
Information Processing Letters 143 (2019) 56–60
Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

A faster algorithm for finding shortest substring matches 

of a regular expression

Hiroaki Yamamoto

Department of Electrical & Computer Engineering, Shinshu University, 4-17-1 Wakasato, Nagano-shi 380-8553, Japan

a r t i c l e i n f o a b s t r a c t

Article history:
Received 4 December 2015
Received in revised form 7 September 2018
Accepted 2 December 2018
Available online 5 December 2018
Communicated by Andrzej Tarlecki

Keywords:
Design of algorithms
Regular expression
Matching algorithm
Shortest substring
Finite automaton

Consider a regular expression r of length m and a text string T of length n over an 
alphabet �. Then, the RE shortest substring search problem is to find all shortest substrings 
of T matching r. The previous algorithm proposed by Clarke and Cormack uses an ε-free 
nondeterministic finite automaton (NFA) and runs in O (ksn) time and O (s) space, where 
k is the maximum number of outgoing transitions for any state and symbol, and s is the 
number of states. Generally, an ε-free NFA obtained from a regular expression has s = O (m)

and k = O (m); thus the algorithm takes O (m2n) time and O (m) space. We propose a faster 
algorithm that runs in O (mn) time and O (m) space. The proposed algorithm is based on a 
Thompson automaton which is an NFA with ε-transitions.

© 2018 Elsevier B.V. All rights reserved.
1. Introduction

The regular expression (RE) matching problem plays an 
important role in computer science and has been studied 
extensively [1,2,11,13,15]. The RE matching problem is typ-
ically defined as follows. Let r be an RE of length m and 
let T be a text string of length n over an alphabet �. 
Then the RE matching problem is to determine whether 
there is a substring y of T such that y ∈ L(r), where L(r)
denotes the language denoted by r. The traditional algo-
rithm using a Thompson automaton [14] solves the RE 
matching problem in O (mn) time and O (m) space. Fur-
thermore more efficient algorithms have been developed. 
For example, Myers [11] presented an algorithm that runs 
in O (mn/ logn) time and space, and Bille and Thorup [1,2]
proposed efficient algorithms using bit-parallelism.

As a more general problem, there is an RE search prob-
lem that finds all substrings of T matching r. We can solve 
the RE search problem using existing RE matching algo-
rithms. However, it requires significant time because these 

E-mail address: yamamoto@cs.shinshu-u.ac.jp.
https://doi.org/10.1016/j.ipl.2018.12.001
0020-0190/© 2018 Elsevier B.V. All rights reserved.
RE matching algorithms only find the end positions of sub-
strings matching an RE. We need to find the start positions 
in the RE search problem. Therefore, it is difficult to solve 
the RE search problem in O (mn) time. Han, Wang, and 
Wood [6] studied a subclass of REs called prefix-free REs 
and showed that the RE search problem for prefix-free REs 
can be solved in O (mn) time and O (m) space.

Clarke and Cormack [4] addressed an RE shortest sub-
string search problem for markup languages such as XML 
(Extensible Markup Language) and developed an efficient 
algorithm that makes use of ε-free nondeterministic finite 
automaton (NFA). Their algorithm runs in O (ksn) time and 
O (s) space, where k is the maximum number of outgoing 
transitions for any state and symbol, and s is the num-
ber of states of an ε-free NFA obtained from r. If an RE 
is prefix-free, then the RE shortest substring search prob-
lem can be solved in O (mn) time and O (m) space. Han [5]
and Han, Wang, and Wood [6] state that this problem can 
be solved in O (mn) time for any RE if a Thompson au-
tomaton (T-NFA) is used because k is at most 2. However, 
we cannot use the Clarke–Cormack algorithm because a 
T-NFA is an NFA with ε-transitions. In [5,6] no O (mn)

time algorithm using a T-NFA was ever shown. If we di-

https://doi.org/10.1016/j.ipl.2018.12.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:yamamoto@cs.shinshu-u.ac.jp
https://doi.org/10.1016/j.ipl.2018.12.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2018.12.001&domain=pdf


H. Yamamoto / Information Processing Letters 143 (2019) 56–60 57
Fig. 1. Construction of Thompson automaton for a regular expression r. (a) r = ∅, (b) r = ε, (c) r = a, (d) union r = r1 + r2, (e) concatenation r = r1r2, (f) star 
closure r = r∗

1 .
rectly remove the ε-transitions from a T-NFA, then k can 
be �(m). A position automaton, an equation automaton, 
and a follow automaton are widely known as an ε-free 
NFA obtained from an RE [3,9,16]. However, as seen in [9], 
there are REs such that the number of transitions is �(m2)

for these automata. Furthermore, Hromkovič, Seibert, and 
Wilke [7] gave an upper bound of O (m(log m)2) and a 
lower bound of �(m log m) for the number of transitions of 
an ε-free NFA obtained from an RE. Lifshits [10] improved 
the lower bound to �(m(log m)2/ log log m). Thus, it seems 
to be impossible to achieve O (mn) time and O (m) space 
by directly applying the Clarke–Cormack algorithm to an 
ε-free NFA obtained from an RE.

