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We study the Integer-weighted Grid All Paths Scores (IGAPS) problem, which is given a grid
graph, to compute the maximum weights of paths between every pair of a vertex on the
first row of the graph and a vertex on the last row of the graph. We also consider a variant
of this problem, periodic IGAPS, where the input grid graph is periodic and infinite. For
these problems, we consider both the general (dense) and the sparse cases.
For the sparse periodic IGAPS problem with 0–1 weights, we give an O (r log3(n2/r)) time
algorithm, where r is the number of (diagonal) edges of weight 1. Our result improves
upon the previous O (n

√
r ) result by Krusche and Tiskin for this problem.

For the periodic IGAPS problem we give an O (Cn2) time algorithm, where C is the
maximum weight of an edge. This improves upon the previous O (C2n2) algorithm of
Tiskin. We also show a reduction from periodic IGAPS to IGAPS. This reduction yields o(n2)

algorithms for this problem.
© 2013 Elsevier B.V. All rights reserved.

1. Introduction

String comparison is a fundamental problem in computer science that has applications in computational biology, com-
puter vision, and other areas. String comparison is often performed using string alignment: The characters of two input
strings are aligned to each other, and a scoring function gives a score to the alignment according to pairs of the aligned
characters and unaligned characters. The goal of the string alignment problem is to seek an alignment that maximizes (or
minimizes) the score. In this paper we consider maximal scores to be optimal, but minimization problems can be solved
symmetrically. The problem can be solved in O (n2) time [27], where n is the sum of lengths of A and B . Common scoring
functions are the edit distance score, and the LCS (longest common subsequence) score.

A grid graph (see Fig. 1) is a directed graph G = (V , E) whose vertex set is V = {(i, j): 0 � i � m, 0 � j � n}, and whose
edge set consists of three types:

1. Diagonal edges ((i, j), (i + 1, j + 1)) for all 0 � i < m,0 � j < n.
2. Horizontal edges ((i, j), (i, j + 1)) for all 0 � i � m,0 � j < n.
3. Vertical edges ((i, j), (i + 1, j)) for all 0 � i < m,0 � j � n.

An example of a grid graph can be found in Fig. 1. In the Grid All Paths Scores (GAPS) problem, the input is a grid graph and
the goal is to compute the maximum weights of paths between every pair of a vertex on the first row of the graph and a
vertex on the last row of the graph. For simplicity of presentation, we will assume in some parts of this paper that m = n.
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Fig. 1. A grid graph of size 2 × 2.

The Integer GAPS (IGAPS) problem is a special case of GAPS in which the weights of the edges are integers in the range 0
to C , and additionally, the weights of all the horizontal (resp., vertical) edges between two columns (resp., rows) of vertices
are equal. The Binary GAPS (BGAPS) problem is a special case of IGAPS in which the horizontal and vertical edges have
weight 0, and diagonal edges have weight 0 or 1.

The alignment problem on strings A and B can be represented by using an (|A| + 1) × (|B| + 1) grid graph, known
as the alignment grid graph (cf. [21]). Vertical (respectively, horizontal) edges correspond to alignment of a character in A
(respectively, B) with a gap, and diagonal edges correspond to alignment of two characters in A and B . Each edge of the
graph has a weight. A path from the j-th vertex on row i to the j′-th vertex on row i′ corresponds to an alignment of
A[i..i′] and B[ j.. j′].

The GAPS problem was introduced by Apostolico et al. [3] in order to obtain fast parallel algorithms for LCS computation.
It has since been studied in several additional papers [1,2,7,11–15,21–23]. Schmidt [21] showed that the GAPS problem can
be solved in O (n2 log n) time. In the same paper, Schmidt showed that IGAPS can be solved in O (Cn2) time. An O (n2)

algorithm based on a similar approach for the BGAPS problem was also given by Alves et al. [1] and Tiskin [23]. Tiskin [22,
p. 60] gave an O (n2(log log n/ log n)2) time algorithm for a special case of BGAPS, in which the grid graph corresponds to an
LCS problem on two strings. Tiskin also showed that IGAPS can be reduced to BGAPS. However, this reduction increases the
size of the grid graph by a factor of C2. Thus, the time for solving IGAPS with this reduction is either O (C2n2) (for general
grid graphs) or O (C2n2(log log n/ log n)2) (for grid graphs that correspond to alignment problems on two strings).

A special case of the BGAPS problem is when the number of diagonal edges with weight 1 is significantly smaller than n2.
We call this problem sparse BGAPS. Krusche and Tiskin [12] showed that sparse BGAPS can be solved in O (n

√
r ) time, where

r is the number of edges of weight 1. For the special case of a permutation grid graph (namely, each column and each row
have exactly one edge of weight 1), Tiskin [22] gave an O (n log2 n) time algorithm. Another special case of BGAPS is when
the grid graph corresponds to the LCS computation of two strings with little similarity. Landau et al. [15] gave an algorithm
for this variant with time complexity O (nL), where L is the LCS of the two strings.

Efficient computations and storage of GAPS provide very powerful tools that can be also used for solving many prob-
lems on strings: optimal alignment computation [5], approximate tandem repeats [17,21], approximate non-overlapping
repeats [4,9,21], common substring alignment [16,18], sparse spliced alignment [10,20], alignment of compressed strings [6],
fully-incremental string comparison [8,19,22], and other problems.

