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For two strings a, b of lengths m, n, respectively, the longest common subsequence (LCS)
problem consists in comparing a and b by computing the length of their LCS. In this paper,
we define a generalisation, called “the all semi-local LCS problem”, where each string is
compared against all substrings of the other string, and all prefixes of each string are
compared against all suffixes of the other string. An explicit representation of the output
lengths is of size �((m + n)2). We show that the output can be represented implicitly by
a geometric data structure of size O (m + n), allowing efficient queries of the individual
output lengths. The currently best all string–substring LCS algorithm by Alves et al., based
on previous work by Schmidt, can be adapted to produce the output in this form. We
also develop the first all semi-local LCS algorithm, running in time o(mn) when m and n
are reasonably close. Compared to a number of previous results, our approach presents an
improvement in algorithm functionality, output representation efficiency, and/or running
time.
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1. Introduction

Given two strings a, b of lengths m, n, respectively, the longest common subsequence (LCS) problem consists in com-
paring a and b by computing the length of their LCS. In this paper, we define a generalisation, called “the all semi-local
LCS problem”, where each string is compared against all substrings of the other string, and all prefixes of each string are
compared against all suffixes of the other string. The all semi-local LCS problem arises naturally in the context of LCS
computations on substrings. It is closely related to local sequence alignment (see e.g. [10,12]) and to approximate string
matching (see e.g. [9,18]).

A standard approach to string comparison is representing the problem as an alignment dag (directed acyclic graph) of
size �(mn) on an m ×n grid of nodes. The basic LCS problem, as well as its many generalisations, can be solved by dynamic
programming on this dag in time O (mn) (see e.g. [9,10,12,18]). It is well known (see e.g. [2,16] and references therein) that
all essential information in the alignment dag can in fact be represented by a data structure of size O (m + n). In this paper,
we expose a rather surprising (and to the best of our knowledge, previously unnoticed) connection between this linear-
size representation of the string comparison dag, and a standard computational geometry problem known as dominance
counting.

If the output lengths of the all semi-local LCS problem are represented explicitly, the total size of the output is
�((m + n)2), corresponding to m2 + n2 possible substrings and 2mn possible prefix–suffix pairs. To reduce the storage
requirements, we allow the output lengths to be represented implicitly by a smaller data structure that allows efficient re-
trieval of individual output values. Using previously known linear-size representations of the string comparison dag, retrieval
of an individual output length typically requires scanning of at least a constant fraction of the representing data structure,
and therefore takes time O (m + n). By exploiting the geometry connection, we show that the output lengths can be rep-
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resented by a set of m + n grid points. Individual output lengths can be obtained from this representation by dominance
counting queries. This leads to a data structure of size O (m + n), that allows to query an individual output length in time
O (

log(m+n)
log log(m+n)

), using a recent result by JáJá et al. [11]. The described approach presents a substantial improvement in query
efficiency over previous approaches.

It has long been known [8,17] that the (global) LCS problem can be solved in subquadratic1 time O ( mn
log(m+n)

) when m
and n are reasonably close. Alves et al. [2], based on previous work by Schmidt [20], proposed an all string–substring (i.e.
restricted semi-local) LCS algorithm that runs in time O (mn). In this paper, we propose the first all semi-local LCS algorithm,
which runs in subquadratic time O ( mn

log0.5(m+n)
) when m and n are reasonably close. This improves on [2] simultaneously in

algorithm functionality, output representation efficiency, and running time.
A preliminary version of this paper appeared as [21].

2. Previous work

Although our generic definition of the all semi-local LCS problem is new, several algorithms dealing with similar prob-
lems involving multiple substring comparison have been proposed before. The standard dynamic programming approach can
be regarded as comparing all prefixes of each string against all prefixes of the other string. Papers [2,7,13–16,20] present
several variations on the theme of comparing substrings (prefixes, suffixes) of two strings. In [13,15], the two input strings
are revealed character by character. Every new character can be either appended or prepended to the input string. Therefore,
the computation is performed essentially on substrings of subsequent inputs. In [16], multiple strings sharing a common
substring are compared against a common target string. A common feature in many of these algorithms is the use of linear-
sized string comparison dag representation, and a suitable merging procedure that “stitches together” the representations
of neighbouring dag blocks to obtain a representation for the blocks’ union. As a consequence, such algorithms could be
adapted to work with our new, potentially more efficient geometric representation, without any increase in asymptotic time
or memory requirements.