In this paper, we present an algorithm that runs in 
O (mn) time and O (m) space. The proposed algorithm 
uses a T-NFA but does not remove the ε-transitions. We 
achieve O (mn) time and O (m) space by efficiently pro-
cessing ε-transitions. The remainder of this paper is orga-
nized as follows. In Section 2, we give basic definitions of 
REs and describe the RE shortest substring search prob-
lem. In Section 3, we present a T-NFA and describe its 
basic properties. The proposed algorithm is presented in 
Section 4.

2. Regular expressions and an RE shortest substring 
search problem

Here we provide some definitions for REs.

Definition 1. Let � be an alphabet. The REs over � are 
defined as follows.

1. ∅, ε (the empty string), and a (∈ �) are REs that de-
note the empty set, the set {ε}, and the set {a}, respec-
tively.

2. Let r1 and r2 be REs denoting the sets R1 and R2, re-
spectively. Then (r1 + r2), (r1r2), and (r∗

1) are also REs 
that denote the sets R1 ∪ R2 (union), R1 R2 (concate-
nation), and R∗

1 (star closure), respectively.

Typically, unnecessary parentheses in an RE are elimi-
nated according to the following preference rules. Star clo-
sure has higher preference than concatenation and union, 
and concatenation has higher preference than union. Here 
L(r) denotes the language denoted by an RE r. The length 
of an RE r represents the number of alphabet symbols 
and operators (union, concatenation, and star) occurring 
in r.

Let T = a1 · · ·an be a string over �. Then, for any 1 ≤
i ≤ j ≤ n, we define a substring T [i : j] of T as T [i : j] =
ai · · ·a j . Note that the empty string ε is also a substring
of T . If a substring T [i : j] is not equal to T , then T [i : j] is 
called a proper substring of T .

Definition 2. Let r be an RE. Then, we define the set P(r)
of strings as follows.

P(r) = {x | x ∈ L(r) and for any proper substring y of
x, y /∈ L(r)}.

We define the set Match(r, T ) = {(i, j) | i ≤ j, T [i : j] ∈
P(r)}. From Definition 2, if ε ∈ L(r), then P(r) = {ε}; thus, 
Match(r, T ) = ∅. Therefore, in this paper, we consider only 
REs r such that ε /∈ L(r).

Definition 3. For any RE r and any string T , the RE shortest 
substring search problem is to find Match(r, T ).

Consider the following example. Let r = ab(a + b)∗ba
be an RE over {a, b} and let T = aababaaaabaaaba. Then, 
all substrings matching r consist of T [2 : 6] = ababa, 
T [2 : 11] = ababaaaaba, T [2 : 15] = ababaaaabaaaba, T [4 :
11] = abaaaaba, T [4 : 15] = abaaaabaaaba, and T [9 : 15] =
abaaaba. Thus Match(r, T ) = {(2, 6), (4, 11), (9, 15)}.

3. Thompson automata

T-NFAs are recursively constructed according to the def-
inition of REs, and the construction algorithm for T-NFAs 
is widely known (for example, see [8]). Fig. 1 outlines a 
construction for each operator, where M1 and M2 denote 
T-NFAs for REs r1 and r2, respectively. As seen in Fig. 1, 
a star closure generates a transition to a previous state, 



58 H. Yamamoto / Information Processing Letters 143 (2019) 56–60
Fig. 2. T-NFA for r = (a + b)(aa + bb)∗b.
i.e., a transition from state q1 to state p1. We refer to this 
as a back transition.

Let M = (Q , �, δ, q0, q f ) be a T-NFA for an RE r of 
length m, where Q is a set of states, � is an alphabet, 
δ is a transition function from Q × (� ∪ {ε}) to 2Q , q0 is 
the initial state and q f is the final state. Thus, a T-NFA has 
one initial state and one final state. In addition, a T-NFA 
has the following properties.