Additional types of computations are useful in some of the applications. A periodic grid graph is an infinite graph obtained
by concatenating horizontally an infinite number of a (finite) grid graph. The periodic IGAPS problem is a variant of the IGAPS
problem, in which the input is a periodic grid graph. Note that while there are an infinite number of vertex pairs whose
maximum path score need to be computed, due to the periodicity of the graph, the output can be represented in finite
space. The periodic IGAPS problem was studied by Tiskin [25] who gave an O (C2n2) time algorithm for the problem.

1.1. Our contribution and road map

In this work we address several variants of the IGAPS problem. Our contribution includes generalizations and improve-
ments to previous results as follows (summarized in Table 1).

We start by working out some of the previously vague details from Schmidt’s algorithm [21] for a special case of the
IGAPS problem (the assumption in [21] is that all horizontal and vertical edges have weight w1, and each diagonal edge
has weight w1 or w2, for some fixed w1 and w2). We generalize Schmidt’s algorithm to yield an O (Cn2) algorithm for the
general IGAPS problem (Section 3).

In Section 4 we consider the sparse BGAPS problem. We give an O (r log3(n2/r)) time algorithm, which improves the
previous result of Krusche and Tiskin for this problem.

Next, we turn to address the periodic IGAPS problem in Section 5. Our first result on this front is obtained by extending
the O (Cn2) algorithm for IGAPS to handle the periodic variant of the problem (Section 5.1). This improves Tiskin’s O (C2n2)

result for periodic IGAPS. We then show, in Section 5.2, that periodic IGAPS can be reduced to BGAPS. Therefore, we obtain
an O (C2n2(log log n/ log n)2) time algorithm for periodic IGAPS (when the grid graph corresponds to an alignment problem),
and an O (r log3(n2/r)) time algorithm for periodic sparse BGAPS.



140 U. Matarazzo et al. / Theoretical Computer Science 525 (2014) 138–149
Table 1
Results for GAPS and periodic IGAPS. The results of this paper are marked by asterisks. The results for periodic
IGAPS are based on reducing the periodic problems to the non-periodic problems and using the corresponding
non-periodic algorithms. The results in the third row are for the IGAPS problem when the grid graph corresponds
to an alignment problem. The remaining results in the table are for general grid graphs (which may not corre-
spond to alignment problems).

Type Non-periodic Periodic

IGAPS O (Cn2) [21] O (C2n2) [25]
O (Cn2)∗

Alignment IGAPS O (C2n2(log logn/ log n)2) [22] O (C2n2(log log n/ log n)2)∗

Sparse BGAPS O (n
√

r ) [12]
O (r log3(n2/r))∗ O (r log3(n2/r))∗

Permutation O (n log2 n) [22] O (n log2 n)∗

2. Preliminaries

A sequence is an ordered list of integers. For a sequence S , let S[k] denote the k-th element of S , and let S[k : k′] denote
the sequence (S[k], . . . , S[k′]) (if k > k′ then S[k : k′] is an empty sequence). Let merge(S1, S2) denote the sequence obtained
from merging two sorted sequences S1 and S2 into one sorted sequence.

Let G be an m ×n grid graph with weights on the edges. Let (i, j) denote the vertex on row i and column j of the graph.
The grid graph G[i1..i2, j1.. j2] is the subgraph obtained by taking the subgraph of G induced by the vertices {(i, j): i1 �
i � i2, j1 � j � j2} and then renumbering the vertices by subtracting i1 from each row number and j1 from each column
number. Let G1 and G2 be two grid graphs with the same number of rows. The horizontal concatenation of G1 and G2 is
the grid graph obtained by merging the vertices in the last column of G1 with the vertices of the first column of G2 (each
vertex is merged with a vertex with the same row number). The removal of a column j in G means taking the two subgraphs
G1 = G[0..m,0.. j] and G2 = G[0..m, j + 1..n], and concatenating G1 and G2 horizontally. Vertical concatenation and removal
of a row are defined analogously.

For a grid graph G , we will denote the weights of the diagonal, horizontal, and vertical edges leaving a vertex (i, j)
by W i, j, W H

i, j, W V
i, j , respectively. Recall that we assume that W H

i, j = W H
i′, j for all i, i′, j, and W V

i, j = W V
i, j′ for all i, j, j′ . We

now claim that we can assume without loss of generality that all horizontal and vertical edges have weight 0. We show
this by giving a reduction from the general case to the restricted case.3 The first step of the reduction is to replace the
weight of each diagonal edge leaving (i, j) by W ′

i, j = max(W i, j, W H
i, j + W V

i, j+1). Clearly, every path in G has the same
weight under the new and original weights. The next step is to replace the weight of each diagonal edge leaving (i, j) by
W ′′

i, j = W ′
i, j − (W H

i, j + W V
i, j+1) and replace the weights of all horizontal and vertical edges by 0. It is easy to verify that

the weight of a path from (i, j) to (i′, j′) in the original graph is equal to the weight of the path in the new graph plus∑ j′−1
k= j W H

i,k + ∑i′−1
k=i W V

k, j . Thus, we shall assume throughout the paper that W H
i, j = 0 and W V

i, j = 0 for all i and j.

3. Algorithm for IGAPS

Throughout this section assume that m = n. Define Opti(k, j) to be the maximum weight of a path from (0,k) to (i, j).
If k > j then Opti(k, j) is not defined. Define

DiffCi, j(k) = Opti(k, j + 1) − Opti(k, j)

and

DiffRi, j(k) = Opti+1(k, j) − Opti(k, j).

Note that DiffCi, j and DiffRi, j are defined for 0 � k � j. The DiffCm, j functions give an implicit representation of the
all-scores matrix of G . Thus, our goal is to show how to compute all values of these functions.