3. Semi-local longest common subsequences

We consider strings of characters from a fixed finite alphabet, denoting string concatenation by juxtaposition. Given a
string, we distinguish between its contiguous substrings, and not necessarily contiguous subsequences. Special cases of a
substring are a prefix and a suffix of a string. For two strings a = α1α2 . . . αm and b = β1β2 . . . βn of lengths m, n, respectively,
the longest common subsequence (LCS) problem consists in computing the length of the longest string that is a subsequence
both of a and b.

We define a generalisation of the LCS problem, which we call the all semi-local LCS problem. It consists in computing the
LCS lengths on substrings of a and b as follows:

• the all string–substring LCS problem: a against every substring of b;
• the all prefix–suffix LCS problem: every prefix of a against every suffix of b;
• symmetrically, the all substring–string LCS problem and the all suffix–prefix LCS problem, defined as above but with the

roles of a and b exchanged.

It turns out that by considering this combination of problems rather than each problem separately, the algorithms can be
greatly simplified.

A traditional distinction, especially in computational biology, is between global (full string against full string) and local
(all substrings against all substrings) comparison. Our problem lies in between, hence the term “semi-local”. Many string
comparison algorithms output either a single optimal comparison score across all local comparisons, or a number of local
comparison scores that are “sufficiently close” to the globally optimal. In contrast with this approach, we require to output
all the locally optimal comparison scores.

In addition to standard integer indices . . . ,−2,−1,0,1,2, . . . , we use odd half-integer2 indices . . . ,− 5
2 ,− 3

2 ,− 1
2 , 1

2 ,
3
2 , 5

2 , . . . . For two numbers i, j, we write i � j if j − i ∈ {0,1}, and i � j if j − i = 1. We denote

[i : j] = {i, i + 1, . . . , j − 1, j},
〈i : j〉 = {

i + 1
2 , i + 3

2 , . . . , j − 3
2 , j − 1

2

}
.

To denote infinite intervals of integers and odd half-integers, we will use −∞ for i and +∞ for j where appropriate.
We will make extensive use of finite and infinite matrices, with integer elements and integer or odd half-integer indices.

A permutation matrix is a (0,1)-matrix containing exactly one nonzero in every row and every column. An identity matrix

1 The term “subquadratic” throughout this paper refers to the case m = n.
2 It would be possible to reformulate all our results using only integers. However, using odd half-integers helps to make the exposition simpler and more

elegant.
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Fig. 1. An alignment dag and a highest-scoring path.

is a permutation matrix I , such that I(i, j) = 1 if i = j, and I(i, j) = 0 otherwise. Each of these definitions applies both to
finite and infinite matrices.

A finite permutation matrix can be represented by its nonzeros’ index set. When we deal with an infinite matrix, it will
typically have a finite non-trivial core, and will be trivial (e.g., equal to an infinite identity matrix) outside of this core. An
infinite permutation matrix with finite non-trivial core can be represented by its core nonzeros’ index set.

Let D A be an arbitrary numerical matrix with indices ranging over 〈0 : n〉. Its distribution matrix is a matrix dA with
indices ranging over [0 : n], defined by

dA(i0, j0) =
∑

D A(i, j), i ∈ 〈i0 : n〉, j ∈ 〈0 : j0〉, (1)

for all i0, j0 ∈ [0 : n]. We have

D A(i, j) = dA
(
i − 1

2 , j + 1
2

) − dA
(
i − 1

2 , j − 1
2

) − dA
(
i + 1

2 , j + 1
2

) + dA
(
i + 1

2 , j − 1
2

)
.

When matrix dA is a distribution matrix of D A , matrix D A is called the density matrix of dA . The definitions of distribution
and density matrices extend naturally to infinite matrices. We will only deal with distribution matrices where the sum (1)
is always finite.

We will use the term permutation–distribution matrix as an abbreviation of “distribution matrix of a permutation matrix”.

4. Alignment dags and highest-score matrices

It is well known that an instance of the LCS problem can be represented by a dag (directed acyclic graph) on an m × n
grid of nodes, where character matches correspond to edges scoring 1, and non-matches to edges scoring 0. To describe our
algorithms, we need a slightly extended version of this representation, where the finite grid of nodes is embedded in an
infinite grid.

Definition 1. Let m,n ∈ N. An alignment dag G is a weighted dag, defined on the set of nodes vi, j , i ∈ [0 : m], j ∈ [0 : n]. The
edge and path weights are called scores. For all i ∈ [1 : m], j ∈ [1 : n]:

• horizontal edge vi, j−1 → vi, j and vertical edge vi−1, j → vi, j are both always present in G and have score 0;
• diagonal edge vi−1, j−1 → vi, j may or may not be present in G; if present, it has score 1.

