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Abstract—The paper describes an algorithm for computing longest common substrings of two
strings α1 and α2 with one mismatch in O(|α1||α2|) time and O(|α1|) additional space. The
algorithm always accesses symbols of α2 sequentially starting from the first symbol. RAM-model
of computation is used.
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1. INTRODUCTION

Longest common substring computing is one of the basic problems in stringology. However,
for applications like bionformatics and text analysis the problem of computing longest common
substrings with mismatches (insertions, deletions and substitutions of symbols) is of much bigger
importance. There exist several approaches to this problem, e.g. dynamic programming. A solution
based on dynamic programming computes longest common approximate substrings using time and
space proportional to multiplication of the strings’ lengths [?].

The problem solved in the paper can be formulated as follows.

Given two strings α1, α2 compute all pairs of substrings of α1 and α2, which differ by at most
one insertion, deletion or substitution of symbols and have maximal lengths (in case of insertions
and deletions we define the biggest of the substrings’ lengths to be the length of the longest common
substring).

The developed algorithm uses the same time as the one based on dynamic programming and
computes longest common substrings of two strings with one or zero mismatches. Suppose that the
length of α2 is sufficiently larger that the length of α1. Additional memory used by the algorithm
is then O(|α1|). The algorithm reads α2 for several times, but each time sequentially from the left
to the right, starting from the first symbol. This condition is essential for applications which store
α2 in the external memory, because random access is costy in time in this case.

Preliminaries. We assume that a finite non-empty set Σ is fixed (an alphabet). Elements of
this set are called letters. A finite ordered sequence of letters (possibly empty) is called a string.
Letters of Σ are treated just as integers in range 1, . . . , |Σ|, so one can compare any pair of them
in O(1) time. This lexicographic order on Σ is linear and can be extended in a standard way to the
set of strings on Σ. We write α < β to denote that α lexicographically precedes β; similarly for
other relation signs.

Letters in a string are numerated starting from 1; for example, symbols of a string α of length k
are denoted by α[1], . . . , α[k]. A substring of α from position i to position j (inclusively) is denoted
by α[i..j].

1 Supported in part by the Russian Foundation for Basic Research, project no. 09-01-00709-a.
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2 BABENKO, STARIKOVSKAYA

α1: . . . γ′ α1[i] γ′′ . . .

←− γ1 −→

α2: . . . γ′ α2[j] γ′′ . . .

←− γ2 −→

Strings α1, α2 and their substrings γ1, γ2

Definition 1. A string β = α[1 : j] is a prefix of α and is denoted by α[ : j]. Similarly,
β = α[i : |α|] is a suffix of α and is denoted by α[i : ].

The length of the longest common prefix of strings α and β and is denoted by lcp(α, β), and the
length of the longest common suffix of strings α and β is denoted by lcs(α, β).

We assume the usual RAM model of computation [?].

First we give a naive algorithm for computing longest common substrings with one or zero
substitutions of symbols (for deletions and insertions the idea is similar). Hereafter |α1| is denoted
by n1 and |α2| is denoted by n2 (n2 ≥ n1).

To compute the length L of the substrings the algorithm simply compares each substring of
length d of the string α1 with each substring of length d of the string α2 symbol by symbol. If there
exist a substring of α1 and a substring of α2, both of length d, differing in one or zero symbols,
then the length of strings γ1 and γ2 is at least d. We run this procedure for all d from 1 to α1 to
obtain L.

After that we run the comparison for the second time and write out all substrings of length L
differing in zero or one symbols.

Naive algorithm can be easily adjusted to read α2 sequentially, starting from the first symbol.
Namely, we fix a substring of length d of α1 and compare it with strings α2[1 : d], α2[2 : d+ 1], . . .,
α2[n2 − d + 1 : n2]. Knowing symbols of α2[i : i + d − 1] it is enough to read α2[i + d] to get the
substring α2[i+ 1 : i+d]. Therefore, we read the first d symbols of α2 to get the substring α2[1 : d]
and then we read one symbol per step.