The algorithm of Schmidt for IGAPS works as follows: It processes the input graph in top-to-bottom/left-to-right traversal
order, i.e., the algorithm iterates over i from 0 to n − 1, and for each i it iterates over j from 0 to n − 1. For each i, j
it computes all the values of DiffCi+1, j and DiffRi, j+1 from the values of DiffCi, j and DiffRi, j (which were computed
previously). In [21] it is claimed that the computation of DiffCi+1, j and DiffRi, j+1 can be done in O (C) time, without
giving details. We give in Theorem 6 a complete characterization of this computation. Before giving the theorem, we give
several lemmas which are either from [21] or folklore. For the sake of self-containment, we will give the proofs for these
lemmas.

3 This reduction was suggested by an anonymous referee.
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Lemma 1. For every i and j, DiffCi, j(k − 1) � DiffCi, j(k) and DiffRi, j(k − 1) � DiffRi, j(k) for all k.

Proof. Consider some function DiffCi, j and fix some k. Let P1 be a maximum weight path from (0,k) to (i, j + 1), and let
P2 be a maximum weight path from (0,k + 1) to (i, j). The paths P1 and P2 must cross at some vertex v . Define x, y, z, w
as follows:

• x is the weight of the prefix of P1 until v .
• y is the weight of the prefix of P2 until v .
• z is the weight of the suffix of P2 from v .
• w is the weight of the suffix of P1 from v .

Recall that Opti(k, j) is the maximum weight of a path from (0,k) to (i, j). The concatenation of the prefix of P1 until v with
the suffix of P2 from v is a path from (0,k) to (i, j) and consequently x+ z � Opti(k, j). Similarly, y + w � Opti(k +1, j +1).
Hence,

Opti(k, j + 1) + Opti(k + 1, j) = x + w + y + z � Opti(k, j) + Opti(k + 1, j + 1).

Therefore,

DiffCi, j(k) = Opti(k, j + 1) − Opti(k, j) � Opti(k + 1, j + 1) − Opti(k + 1, j) = DiffCi, j(k + 1).

Since the inequality above holds for all k, it follows that DiffCi, j is monotonically non-decreasing.
The proof that DiffRi, j is monotonically non-increasing is similar. �
In the next lemma we give upper and lower bounds for DiffCi, j and DiffRi, j .

Lemma 2. 0 � DiffCi, j(k) � C and 0 � DiffRi, j(k) � C for all 0 � k � j.

Proof. Every path from (0,k) to (i, j) can be extended to a path from (0,k) to (i, j + 1) by adding the vertex (i, j + 1) to
the end of the path. The weight of the latter path is equal to the weight of the former path. Thus, DiffCi, j(k) � 0.

We now prove the upper bound on DiffCi, j . From every path P from (0,k) to (i, j + 1) we can construct a path P ′ from
(0,k) to (i, j) as follows: Let v be the last vertex on P which is on column j, and let w be the next vertex on P . The path
P ′ contains the prefix P ′′ of P until v and the vertices on column j from v to (i, j). Due to the assumption that all vertical
edges between two rows have the same weight, the weight of P ′ is equal to the weight of P ′′ . Moreover, the weight of P
is equal to the weight of P ′′ plus the weight of the edge (v, w), which is at most C . It follows that the weight of P is less
than or equal to the weight of P ′ plus C . Thus, DiffCi, j(k) � C .

The proof of the inequalities for DiffRi, j are similar, and thus omitted. �
In the following lemmas, we will show that DiffCi+1, j and DiffRi, j+1 can be computed efficiently from DiffCi, j and

DiffRi, j . For every k, the values DiffCi+1, j(k) and DiffRi, j+1(k) depend on Opti+1(k, j + 1). The optimal path from (0,k) to
(i + 1, j + 1) passes through either (i + 1, j), (i, j), or (i, j + 1). Thus,

Opti+1(k, j + 1) = max
{

Opti+1(k, j),Opti(k, j) + W i, j,Opti(k, j + 1)
}
.

From the equality above, we obtain the following equality for Opti+1(k, j + 1) − Opti(k, j).

Lemma 3. Opti+1(k, j + 1) − Opti(k, j) = Maxi, j(k), where

Maxi, j(k) = max
{

DiffRi, j(k), W i, j,DiffCi, j(k)
}
.

Proof. We have that

Opti+1(k, j + 1) − Opti(k, j) = max

⎧⎪⎨
⎪⎩

Opti+1(k, j) − Opti(k, j),

Opti(k, j) − Opti(k, j) + W i, j,

Opti(k, j + 1) − Opti(k, j)

⎫⎪⎬
⎪⎭ = Maxi, j(k). �

Lemma 4. For 0 � k � j,

DiffCi+1, j(k) = Maxi, j(k) − DiffRi, j(k), (1)

DiffRi, j+1(k) = Maxi, j(k) − DiffCi, j(k). (2)
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Proof. We have that

DiffCi+1, j(k) = Opti+1(k, j + 1) − Opti+1(k, j)

= Opti+1(k, j + 1) − Opti(k, j) − (Opti+1(k, j) − Opti(k, j))

= Maxi, j(k) − DiffRi, j(k),

where the last equality follows from Lemma 3. The proof of Eq. (2) is similar. �
Recall that the functions DiffCi, j and DiffRi, j were defined only for k � j. We now extend the definition of the DiffCi, j

and DiffRi, j functions so that these functions will be defined for every integer k, 0 � k � n. We want to extend each function
in a way that preserves the monotonicity property and also preserves the correctness of Lemma 4. This is done by defining
DiffCi, j(k) = C and DiffRi, j(k) = 0 for j < k � n. By Lemma 2, the monotonicity of the DiffCi, j and DiffRi, j functions is
kept.

