessors, it becomes more difficult to improve the sched-
non-insertion based algorithms suffer compared to inser- ule length even though the number of processors is in-
tion based ones. Furthermore, task duplication may start creased. However, other algorithms have larger room for
to be less effective than task insertion. Thus, utilizing improvement, therefore they benefit from additional pro-
some of the idle slots with duplication instead of task in- cessors more than DBUS does. Still, DBUS performs
sertion may degrade the overall performance. This may significantly better than other algorithms in all cases.
explain why DBUS performs worse than HEFT when
matrix size is large for the LE task graphs. 5 Conclusions
We also evaluated the impact of heterogeneity on

scheduling quality. We define link heterogeneity as In this work, we have developed a novel duplication-
max(tw) andprocessorheterogeneityas min(t ) . In or- based bottom-up scheduling algorithm, called DBUS.
der to obtain desired heterogeneity, t iand t)are cho- DBUS is a list-based scheduling algorithm that traverses
sen from interval [1 -x, 1 + x] instead of the default in- the DAG in a bottom-up fashion contrary to the tradi-
terval (0, 2 X io7] . Therefore heterogeneity is equal to tional approaches and does not impose any restrictions
the ratio + .With appropriate values for x, we varied on the number of task duplication. We tested the DBUS
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algorithm on combinations of three different application [13] H. Topcuoglu, S. Hariri, and M.-Y. Wu. Performance-
DAGs on randomly generated heterogeneous computing effective and low-complexity task scheduling for hetero-
configurations. Experimental evaluation validated that geneous computing. IEEE Transactions on Parallel and
DBUS produces superior results compared to the exist- Distributed Systems, 13(3):260-274, March 2002.
ing algorithms HEFT, HCPFD and HCNF. [14] J. Yang, A. Khokhar, S. Sheikh, and A. Ghafoor. Es-

timating execution time for parallel tasks in heteroge-
neous processing (hp) environment. International Paral-
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