Given an instance of the all semi-local LCS problem, its corresponding alignment dag is an m × n alignment dag, where
the diagonal edge vi−1, j−1 → vi, j is present, iff αi = β j . Fig. 1 shows the alignment dag corresponding to strings a =
“baabcbca”, b = “baabcabcabaca” (an example borrowed from [2]).

Common string–substring, suffix–prefix, prefix–suffix, and substring–string subsequences correspond, respectively, to
paths of the following form in the alignment dag:

v0, j � vm, j′ , vi,0 � vm, j′ , v0, j � vi′,n, vi,0 � vi′,n, (2)

where i, i′ ∈ [0 : m], j, j′ ∈ [0 : n]. The length of each subsequence is equal to the score of its corresponding path. The
solution to the all semi-local LCS problem is equivalent to finding the score of a highest-scoring path of each of the four
types (2) between every possible pair of endpoints. (Since the graph is acyclic, this is also equivalent to finding the score of
the corresponding lowest-scoring path in an alignment dag where all the scores are negated. Thus, the problem is related
to classical shortest path problems.)

Definition 2. Given an m ×n alignment dag G , its extension G+ is an infinite weighted dag, defined on the set of nodes vi, j ,
i, j ∈ [−∞ : +∞] and containing G as a subgraph. For all i, j ∈ [−∞ : +∞]:
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• horizontal edge vi, j−1 → vi, j and vertical edge vi−1, j → vi, j are both always present in G+ and have score 0;
• when i ∈ [1 : m], j ∈ [1 : n], diagonal edge vi−1, j−1 → vi, j is present in G+ iff it is present in G; if present, it has

score 1;
• otherwise, diagonal edge vi−1, j−1 → vi, j is always present in G+ and has score 1.

An infinite dag that is an extension of some (finite) alignment dag will be called an extended alignment dag. When dag
G+ is the extension of dag G , we will say that G is the core of G+ . Relative to G+ , we will call the nodes of G core nodes.

By using the extended alignment dag representation, the four path types (2) can be reduced to a single type, correspond-
ing to the all string–substring (or, symmetrically, substring–string) LCS problem on an extended set of indices.

Definition 3. Given an m×n alignment dag G , its extended horizontal (respectively, vertical) highest-score matrix3 is an infinite
matrix defined by

A(i, j) = max score(v0,i � vm, j), i, j ∈ [−∞ : +∞], (3)

A∗(i, j) = max score(vi,0 � v j,n), i, j ∈ [−∞ : +∞], (4)

where the maximum is taken across all paths between the given endpoints in the extension G+ . If i = j, we have A(i, j) = 0.
By convention, if j < i, then we let A(i, j) = j − i < 0.

In Fig. 1, the highlighted path has score 5, and corresponds to the value A(4,11) = 5, equal to the LCS length of string a
and substring b′ = “cabcaba”.

The maximum path scores for each of the four path types (2) can be obtained from the extended horizontal highest-score
matrix (3) as follows:

max score(v0, j � vm, j′ ) = A( j, j′),

max score(vi,0 � vm, j′ ) = A(−i, j′) − i,

max score(v0, j � vi′,n) = A( j,m + n − i′) − m + i′,

max score(vi,0 � vi′,n) = A(−i,m + n − i′) − m − i + i′,

where i, i′ ∈ [0 : m], j, j′ ∈ [0 : n], and the maximum is taken across all paths between the given endpoints. The same
maximum path scores can be obtained analogously from the extended vertical highest-score matrix (4).

For most of this section, we will concentrate on the properties of extended horizontal highest-score matrices, referring
to them simply as “extended highest-score matrices”. By symmetry, extended vertical highest-score matrices will have
analogous properties. We assume i, j ∈ [−∞ : +∞], unless indicated otherwise.

Theorem 4. An extended highest-score matrix has the following properties:

A(i, j) � A(i − 1, j); (5)

A(i, j) � A(i, j + 1); (6)

if A(i, j + 1) � A(i − 1, j + 1), then A(i, j) � A(i − 1, j); (7)

if A(i − 1, j) � A(i − 1, j + 1), then A(i, j) � A(i, j + 1). (8)

Proof. A path v0,i−1 � vm, j can be obtained by first following a horizontal edge of score 0: v0,i−1 → v0,i � vm, j . Therefore,
A(i, j) � A(i − 1, j). On the other hand, any path v0,i−1 � vm, j consists of a subpath v0,i−1 � vl,i of score at most 1,
followed by a subpath vl,i � vm, j . Therefore, A(i, j) � A(i − 1, j) − 1. We thus have (5) and, by symmetry, (6).