Lemma 5. Eqs. (1) and (2) hold for all 0 � k � n.

Proof. We only need to prove the lemma for k > j. By definition,

Maxi, j(k) = max
{

DiffRi, j(k), W i, j,DiffCi, j(k)
} = max{0, W i, j, C} = C .

As we defined DiffRi, j(k) = 0, we have Maxi, j(k) − DiffRi, j(k) = C . We also defined DiffCi+1, j(k) = C , so we conclude that
Eq. (1) holds for k. Similarly, we have Maxi, j(k) − DiffCi, j(k) = 0. Moreover, DiffRi, j+1(k) = 0 (if k > j + 1 this follows from
definition, and if k = j + 1 this follows from the fact that the unique path from (0,k) to (i + 1, j + 1) contains all the edges
of the unique path from (0,k) to (i, j + 1) plus the edge ((i, j + 1), (i + 1, j + 1)) whose weight is 0). Thus, Eq. (2) holds
for k. �

The DiffCi, j and DiffRi, j functions are monotone functions with integer values in the range 0 to C . We define a compact
representation for these functions. Intuitively, SCi, j and SRi, j are sequences that contain the “step” indices of the corre-
sponding DiffCi, j and DiffRi, j functions, i.e., the indices in which the values of these sequences change. The elements of
each such sequence are sorted in non-decreasing order. At this point we refer the reader to Fig. 2. Formally,

• The sequence SCi, j contains DiffCi, j(0) elements with value −∞, DiffCi, j(k)− DiffCi, j(k − 1) elements with value k for
every 1 � k � n, and C − DiffCi, j(n) elements with value ∞.

• The sequence SRi, j contains C − DiffRi, j(0) elements with value −∞, DiffRi, j(k − 1) − DiffRi, j(k) elements with value
k for every 1 � k � n, and DiffRi, j(n) elements with value ∞.

Each element of SCi, j and SRi, j is called a step. From the extended definition of the DiffCi, j and DiffRi, j functions it follows
that each sequence SCi, j and SRi, j has exactly C elements.

Recall that by Lemma 5, DiffCi+1, j(k) = Maxi, j(k)− DiffRi, j(k). Therefore, the steps of DiffCi+1, j(k) depend on the steps
of Maxi, j and DiffRi, j . Based on this observation, our main result of this section shows how to compute SCi+1, j and SRi, j+1
from SCi, j and SRi, j . For the following theorem denote SCi, j[C + 1] = ∞ and SRi, j[0] = ∞.

Theorem 6. Let i1 = 1 + C − W i, j and i2 = 1 + W i, j . If W i, j = C or SRi, j[i1 − 1] < SCi, j[i2] then

SCi+1, j = merge
(
SCi, j[i2 : C],SRi, j[i1 : C]), (3)

SRi, j+1 = merge
(
SCi, j[1 : i2 − 1],SRi, j[1 : i1 − 1]), (4)

and otherwise

SCi+1, j = S[C + 1 : 2C], (5)

SRi, j+1 = S[1 : C], (6)

where S = merge(SRi, j,SCi, j).

Proof. We will prove the correctness of Eqs. (3) and (5). The proof for Eqs. (4) and (6) is similar.
SRi, j[i1 − 1] is the minimum index k for which DiffRi, j(k) � W i, j and SCi, j[i2] is the minimum index k for which

DiffCi, j(k) > W i, j (if SRi, j[i1 − 1] = −∞ or SRi, j[i2] = −∞ then the corresponding k is 0). If SRi, j[i1 − 1] < SCi, j[i2],
then the range {0, . . . ,n} is partitioned into three (possibly empty) regions I1 = {0, . . . ,SRi, j[i1 − 1] − 1}, I2 = {SRi, j[i1 −
1], . . . ,SCi, j[i2] − 1}, and I3 = {SCi, j[i2], . . . ,n} such that
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Fig. 2. An example of the case SRi, j[i1 − 1] < SCi, j[i2]. In this example, n = 17, C = 10, and W i, j = 7. The DiffCi, j and DiffRi, j functions are
shown using black and gray, respectively. W i, j is marked as a horizontal black line at index 9. The steps are SCi, j = (−∞,1,1,2,4,8,12,14,16,17)

and SRi, j = (−∞,2,4,7,9,11,12,13,15,∞). The zones are I1 = {0, . . . ,3}, I2 = {4, . . . ,13}, and I3 = {14, . . . ,17}. The zones are marked via vertical
black lines at the corresponding zone-partitioning indices. The steps of DiffCi+1, j and DiffRi, j+1 are SCi+1, j = (7,9,11,12,13,15,14,16,17,∞) and
SRi, j+1 = (−∞,−∞,1,1,2,2,4,4,8,12).

Maxi, j(k) =

⎧⎪⎨
⎪⎩

DiffRi, j(k) if k ∈ I1,

W i, j if k ∈ I2,

DiffCi, j(k) if k ∈ I3.

See Fig. 2.
From Eq. (1) we obtain the following:

1. In region I1, DiffCi+1, j is constant, so DiffCi+1, j has no steps in I1 \ {0}.
2. In region I2, DiffCi+1, j increases whenever DiffRi, j decreases, namely, the steps of DiffCi+1, j in this region are precisely

the steps of DiffRi, j in this region.
3. In region I3, DiffCi+1, j increases whenever DiffCi, j increases or DiffRi, j decreases. Thus, the steps of DiffCi+1, j in this

region are the steps of DiffCi, j and DiffRi, j .