Property 1 A T-NFA consists of at most 2m states and 4m
transitions.

Property 2 For any state q ∈ Q , all incoming transitions 
of q have either the empty string ε or an alpha-
bet symbol in �. We call state q an ε-state if all 
incoming transitions have ε, and call q a symbol 
state (s-state) if all incoming transitions have an 
alphabet symbol.

Property 3 For any state q ∈ Q − {q0}, if q is an ε-state 
then the number of incoming transitions of q is 
1 or 2, and if q is an s-state then the number of 
incoming transitions of q is just 1.

We define Q̃ = {q ∈ Q | q is an s-state} ⋃{q0}. For any 
state q ∈ Q , if q has two incoming transitions, then q is 
called a junction state. Note that these two incoming tran-
sitions are labeled ε. Thus all junction states are ε-states. 
We call a sequence of transitions of M a path. In particu-
lar, we call a sequence consisting of only ε-transitions an 
ε-path. Here, for any state q ∈ Q , we define that there is 
an ε-path from q to q. By removing back transitions from 
a T-NFA, the T-NFA can be viewed as a directed acyclic 
graph. The topological order of states of a T-NFA is a lin-
ear order obtained from the corresponding directed acyclic 
graph.

Here, we provide an example of a T-NFA. Consider an 
RE r = (a +b)(aa +bb)∗b over � = {a, b}. Then, Fig. 2 shows 
the T-NFA of r constructed by the recursive construction 
given in Fig. 1. Q̃ = {0, 2, 4, 9, 11, 13, 15, 19} and the junc-
tion states are 5, 7, 16 and 17. Each state is numbered in 
topological order. When constructing a T-NFA according to 
Fig. 1, the following proposition holds.

Proposition 1. For any RE of length m, we can construct the 
T-NFA in O (m) time and space.

Furthermore, T-NFAs have the following property. This 
property was given in [12].
Lemma 1 (see Lemma 1 in [12]). Let M be a T-NFA. Then, any 
loop-free path of M has at most one back transition.

4. Algorithm for the RE shortest substring search 
problem

The algorithm given by [4] assumes an ε-free NFA; 
therefore, we must remove ε-transitions from a T-NFA if 
we use this algorithm. Generally, by removing ε-transi-
tions, the number of outgoing transitions of a state in-
creases to O (m). Thus, if we remove ε-transitions and 
then use the algorithm of [4], the time complexity be-
comes O (m2n). We will show an O (mn) time algorithm 
by computing ε-transitions efficiently. In other words, 
since a T-NFA has a simple structure, we can compute 
ε-transitions efficiently by using the structure. Our algo-
rithm REShortSearch(r, T ) is shown in Algorithm 1. In 
Algorithm 1, the array Start[q] is used to store the start 
position of the shortest substring for which M can reach 
state q from q0. Then, the following theorem holds.

Algorithm 1 REShortSearch(r, T ).
Input: an RE r and a string T = a1 · · ·an , where ai ∈ �.
Output: Match(r, T ).

1: Generate a T-NFA M = (Q , �, δ, q0, q f ) from r.
2: Sort Q in topological order.
3: for all q ∈ Q do
4: Start[q] ← 0
5: end for
6: Compute Q f = {q | q is an s-state such that there is an ε-path from

q to q f }
7: for i = 1 to n do
8: UpdateStart(M, Start, i)
9: pos = maxq∈Q f Start[q]

10: if pos > 0 then
11: Output (pos, i)
12: for all q ∈ Q do
13: if Start[q] ≤ pos then
14: Start[q] ← 0
15: end if
16: end for
17: end if
18: end for

Theorem 1. Let r be an RE of length m and T be a string of 
length n. Then, REShortSearch(r, T ) can compute Match(r, T )

in O (mn) time and O (m) space.

Let us prove the theorem. The key point to achieve 
O (mn) time is the procedure UpdateStart(M, Start, i),
which is given in Algorithm 2. First, we give the follow-
ing lemma.



H. Yamamoto / Information Processing Letters 143 (2019) 56–60 59
Algorithm 2 Procedure UpdateStart(M, Start, i).
Input: T-NFA M , Start and an input position i.