A crossing pair of paths v0,i � vm, j and v0,i−1 � vm, j+1 can be rearranged into a non-crossing pair of paths v0,i−1 �
vm, j and v0,i � vm, j+1. Therefore, we have the Monge property:

A(i, j) + A(i − 1, j + 1) � A(i − 1, j) + A(i, j + 1).

Rearranging the terms

A(i − 1, j + 1) − A(i, j + 1) � A(i − 1, j) − A(i, j)

and applying (5), we obtain (7) and, by symmetry, (8). �
3 These matrices are called “DIST matrices”, e.g., in [7,20], and “score matrices” in [21,22]. We have chosen a different terminology to reflect better the

score-maximising nature of the matrix elements, and to avoid confusion with pairwise score matrices used in comparative genomics (see e.g. [12]).
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Fig. 2. An alignment dag and the non-trivial critical points.

The properties of Theorem 4 are symmetric with respect to i and n − j. Alves et al. [2] introduce the same properties
but do not make the most of their symmetry. We aim to exploit symmetry to the full.

Corollary 5. An extended highest-score matrix has the following properties:

if A(i, j) � A(i − 1, j), then A(i, j′) � A(i − 1, j′) for all j′ � j;
if A(i, j) = A(i − 1, j), then A(i, j′) = A(i − 1, j′) for all j′ � j;
if A(i, j) � A(i, j + 1), then A(i′, j) � A(i′, j + 1) for all i′ � i;
if A(i, j) = A(i, j + 1), then A(i′, j) = A(i′, j + 1) for all i′ � i.

Proof. These are the well-known properties of matrix A and its transpose AT being totally monotone. In both pairs, the
properties are each other’s contrapositive, and follow immediately from Theorem 4. �

Informally, Corollary 5 says that the inequality between the corresponding elements in two successive rows (respectively,
columns) “propagates to the left (respectively, downwards)”, and the equality “propagates to the right (respectively, up-
wards)”. Recall that by convention, A(i, j) = j − i for all index pairs j < i. Therefore, we always have an inequality between
the corresponding elements in successive rows or columns in the lower triangular part of matrix A. If we fix i and scan the
set of indices j from j = −∞ to j = +∞, an inequality may change to an equality at most once. We call such a value of j
critical for i. Symmetrically, if we fix j and scan the set of indices i from i = +∞ to i = −∞, an inequality may change to
an equality at most once, and we can identify values of i that are critical for j. Crucially, for all pairs (i, j), index i will be
critical for j if and only if index j is critical for i. To capture this property, which is central to our method, we propose the
following definition.

Definition 6. An odd half-integer point (i, j) ∈ 〈−∞ : +∞〉2 is called A-critical, if

A
(
i + 1

2 , j − 1
2

)
� A

(
i − 1

2 , j − 1
2

) = A
(
i + 1

2 , j + 1
2

) = A
(
i − 1

2 , j + 1
2

)
.

In particular, point (i, j) is never A-critical for i > j. When i = j, point (i, j) is A-critical iff A(i − 1
2 , j + 1

2 ) = 0.

Corollary 7. Let i, j ∈ 〈−∞ : +∞〉. For each i (respectively, j), there exists exactly one j (respectively, i) such that the point (i, j) is
A-critical.

Proof. By Corollary 5 and Definition 6. �
Fig. 2 shows the alignment dag of Fig. 1 along with the critical points. In particular, every critical point (i, j), where

i, j ∈ 〈0 : n〉, is represented by a “seaweed” curve,4 originating between the nodes v0,i− 1
2

and v0,i+ 1
2

, and terminating

between the nodes vm, j− 1
2

and vm, j+ 1
2

. The remaining curves, originating or terminating at the sides of the dag, correspond

to critical points (i, j), where either i /∈ 〈0 : n〉 or j /∈ 〈0 : n〉.

4 For the purposes of this illustration, the specific layout of the curves between their endpoints is not important.
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It is convenient to consider the set of A-critical points as an infinite permutation matrix. For all (i, j) ∈ 〈−∞ : +∞〉, we
define

D A(i, j) =
{

1 if (i, j) is A-critical,

0 otherwise.

We denote the infinite distribution matrix of D A by dA , and consider the following simple geometric relation.

Definition 8. Point (i0, j0) dominates5 point (i, j), if i0 < i and j < j0.