The sequences SRi, j[i1 + 1 : C] and SCi, j[i2 + 1 : C] contain the steps of SRi, j in I2 ∪ I3, and the steps of SCi, j in I3,
respectively. Hence, the correctness of Eq. (3) follows.

If SRi, j[i1 − 1] � SCi, j[i2] then the range {0, . . . ,n} is partitioned into 2 regions J1 = {0, . . . ,k′ − 1} and J2 = {k′, . . . ,n}
such that

Maxi, j(k) =
{

DiffRi, j(k) if k ∈ J1,

DiffCi, j(k) if k ∈ J2.

Therefore,

1. In region J1 \ {0}, DiffCi+1, j has no steps.
2. In region J2, the steps of DiffCi+1, j are the steps of DiffCi, j and DiffRi, j .

The sequence S[C + 1 : 2C] contains the steps of SCi, j and SRi, j in J2. �
The algorithm for IGAPS follows directly from Theorem 6.

(1) For j = 0, . . . ,n − 1 do SC0, j ← ( j + 1, . . . , j + 1).
(2) For i = 0, . . . ,n − 1 do
(3) SRi,0 ← (−∞, . . . ,−∞).
(4) For j = 1, . . . ,n − 1 do
(5) Compute SCi+1, j and SRi, j+1 using Theorem 6.

By Theorem 6, the computation in line 5 takes O (C) time, so the overall time complexity of the algorithm is O (Cn2).
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4. Algorithm for sparse BGAPS

In what follows, an edge of weight 1 is called active. A row (resp., column) of G is called inactive if there is no active
edge that starts at this row (resp., column). In this section we give an algorithm for sparse BGAPS. Our algorithm is based on
the algorithm of Krusche and Tiskin [12]. Both algorithms use a divide and conquer approach, namely they divide the input
grid graph into subgraphs and solve the problem recursively on each subgraph. There are two differences between these
algorithms. First, the algorithm of Krusche and Tiskin stops the partitioning when a subgraph of the grid graph has no active
edges, whereas our algorithm stops the partitioning when the number of active edges is at most the size of the subgraph.
Furthermore, the conquer steps of the two algorithms are different. The rest of this section is organized as follows. We first
describe a result of Tiskin [26] which is used for the conquer step of our algorithm. Then, we give an algorithm for handling
the case when the number of active edges is at most the size of the subgraph. Finally, we describe the algorithm for sparse
BGAPSand analyze its time complexity.

Due to the assumption of 0–1 weights, each sequence SCi, j or SRi, j contains a single element. We shall therefore refer
to SCi, j or SRi, j as an integer rather than a sequence. Theorem 6 then reduces to the following simplified form.

Theorem 7. (See Tiskin [24].) If W i, j = 1 then SCi+1, j = SRi, j and SRi, j+1 = SCi, j . Otherwise, SCi+1, j = max(SCi, j,SRi, j) and
SRi, j+1 = min(SCi, j,SRi, j).

According to the definitions in Section 2, the initialization of SC0, j is SC0, j = j + 1. For SRi,0 we use the initialization
SRi,0 = −i. Note that this initialization is different from the one used in Section 2. For an m × n grid graph G we define

Out(G) = (SCm,0,SCm,1, . . . ,SCm,n−1,SRm−1,n,SRm−2,n, . . . ,SR0,n).

With the initialization given above and by Theorem 7, Out(G) is a permutation of (−m + 1,−m + 2, . . . ,n).
The algorithm of Section 3, restricted for the case of 0–1 weights, has an interpretation as a transposition network [12]

(or using a different terminology, as seaweeds [22]). We now describe this interpretation using different terminology. Start
with m+n balls located on the edges in the first column and first row of G . The balls are numbered by −m+1,−m+2, . . . ,n
according to their anti-clockwise order. The balls are then moved along the edges of the graph. When the horizontal and
vertical edges leaving a vertex (i, j), denoted e1 and e2, contain each a ball, these two balls are moved to the horizontal
and vertical edges entering (i + 1, j + 1), denoted e3 and e4 (the numbers of these balls represent the values SCi, j and
SRi, j , respectively). If W i, j = 1 then the ball in e1 is moved to e4, and the ball in e2 is moved to e3. In other words, the
ball in e1 moves to the right, and the ball in e2 is moved down. We call this movement non-crossing. If W i, j = 0 then
the movement of the balls depends on their numbers. If the ball in e1 has smaller number than the ball in e2 (indicating
that the corresponding paths have already crossed once) then the movement of the ball is non-crossing. Otherwise, the
movement is crossing: the ball in e1 is moved to e3 and the ball in e2 is moved to e4. We say in this case that the paths of
the balls cross. Note that in both cases, exactly one ball is moved to e3 and one ball is moved to e4. Thus, for each edge on
the last column and last row of the graph there is a distinct ball that reaches the edge.

When two balls reach the edges leaving some vertex and the movement for this vertex is crossing, the ball entering
the horizontal edge must have a number greater than the number of the ball entering the vertical edge. If afterward these
two balls reach the edges leaving another vertex, then the ball entering the horizontal edge has a number smaller than the
number of the ball entering the vertical edge. Therefore, by definition, the movement in this step is non-crossing. In other
words, the paths of two balls can cross at most once. Therefore, an alternative way to define the movement of the balls
in e1 and e2 for the case W i, j = 0 is: If the paths of the balls crossed before, then the movement is non-crossing, and
otherwise the movement is crossing. The computation of Out(G) is equivalent to computing the destination edges of all
balls.