1: loop ← 2
2: for all q ∈ Q do
3: Next[q] ← 0
4: end for
5: Start[q0] ← i
6: while loop �= 0 do
7: for all ε-states q ∈ Q − {q0} in topological order do
8: if q is a junction state with q ∈ δ(p1, ε) and q ∈ δ(p2, ε) then
9: Start[q] ← max{Start[p1], Start[p2]}

10: else
11: Start[q] ← Start[p], where q ∈ δ(p, ε)

12: end if
13: end for
14: loop ← loop − 1
15: end while
16: for all s-states q with a transition δ(p, ai) = {q} by ai do
17: if Start[p] > Next[q] then
18: Next[q] ← Start[p]
19: end if
20: end for
21: for all q ∈ Q do
22: Start[q] ← Next[q]
23: end for

Lemma 2. The following properties hold for any i ≥ 1.

1. UpdateStart(M, Start, i) runs in O (m) time and O (m)

space.
2. After executing UpdateStart(M, Start, i), for any state 

q ∈ Q̃ , i′ = Start[q] > 0 if and only if the following (a) 
and (b) hold:
(a) M can reach state q from q0 by T [i′ : i],
(b) for any i1 (i′ < i1 ≤ i), M cannot reach state q from q0

by T [i1 : i].

Proof. Each state of M is checked at most once in the 
while-loop at lines 6–15. Therefore UpdateStart(M, Start, i)
runs in O (m) time and O (m) space because M has at most 
2m states and the while-loop is only performed twice. 
Thus, property 1 has been proved.

Next, let us prove property 2 using induction on i. In
UpdateStart(M, Start, i), note that Next[q] is used as a tem-
porary array to compute Start[q]. Next[q] is initially set 
to 0. If there is a substring T [i′ : i] on which M can go 
to q from q0, then Next[q] is set to the maximum posi-
tion among these i′ . Finally, Next[q] is copied to Start[q] at 
lines 21–23.

Now let us prove the base case i = 1. The procedure
UpdateStart(M, Start, i) first sets Start[q0] to 1 at line 5. 
For any p ∈ Q , if there is an ε-path from q0 to p, then 
Start[p] is set to 1 in the while-loop because each state 
is processed in topological order. Let q be an s-state with 
δ(p, σ) = {q}. Then, if there is an ε-path from q0 to p, 
Start[p] is set to 1 prior to processing q. Therefore, Next[q]
is set to 1 at lines 16–20 if σ = a1. If σ �= a1, then 
Next[q] = 0. Finally, Next[q] is copied to Start[q] at line 22. 
Thus, if Start[q] > 0, then Start[q] = 1 and M can go to q
from q0 by T [1 : 1]. Conversely, if M can go to q from q0
by T [1 : 1], then Start[q] is set to 1. Thus, property 2 holds 
for the base case.

Induction step. Let i ≥ 1. Assume that property 2 holds 
for any position less than i + 1. Then, we prove case i + 1. 
Suppose that UpdateStart(M, Start, i) have finished. Then, 
for any state p ∈ Q which has a transition to an s-state q, 
i.e., δ(p, σ) = {q} for an alphabet symbol σ , the following 
claim holds.

Claim. Let q1, . . . , qt be all states such that they are in Q̃ and 
there is an ε-path to p. Then, Start[p] is set to the maximum 
value of Start[q j] (1 ≤ j ≤ t) after executing UpdateStart(M,

Start, i + 1).

Proof of Claim. For any q j (1 ≤ j ≤ t), there is always a 
loop-free ε-path P j from q j to p because if an ε-path 
has a loop, then we can remove the loop. By Lemma 1, 
P j has at most one back transition. If P j does not have a 
back transition, then the value of Start[q j] is transmitted 
to Start[p] because each state is processed in topologi-
cal order. Now we consider the case where P j has one 
back transition. Suppose that P j = p1 · · · pl , where p1 = q j , 
pl = p, and a transition pe (1 ≤ e ≤ l − 1) to pe+1 in P j
is a back transition. Then, since each state is processed 
in topological order, state pe+1 is processed prior to pe . 
Thus, in the first repetition of the while-loop, Start[pe+1]
is computed using the old value of Start[pe]. However, in 
the second repetition, Start[pe+1] can be computed using 
the updated value. Therefore, the value of Start[q j] is cor-
rectly transmitted to Start[p] even if P j has a back tran-
sition. Since a junction state takes the maximum value of 
two states at line 9, Next[q] is set to the maximum value 
among Start[q1], . . . , Start[qt]. Thus the claim holds. �

By the inductive assumption, if Start[q j] > 0, then M
can move from q0 to q j on T [Start[q j] : i]. Recall that a 
state q is an s-state with a transition δ(p, σ) = {q}. Thus, 
if σ = ai+1 and Start[p] > Next[q], then Start[p] is copied 
to Next[q] at line 18. If σ �= ai+1, then Next[q] = 0 be-
cause Next[q] is first set to 0. Finally Next[q] is copied to 
Start[q] for all states q. Thus, by the claim, if Start[q] > 0, 
then M can reach q from q0 by T [Start[q] : i + 1], and, for 
any i1 (Start[q] < i1 ≤ i + 1), M cannot reach q from q0
by T [i1 : i + 1]. Furthermore, it is also clear that if (a) and 
(b) holds, then Start[q] > 0. Thus, property 2 holds for the 
case i + 1, and Lemma 2 has been proved. �

We can now prove Theorem 1.

Proof of Theorem 1. First, let us prove the time and space 
complexities. The construction of a T-NFA and the topo-
logical sort of states can be performed in O (m) time 
and space. The procedure UpdateStart(M, Start, i) of line 8 
is executed n times. Therefore, from Lemma 2, lines 
7–18 takes O (mn) time and O (m) space. Thus REShort-
Search(r, T ) can be executed in O (mn) time and O (m)

space.
Let us show that REShortSearch(r, T ) computes

Match(r, T ). First, we show that if REShortSearch(r, T )

outputs a pair (pos, i) then (pos, i) ∈ Match(r, T ). Let 
q ∈ Q̃ . From Lemma 2, after executing UpdateStart(M,

Start, i) for each i ≥ 1, if Start[q] has position i′ > 0, then it 
holds that M can reach q from q0 by T [i′ : i] and for any i1
(i′ < i1 ≤ i), M cannot reach q from q0 by T [i1 : i]. Here, 
if q ∈ Q f then T [i′ : i] is accepted by M . The variable pos



60 H. Yamamoto / Information Processing Letters 143 (2019) 56–60
is set to the maximum value among Start[q] with q ∈ Q f
at line 9; therefore a substring T [pos : i] is accepted by M , 
and, for any i1 (pos < i1 ≤ i), T [i1 : i] is not accepted by M . 
Thus, we have (pos, i) ∈ Match(r, T ).

Next, we show the converse relation. Assume that 
(i′, i) ∈ Match(r, T ). By the definition of Match(r, T ), a sub-
string T [i′, i] is accepted by M; however, for any i1 (i′ <

i1 ≤ i), T [i1 : i] is not accepted by M . From Lemma 2, after 
executing UpdateStart(M, Start, i), there is a state q ∈ Q f
such that Start[q] = i′ . Furthermore, i′ must be the max-
imum value among Start[q] with q ∈ Q f . Thus, REShort-
Search(r, T ) sets pos to i′ at line 9 and outputs a pair 
(pos, i). Therefore, REShortSearch(r, T ) correctly computes 
Match(r, T ). �
Acknowledgement

This work was supported by JSPS KAKENHI Grant Num-
ber JP17K00183.

References

[1] P. Bille, New algorithms for regular expression matching, in: Proc. 
of ICALP 2006, in: Lect. Notes Comput. Sci., vol. 4501, 2006, 
pp. 643–654.

[2] P. Bille, M. Thorup, Regular expression matching with multi-strings 
and intervals, in: Proc. of SODA 2011, 2011, pp. 1297–1307.
[3] A. Brüggemann-Klein, Regular expressions into finite automata, 
Theor. Comput. Sci. 120 (1993) 197–213.

[4] Charles L.A. Clarke, Gordon V. Cormack, On the use of regular expres-
sions for searching text, ACM Trans. Program. Lang. Syst. (TOPLAS) 
19 (3) (1997) 413–426.

[5] Yo-Sub Han, On the linear number of matching substrings, J. Univers. 
Comput. Sci. 16 (5) (2010) 715–728.

[6] Yo-Sub Han, Y. Wang, D. Wood, Prefix-free regular languages and pat-
tern matching, Theor. Comput. Sci. 389 (2007) 307–317.

[7] J. Hromkovič, S. Seibert, T. Wilke, Translating regular expressions into 
small ε-free nondeterministic finite automata, J. Comput. Syst. Sci. 
62 (4) (2001) 565–588.

[8] J.E. Hopcroft, J.D. Ullman, Introduction to Automata Theory Language 
and Computation, Addison Wesley, Reading, Mass, 1979.