Running time of the naive algorithm is O(n21n
2
2), the amount of additional memory used is O(n1).

Our purpose is to speed up the algorithm in n1n2 times.

2. THE ALGORITHM

We give a description of the algorithm computing the length of longest common substrings with
one or zero substitutions. Similar to the naive algorithm, we can run it the second time to compute
the substrings themselves. We explain how to change the algorithm to compute longest common
substrings with insertions and deletions in Section ??.

The idea of the developed algorithm is as follows. Suppose that γ1 and γ2 is one of the pairs of
substrings we are looking for. Assume that γ1 and γ2 have equal parts γ′, γ′′ and there is only one
position in which γ1 and γ2 might differ. Let this position coincide with position i in α1 and with
position j in α2. Obviously, γ′ is the longest common suffix of α1[ : i− 1] and α2[ : j − 1], and γ′′

is the longest common prefix of α1[i+ 1 : ] and α2[j + 1 : ] (fig. 1).

We denote lcs(α1[ : k], α2[ : l]) by lcs(k, l) and lcp(α1[k : ], α2[l : ]) by lcp(k, l). Assume that for
positions i and j of strings α1 and α2, correspondingly, we know lcs(i−1, j−1) and lcp(i+1, j+1).
Then s(i, j) = lcs(i− 1, j − 1) + lcp(i+ 1, j + 1) + 1 is the length of the longest common substring
of the strings α1 and α2 with a mismatch in positions i and j. We denote the length of the longest
common substring with a mismatch in position i of string α1 by di. Obviously, di = max

1≤j≤n2

s(i, j).
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COMPUTING THE LONGEST COMMON SUBSTRING WITH ONE MISMATCH 3

In fact, we do not check if symbols α1[i] and α2[j] are equal. We use position of a mismatch
only as a label dividing γ1 and γ2 into two parts. Therefore, the algorithm computes the length of
longest common substrings with zero or one substitutions of symbols.

Algorithm. Computing the length of longest common substring with one mismatch

MaxLength ← 0 i ← 1 . . . n1 Build a suffix tree for α1[1 : i − 1] Build Z values for α1[i + 1 : n1]
Build Z values for α1[1 : i − 1]−1 j ← 1 . . . n2 Compute lcp(i + 1, j + 1) Compute lcs(i − 1, j − 1)
s(i, j)← 1 + lcp(i+ 1, j + 1) + lcs(i− 1, j − 1) MaxLength < s(i, j) MaxLength ← s(i, j)

We also give pseudocode of the algorithm. There MaxLength stands for the length of a longest
common substring with one mismatch. The algorithm uses notions of suffix trees and Z values,
which we define later.

The LCP algorithm computes lcp(i+ 1, j+ 1) for a fixed i and all j = 1, . . . , n2 and is described
in Section 3. The LCS algorithm computes lcs(i− 1, j− 1) for a fixed i and all j = 1, . . . , n2 and is
described in Section 4. Though they are described separately, in the main algorithm they are run
simultaneously.

3. THE LCP ALGORITHM

In this section we give a general idea of the LCP algorithm. To compute lcp(i+1, j) j = 1, . . . , n2
the algorithm treats a string β = α1[i+1 : ]$α2, where $ /∈ Σ. We remind the definition of Z values
of a string:

Definition 2. For a given string β and for any j, 1 < j ≤ |β|, Zj(β) is defined to be equal
to lcp(β, β[j : ]).

By the definition, Zn1+j−i(β) is equal to lcp(i + 1, j). As it is shown in [?], Z values for β can
be computed in O(|β|) = O(n2) time and O(n1 − i) = O(n1) additional memory. Moreover, it is
not necessary to store β in the memory explicitly.

4. THE LCS ALGORITHM

In this section we describe the LCS algorithm, which computes lcs(i− 1, j − 1) for a fixed i and
all j = 1, . . . , n2. Note that it is impossible to use the LCP algorithm for reversed strings α1 and
α2, as we want to read α2 only from the left to the right, and, therefore, cannot reverse it.

Definition 3. Pre-occurrence of a string δ at position j in a string β is an occurrence of δ in β
ending at position j.