We will use the following results.

Theorem 8. (See Tiskin [26].) Let G be a grid graph obtained by horizontal or vertical concatenation of two m × n grid graphs G1 and
G2 . Given Out(G1) and Out(G2), Out(G) can be computed in O (n + m log m) time.

Lemma 9. (See Tiskin [22].) Let G be an n × n grid graph. Let G ′ be the grid graph obtained from G by removal of inactive rows and
columns. Then Out(G) can be computed from Out(G ′) in O (n) time.

We now give some intuition for the term O (n + m log m) appearing in Theorem 8. The problem of computing Out(G)

from Out(G1) and Out(G2) has the following interpretation in terms of balls. The movement of balls −m + 1, . . . ,n in the
left half of G is the same as the movement of the corresponding balls in G1 (a ball with number i in G corresponds to the
ball with number i in G2). In particular, the n balls that reach the leftmost n horizontal edges on the last row of G are the
same as the balls that reach the horizontal edges in the last row of G1. It follows that Out(G)[i][1 : n] = Out(G1)[i][1 : n].

Now consider the following m + n balls in G: the balls b−m+1, . . . ,b0 that pass through the vertical edges of column n,
numbered from bottom to top, and the balls n + 1, . . . ,2n. Compare the movement of these balls with the movement of
the balls in G2. Here the ball with number bi in G corresponds to the ball with number i in G2, and the ball with number
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Fig. 3. An example for the algorithm for computing Out(G) when G has at most n active edges. The figure shows the partition of G into G1, G2, G3, and
the new grid graphs G ′

1 and G ′
3 as defined in the text.

Fig. 4. An example of the algorithm for sparse BGAPS. In the first level of the recursion, the grid graph G is partitioned into four 4 × 4 subgraphs
G1, G2, G3, G4. The number of active edges in these graphs are 6,4,4,4, respectively. Thus, the recursion stops on G2, G3, G4. The subgraph G1 is parti-
tioned again into four subgraphs.

n + j in G corresponds to the ball with number j in G2. It is easy to verify that the movement of ball n + j in G is the
same as the movement of the corresponding ball j in G2. However, the movement of a ball bi in G may not be the same as
the movement of the corresponding ball i in G2. This is due to the fact that for two balls bi1 > bi2 with i1 < i2, their paths
crossed in the left half of G , so their paths in the right half cannot cross again. However, the paths of the corresponding
balls i1 and i2 can cross. The crux of the algorithm of Theorem 8 is the computation the destination edges of the balls
b−m+1, . . . ,b0 of G given the destination edges of the balls 1, . . . ,m of G2. The time complexity of this computation is
O (m log m), while the time of handling the rest of the balls is O (n).

We now give an algorithm that computes Out(G) for an n ×n grid graph G with at most n active edges (see Fig. 3). This
algorithm will later be used as a subroutine in our solution for the sparse BGAPS problem. The algorithm is an extension
of an algorithm of Tiskin [22] for permutation grid graphs. Let G be a grid graph with at most n active edges. If G has
at most n/2 active edges, then there are at least n/2 inactive rows and at least n/2 inactive columns. Choose n/2 inactive
rows and n/2 inactive columns and remove them from G to obtain a grid graph G ′ . Recursively compute Out(G ′) and then
use Lemma 9 to obtain Out(G). Otherwise, let i be the maximum index such that G1 = G[0..i,0..n] has at most n/2 active
edges. Note that i is well defined since G[0..0,0..n] has no active edges, and G[0..n,0..n] has more than n/2 active edges.
Let G2 = G[i..i + 1,0..n] and G3 = G[i + 1..n,0..n]. The usage of G2 ensures that G3 has at most n/2 active edges (note that
G1 also has at most n/2 edges by definition). Thus, we can remove n/2 inactive rows and n/2 inactive columns in each
graph and obtain graphs G ′

1 and G ′
3. Using recursion, Out(G ′

1) and Out(G ′
3) are computed, and then Out(G1) and Out(G3)

are obtained. Moreover, since Out(G2) is of size 1 × n, Out(G2) can be computed in O (n) time. Finally, compute Out(G)

from Out(G1), Out(G2), and Out(G3) using Theorem 8. The time complexity function T2(n) of the algorithm satisfies the
recurrence T (n) = 2T (n/2) + O (n log n). Thus, T (n) = O (n log2 n).

Our algorithm for sparse BGAPS is as follows. Let G be an input graph of size n × n. We assume that we are given as
input a list of the active edges of G . For simplicity, we assume that n is a power of two.

(1) If the number of active edges is at most n, compute Out(G) and stop.
(2) Partition G into four subgraphs G1 = G[0..n/2,0..n/2], G2 = G[0..n/2,n/2..n], G3 = G[n/2..n,0..n/2], and G4 =

G[n/2..n,n/2..n].
(3) Recursively compute Out(Gi) for each of the subgraphs.
(4) Compute Out(G) by application of Theorem 8 three times.

See Fig. 4.