[9] L. Ilie, S. Yu, Follow automata, Inf. Comput. 186 (2003) 140–162.
[10] Y. Lifshits, A lower bound on the size of ε-free NFA corresponding to 

a regular expression, Inf. Process. Lett. 85 (3) (2003) 293–299.
[11] G. Myers, A four Russians algorithm for regular expression pattern 

matching, J. ACM 39 (4) (1992) 430–448.
[12] E. Myers, W. Miller, Approximate matching of regular expressions, 

Bull. Math. Biol. 51 (1) (1989) 5–37.
[13] G. Navarro, M. Raffinot, New techniques for regular expression 

searching, Algorithmica 41 (2004) 89–116.
[14] K. Thompson, Regular expression search algorithm, Commun. ACM 

11 (6) (1968) 419–422.
[15] H. Yamamoto, Regular expression matching algorithms using dual 

position automata, J. Comb. Math. Comb. Comput. 71 (2009) 
103–125.

[16] H. Yamamoto, T. Miyazaki, M. Okamoto, Bit-parallel algorithms for 
translating regular expressions into NFAs, IEICE Trans. Inf. Syst. 
E90-D (2) (2007) 418–427.

http://refhub.elsevier.com/S0020-0190(18)30233-3/bib4269s1
http://refhub.elsevier.com/S0020-0190(18)30233-3/bib4269s1
http://refhub.elsevier.com/S0020-0190(18)30233-3/bib4269s1
http://refhub.elsevier.com/S0020-0190(18)30233-3/bib4254s1
http://refhub.elsevier.com/S0020-0190(18)30233-3/bib4254s1
http://refhub.elsevier.com/S0020-0190(18)30233-3/bib4272s1
http://refhub.elsevier.com/S0020-0190(18)30233-3/bib4272s1
http://refhub.elsevier.com/S0020-0190(18)30233-3/bib4343s1
http://refhub.elsevier.com/S0020-0190(18)30233-3/bib4343s1
http://refhub.elsevier.com/S0020-0190(18)30233-3/bib4343s1
http://refhub.elsevier.com/S0020-0190(18)30233-3/bib4861s1
http://refhub.elsevier.com/S0020-0190(18)30233-3/bib4861s1
http://refhub.elsevier.com/S0020-0190(18)30233-3/bib485757s1
http://refhub.elsevier.com/S0020-0190(18)30233-3/bib485757s1
http://refhub.elsevier.com/S0020-0190(18)30233-3/bib485357s1
http://refhub.elsevier.com/S0020-0190(18)30233-3/bib485357s1
http://refhub.elsevier.com/S0020-0190(18)30233-3/bib485357s1
http://refhub.elsevier.com/S0020-0190(18)30233-3/bib486Fs1
http://refhub.elsevier.com/S0020-0190(18)30233-3/bib486Fs1
http://refhub.elsevier.com/S0020-0190(18)30233-3/bib4959s1
http://refhub.elsevier.com/S0020-0190(18)30233-3/bib4C69s1
http://refhub.elsevier.com/S0020-0190(18)30233-3/bib4C69s1
http://refhub.elsevier.com/S0020-0190(18)30233-3/bib4D79s1
http://refhub.elsevier.com/S0020-0190(18)30233-3/bib4D79s1
http://refhub.elsevier.com/S0020-0190(18)30233-3/bib4D4Ds1
http://refhub.elsevier.com/S0020-0190(18)30233-3/bib4D4Ds1
http://refhub.elsevier.com/S0020-0190(18)30233-3/bib4E52s1
http://refhub.elsevier.com/S0020-0190(18)30233-3/bib4E52s1
http://refhub.elsevier.com/S0020-0190(18)30233-3/bib5468s1
http://refhub.elsevier.com/S0020-0190(18)30233-3/bib5468s1
http://refhub.elsevier.com/S0020-0190(18)30233-3/bib5961s1
http://refhub.elsevier.com/S0020-0190(18)30233-3/bib5961s1
http://refhub.elsevier.com/S0020-0190(18)30233-3/bib5961s1
http://refhub.elsevier.com/S0020-0190(18)30233-3/bib594D4Fs1
http://refhub.elsevier.com/S0020-0190(18)30233-3/bib594D4Fs1
http://refhub.elsevier.com/S0020-0190(18)30233-3/bib594D4Fs1

	A faster algorithm for ﬁnding shortest substring matches of a regular expression
	1 Introduction
	2 Regular expressions and an RE shortest substring search problem
	3 Thompson automata
	4 Algorithm for the RE shortest substring search problem
	Acknowledgement
	References