Obviously, lcs(i − 1, j) is equal to the length of the longest suffix of the string α[ : i − 1]
pre-occurring in α2 at position j. Below we remind the definition of a suffix tree [?].

Definition 4. A suffix tree for a string β of length m is a directed tree with the following
properties:

• A tree has m leaves, enumerated from 1 to m;
• Each non-leaf vertex has at least two children;
• Every arc is labeled with a non-empty substring of β;
• First symbols of labels of any two arcs outgoing from one vertex differ;
• On the path from the root to the leaf with number k a string β[k : ]$ is written.

Besides (explicit) vertexes mentioned in the definition, we also consider “implicit” vertexes,
which are not stored explicitly but associated with their explicit parents and positions on arcs. An

PROBLEMS OF INFORMATION TRANSMISSION Vol. 47 No. 1 2011



4 BABENKO, STARIKOVSKAYA

arc with a label γ has |γ| − 1 implicit vertexes on it and we say that a vertex with number k has
one outgoing arc labeled by γ[k + 1 : ].

For a compact representation arcs of a suffix tree are labeled not by substrings of β, but with
corresponding endpoints of substrings. In this case, only linear memory is needed for storage of a
suffix tree.

It is said that a vertex of a suffix tree is labeled by a string γ, if γ can be obtained by concate-
nating in order all labels on the path from the root to this vertex. Consider the following Lemma
and Definition:

Lemma 1. Existence of a vertex labeled by a string xγ(x ∈ Σ , γ is a string) implies existence
of a vertex labeled by γ, where both vertexes can either be explicit or implicit. Moreover, if the first
vertex is explicit, then the second one is explicit as well.

(for a proof see[?]).

Definition 5. A suffix link is a directed arc from an (explicit) vertex u labeled by a string xγ
(x ∈ Σ, γ is a string) to an (explicit) vertex labeled by γ.

E.i., Lemma ?? guarantees that each explicit vertex has a suffix link.

There are many suffix tree construction algorithms. One of the most famous is the algorithm
by Ukkonen [?]. This algorithm is linear in time, and besides a suffix tree it also builds suffix links.

Now we return to the problem of longest common suffixes’ computing. First we build a suffix
tree Ti for α1[ : i− 1] and compute Z values for α1[ : i− 1]−1, where α1[ : i− 1]−1 = α1[i− 1]α1[i−
2] . . . α1[1].

Then we compute a pre-occurrence of a substring of α1[ : i − 1] of maximal length at every
position j of α2, 1 ≤ j ≤ n2. For that we follow arcs of Ti starting from the root to read α2.
Suppose that we try to match α2[k] and fail. This means that we are at a vertex v (either explicit
or implicit) and there is no outgoing arc from this vertex with the label starting with α2[k]. Suppose
that v is labeled by β. Then the next step is to jump to the vertex u labeled by β[2 : ] (existence
of u is guaranteed by Lemma ??) as described below.

If v is explicit, the suffix link from v goes directly to u. If v is implicit, the procedure is a bit
more complicated. First, we go up to the explicit parent of v. Then we take a suffix link from
the parent and find ourselves somewhere on the path from the root to u. Note that there is only
one path in Ti labeled by β[2 : ] (see Definition ??). So, to find u we just go down along the acrs
checking the first symbols of arcs’ labels. Namely, at each (explicit) vertex with the label ` we
choose the arc with the label starting with β[2 + |`| : ]. The detailed description of this technique,
called skip/count method, can be found in [?].

After arrival at u we proceed the traverse of Ti starting at α2[k].

It follows from the traverse’s description that the label α1[pj : tj ] of a vertex which we are at
after matching position j of α2 is the longest substring (not a suffix yet) of α1[ : i−1], pre-occurring
at position j of α2. Obviously, lcs(α1[ : i− 1], α2[ : j]) is equal to lcs(α1[ : i− 1], α1[pj : tj ]).