Time complexity analysis. Consider the total time the algorithm spends on level j of the recursion. The size of each sub-
graph in this level is n′ × n′ , where n′ = n/2 j . Clearly, the number of graphs handled in level j is at most 4 j . Moreover, the
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number of subgraphs in level j − 1 on which line (3) of the algorithm operates is at most r/ n
2 j−1 as each such subgraph

contains at least n
2 j−1 active edges, and these subgraphs are disjoint. It follows that the number of subgraphs in level j is

at most 4 r
n/2 j−1 . The time complexity of handling one subgraph in level j is either O (n′ · log2 n′) if step 1 is performed, and

O (n′ log n′) if steps 2–4 are performed. Therefore, the total time of the algorithm is

O
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= O
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.

5. Algorithms for periodic IGAPS

We begin with some notations. Let G be an n × n grid graph. The periodic grid graph G∞ is the graph obtained by taking
an infinite number of copies of G and concatenating them horizontally. The columns of G∞ are numbered by all (positive
and negative) integers.

For the periodic IGAPS problem, we use the same notation as for the non-periodic problem, with minor differences.
The DiffCi, j(k) and DiffRi, j(k) functions are defined for all integers k � j and these functions are extended for all integers
k > j as before. The step sequences are defined as follows. SCi, j is a sequence that contains mink DiffCi, j(k) elements with
value −∞, DiffCi, j(k) − DiffCi, j(k − 1) elements with value k for every k, and C − DiffCi, j( j) elements with value ∞. The
elements of SCi, j are sorted in non-decreasing order. The sequence SRi, j is defined similarly. Theorem 6 also holds for the
periodic problem.

Since Lemma 9 also holds for the periodic problem, we will assume without loss of generality that G does not contain
inactive rows.

5.1. Direct algorithm

In this section we describe a quadratic time algorithm for periodic IGAPS. The following lemma shows that the SCi, j and
SRi, j sequences have a periodic property. Thus, it suffices to compute SCi, j and SRi, j only for 0 � j � n − 1.

Lemma 10. For all i, j, l, SCi, j−n[l] = SCi, j[l] − n and SRi, j−n[l] = SRi, j[l] − n, where −∞ − n = −∞ and ∞ − n = ∞.

Proof. By the periodicity of the graph, DiffCi, j−n(k − n) = DiffCi, j(k) for all k � j. Therefore,

DiffCi, j−n(k − n) − DiffCi, j−n(k − n − 1) = DiffCi, j(k) − DiffCi, j(k − 1),

namely, the number of elements with value k − n in SCi, j−n is the same as the number of elements with this value in SCi, j .
It is easy to verify that −∞ and ∞ have the same number of occurrences in SCi, j−n and SCi, j . Thus, the first part of the
Lemma follows. The second part is analogous and we omit the proof. �

Similarly to the non-periodic problem, the algorithm processes a subgraph of the input graph (corresponding to 0 � j �
n − 1) in top-to-bottom traversal order. The initialization of the SC0, j sequences is the same as in the non-periodic problem
(namely, SC0, j contains C elements with value j + 1). In the non-periodic problem, the initialization of the SRi,0 sequences
is trivial (see Section 3). In the periodic problem, it may not be easy to determine SRi,0. However, the following lemma
shows that in each row i there is at least one j for which the sequence SRi, j can be easily determined.

Lemma 11. Suppose that W i, j = max j′ W i, j′ . Then, for all k � j + 1 there is a maximum weight path P from (0,k) to (i + 1, j + 1)

such that the last edge in P is diagonal or vertical.
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Fig. 5. The figure shows a grid graph of the form G5, and the paths of the balls for this graph. The marked cells in figure show cells in which the entering
and leaving ball numbers are the same in G5 and in G∞ , after a shift of the values by cn for an appropriate c.

Proof. Let P be a maximum weight path from (0,k) to (i + 1, j + 1). Let (i, s) be the first vertex on P which is on row i. If
s = j +1 then the last edge of P is the vertical edge ((i, j +1), (i +1, j +1)) and we are done. Else, create a path P ′ by taking
the sub-path of P from (0,k) to (i, s), and joining it with the path ((i, s), (i, s+1)), . . . , ((i, j −1), (i, j)), ((i, j), (i +1, j +1)).
By the assumption that W i, j = max j′ W i, j′ we have that W (P ′) � W (P ) so P ′ is a maximum weight path from (0,k) to
(i + 1, j + 1) whose last edge is diagonal. �
Lemma 12. Suppose that W i, j = max j′ W i, j′ . Then, SRi, j+1 contains C − W i, j elements with value −∞, and then the elements of
SCi, j[1 : W i, j].

Proof. Fix an integer k � j. From Lemma 11 there is a maximum weight path P from (0,k) to (i + 1, j + 1) whose last edge
is diagonal or vertical. Let P ′ be a path from (0,k) to (i, j + 1) which is obtained from P by removing the last edge of P ,
and adding an edge ((i, j), (i, j + 1)) if this edge is not already present in P . We have that

Opti(k, j + 1) � W
(

P ′) = W (P ) − W i, j = Opti+1(k, j + 1) − W i, j.

We obtain that DiffRi, j(k) � W i, j for all k. Therefore, the first C − W i, j elements of SRi, j are −∞. Thus, the case SRi, j[i1 −
1] < SCi, j[i2] of Theorem 6 occurs, so

SRi, j+1 = merge
(
SCi, j[1 : i2 − 1],SRi, j[1 : i1 − 1]),

where i1 = 1 + C − W i, j and i2 = 1 + W i, j . As mentioned above, the first i1 − 1 = C − W i, j elements of SRi, j are all −∞.
Therefore, the theorem follows. �

Based on Lemma 12, the algorithm processes row i of the graph as follows. First, it finds an index j∗ such that W i, j∗ =
max j′ W i, j′ , and computes SRi, j∗+1 according to Lemma 12. Then, it computes SCi+1, j and SRi, j+1 for j = j∗ + 1, . . . ,n − 1
using Theorem 6. Next, the algorithm computes SRi,0 from SRi,n according to Lemma 10. Finally, it computes SCi+1, j and
SRi, j+1 for j = 0, . . . , j∗ using Theorem 6.

5.2. Reduction to BGAPS

In this section, we show that periodic IGAPS can be reduced to BGAPS. Since Tiskin showed a reduction from integer
weights to 0–1 weights [22], it suffices to show a reduction from periodic BGAPS to BGAPS. We will use SC

G
i, j and SR

G
i, j to

denote the sequences SCi, j and SRi, j with respect to a grid graph G .
Let G be an n × n grid graph. We extend the definition of Out(·) to periodic grid graphs as follows:

Out(G∞) = (
SC

G∞
n,0 ,SC

G∞
n,1 , . . . ,SC

G∞
n,n−1

)
.

To solve periodic BGAPS, it suffices to compute Out(G∞).
The grid graph Gk is the graph obtained by horizontal concatenation of k copies of G (see Fig. 5). Let ji denote the

minimum index j such that W i, j = 1. The reduction from periodic IGAPS to GAPS is based on the following lemma.

Lemma 13. Let k � 1. Let 0 � i � n − 1 and 0 � j � n − 1 be indices such that either

1. i � k − 1, or
2. i = k and j > ji

then SC
Gk

i, j+α = SC
G∞
i, j + α, where α = (k − 1)n. Moreover, for 0 � i � n − 1 and 0 � j � n, if either

1. i � k − 2, or
2. i = k − 1 and j > ji

then SR
Gk = SR

G∞ + α.
i, j+α i, j
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Proof. We prove the theorem using induction on k. Fix some k. We will assume that k > 1 (the proof of the base of the
induction, when k = 1, is similar). From the initialization, SC

Gk

0, j+α = j +1+α = SC
G∞
0, j +α for 0 � j � n −1. Moreover, by the

induction hypothesis we have that SR
Gk

i,α = SR
Gk−1

i,n+(k−2)n = SR
G∞
i,n + (k − 2)n for 0 � i � k − 2. By Lemma 10, SR

G∞
i,n = SR

G∞
i,0 + n.

It follows that SR
Gk

i,α = SR
G∞
i,0 + α for 0 � i � k − 2.

From Theorem 7 we obtain the following corollary: If SC
Gk

i, j+α = SC
G∞
i, j + α and SR

Gk

i, j+α = SR
G∞
i, j + α then SC

Gk

i+1, j+α =
SC

G∞
i+1, j + α and SR

Gk

i, j+1+α = SR
G∞
i, j+1 + α (this is due to the fact that the diagonal edge leaving (i, j + α) in Gk has the same

weight as the diagonal edge leaving (i, j) in G∞). We now apply the corollary on i = 0 and j = 0 as we have already shown
above that the conditions of the corollary are satisfied. We next apply the corollary on i = 0 and j = 1 (the fact that the
condition SR

Gk

i, j+α = SR
G∞
i, j +α is satisfied follows from the application of the corollary on i = 0 and j = 0). We can continue

applying the corollary for i = 0 and j = 2,3, . . . ,n − 1. Next, we apply the corollary for i = 1 and j = 0,1, . . . ,n − 1, and
then we continue applying the corollary for all i � k − 2 and j � n − 1.

Now, consider the indices i = k − 1 and j = ji . From above, we have that SC
Gk

i, j+α = SC
G∞
i, j + α. Since by definition,

the diagonal edges leaving (i, j + α) in Gk and (i, j) in G∞ have weight 1, we obtain from Theorem 7 that SR
Gk

i, j+α+1 =
SC

Gk

i, j+α = SC
G∞
i, j +α = SR

G∞
i, j+1 +α. We can now apply the corollary above on i = k − 1 and j = ji + 1, and continue applying

the corollary for i = k − 1 and j = ji + 2, . . . ,n − 1. �
Corollary 1. If k � n + 1 then Out(G∞) = (SC

Gk

n,α − α,SC
Gk

n,1+α − α, . . . ,SC
Gk

n,n−1+α − α).

Our goal is to show how to compute (SC
Gk

n,α,SC
Gk

n,1+α, . . . ,SC
Gk

n,n−1+α) for some k � n + 1. Define

Out
′(Gk) = (

SC
Gk

n,α,SC
Gk

n,1+α, . . . ,SC
Gk

n,n−1+α,SR
Gk

n−1,kn,SR
Gk

n−2,kn, . . . ,SR
Gk

0,kn

)
.

The following lemma follows from Theorem 8.

Lemma 14. Given Out
′(Gk), Out

′(G2k) can be computed in O (n log n) time.

Based on Corollary 1 and Lemma 14, we obtain the following algorithm for solving periodic BGAPS.

(1) Compute Out
′(G).

(2) Let n′ be the smallest power of 2 which is greater than or equal to n.
(3) For k = 1,2,4, . . . ,n′/2 do
(4) Compute Out

′(G2k) from Out
′(Gk).

(5) Output (Out
′(Gn′

)[1] − (n′ − 1)n, . . . ,Out
′(Gn′

)[n] − (n′ − 1)n).

We have shown the following theorem.

Theorem 15. The periodic BGAPS problem on a grid graph G can be solved in T (G) + O (n log2 n) time, where T (G) is the time
complexity of solving BGAPS on G.
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