According to Definition ??, the longest common suffix of strings α1[ : i− 1] and α1[ : tj ] is equal
to kj = Zi−tj (α1[1 : i − 1]−1). Then α1[i − kj : i − 1] and, consequently, α1[i − kj + 1 : i − 1],
α1[i − kj + 2 : i − 1],. . ., α1[i − 1] are suffixes of α1[ : tj ]. Note that α1[pj : tj ] is also a suffix of
α1[ : tj ]. So, lcs(α1[ : i − 1], α1[pj : tj ]) = min(kj , tj − pj + 1), and, therefore, lcs(α1[ : i − 1], α2[ :
j]) = min(kj , tj − pj + 1).

Time and space analysis. First we estimate time needed for the traverse of Ti. We estimate
the number of jumps along suffix links, the number of operations made during skip/count steps
and the number of letters’ comparisons separately.

PROBLEMS OF INFORMATION TRANSMISSION Vol. 47 No. 1 2011



COMPUTING THE LONGEST COMMON SUBSTRING WITH ONE MISMATCH 5

To prove that the number of jumps is less than O(n2), we use amortized analysis. Indeed, let j
be the last symbol matched during the traverse and ` be length of the label of the current vertex.
Then after a jump value j − ` will increase by one and it will not change if we follow α2 down the
arcs. As the maximum value of j − ` is n2, the number of jumps is O(n2).

To estimate the number of operations made during skip/count steps, we again use amortized
analysis. First we need one more definition and a lemma:

Definition 6. Depth of a vertex is the number of explicit vertexes on the path from the root
of the tree to this vertex.

Lemma 2. Let u, v be explicit vertexes of a suffix tree, and (u, v) be a suffix link from u to v.
Then vertex depth of u exceeds vertex depth of v by at most one.

(for a proof see[?]).

Current vertex depth can be decreased only when taking a suffix link. Lemma ?? guarantees
that this step it can be decreased by at most two (by one when going up to the explicit parent
and by one when taking a suffix link). Each operation during a skip/count step increases vertex
depth by one. The maximal vertex depth is O(n1), therefore the total number of operations during
skip/count steps is O(2n2 + n1) = O(n2).

So, the total number of operations made during the tree traverse (including letters’ check) is
O(n2).

Secondly, as have been already mentioned, Z values for α1[ : i−1]−1 and Ti can be computed in
O(n1) time and space. So, the algorithm computes lcs(i− 1, j), 1 ≤ j ≤ n2 in time O(n2 + n1) =
O(n2).

5. RESULTS

The main result of the paper is as follows.

Theorem 1. The developed algorithm computes the longest common substring with one or zero
substitutions of symbols in O(n1n2) time and O(n1) additional memory, n2 > n1. Moreover, it
always accesses symbols of α2 sequentially starting at the first symbol.

Proof. For a fixed position i of α1 it takes O(n2) time and O(n1) additional memory to compute
the length of the longest common substring with a mismatch at position i. Indeed, Z values for
strings α1[ : i−1]$α2 and α1[ : i−1]−1 can be computed in O(n2) time and O(n1) additional space.
A suffix tree Ti with suffix links can be computed in O(n1) time and space. Finally, tree traverse
takes O(n2) time to accomplish. So, for all n1 positions of α1 it takes O(n1n2) time and O(n1)
additional memory.

Let us return to the case of one insertion or deletion of a symbol. To find the longest common
substring with one insertion it is enough to compute lcp(i + 1, j + 1) + lcs(i − 1, j) + 1 for all i, j
and to find the maximum of these values. For deletion we compute the maximum of lcp(i, j + 1) +
lcs(i, j − 1) + 1 for all i, j. Obviously, both maximums can be computed with the LCP and LCS
algorithms. Moreover, same time and space bounds hold.

6. CONCLUSION

To conclude, the paper describes an algorithm for computing the longest common substring of
two strings with one mismatch. The algorithm always accesses symbols of α2 sequentially starting
from the first symbol, which is important for applications. Though the algorithm hardly can be
generalized for the case of k mismatches, the authors hope that the idea of the LCP algorithm can
be used when the order of reading a string is essential.
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