Informally, the dominated point is “below and to the left” of the dominating point in the highest-score matrix.6 Clearly,
for an arbitrary integer point (i0, j0) ∈ [−∞ : +∞]2, the value dA(i0, j0) is the number of (odd half-integer) A-critical points
it dominates.

The following theorem shows that the critical point set defines uniquely a highest-score matrix, and gives a simple
formula for recovering matrix elements.

Theorem 9. We have

A(i0, j0) = j0 − i0 − dA(i0, j0).

Proof. Induction on j0 − i0. Denote d = dA(i0, j0).
Induction base. Suppose i0 � j0. Then d = 0 and A(i0, j0) = j0 − i0.
Inductive step. Suppose i0 < j0. Let d′ denote the number of critical points in 〈i0 : n〉 × 〈0 : j0 − 1〉. By the inductive

hypothesis, A(i0, j0 − 1) = j0 − 1 − i0 − d′ . We have two cases:

(1) There is a critical point (i, j0 − 1
2 ) for some i ∈ 〈i0 : n〉. Then d = d′ + 1 and A(i0, j0) = A(i0, j0 − 1) = j0 − i0 − d by

Corollary 5.
(2) There is no such critical point. Then d = d′ and A(i0, j0) = A(i0, j0 − 1) + 1 = j0 − i0 − d by Corollary 5.

In both cases, the theorem statement holds for A(i0, j0). �
In Fig. 2, critical points dominated by point (4,11) are represented by curves whose both endpoints (and therefore the

complete curve) fit between the two vertical lines, corresponding to index values i = 4 and j = 11. Note that there are
exactly two such curves, and that A(4,11) = 11 − 4 − 2 = 5.

There is a close connection between Theorem 9 and the canonical structure of general Monge matrices (see e.g. [6]).
Recall that outside the core, the structure of an extended alignment graph is trivial: all possible diagonal edges are

present in the non-core subgraph. This gives rise to the following property.

Corollary 10. Let i < −m or j > m + n. Point (i, j) is A-critical iff j − i = m (and therefore j < 0 or i > n).

Proof. By Definitions 2, 6. �
We will call A-critical points described by the above corollary trivial. Conversely, we have the following definition.

Definition 11. An A-critical point (i, j) is non-trivial, iff i ∈ 〈−m,n〉, j ∈ 〈0,m + n〉.

Corollary 12. There are exactly m + n non-trivial A-critical points.

Proof. We have A(−m,m + n) = m. On the other hand, A(−m,m + n) = 2m + n − dA(−m,m + n) by Theorem 9. Hence, the
total number of non-trivial A-critical points is dA(−m,m + n) = m + n. �

In Fig. 2, the set of critical points represented by the curves is precisely the set of all non-trivial critical points. Note that
there are 8 + 13 = 21 curves in total.

Since only non-trivial critical points need to be represented explicitly, an extended highest-score matrix can be repre-
sented by a critical point data structure of size O (m + n). We will refer to this data structure as the implicit representation
of A.

5 The standard definition of dominance requires i < i0 instead of i0 < i. Our definition is more convenient in the context of the LCS problem.
6 Note that these concepts of “below” and “left” are relative to the highest-score matrix, and have no connection to the “vertical” and “horizontal”

directions in the alignment dag.
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By Theorem 9, the value A(i0, j0) is determined by the number of A-critical points dominated by (i0, j0). Therefore, an
individual element of A can be obtained explicitly by scanning the implicit representation of A in time O (m + n), counting
the dominated critical points. However, existing methods of computational geometry allow us to perform this dominance
counting procedure much more efficiently, as long as preprocessing of the implicit representation is allowed. The following
theorems are derived from two relevant geometric results, one classical and one recent.

Theorem 13. Given the implicit representation of an extended highest-score matrix A, there exists a data structure which

• has size O ((m + n) log(m + n));
• can be built in time O ((m + n) log(m + n));
• allows to query an individual element of A in time O (log(m + n)2).

Proof. The structure in question is a 2D range tree [5] (see also [19]), built on the set of non-trivial A-critical points. There
are m +n such points, hence the total number of nodes in the tree is O ((m +n) log(m +n)). A dominance counting query on
the set of non-trivial A-critical points can be answered by accessing O (log(m+n)2) of the tree nodes. A dominance counting
query on the set of trivial A-critical points can be answered by a simple constant-time index calculation (note that the result
of such a query can only be nonzero when the query point lies outside the core subgraph of the extended alignment dag).
The sum of the above two dominance counting queries provides the total number of A-critical points dominated by the
query point (i0, j0). The value A(i0, j0) can now be obtained by Theorem 9. �
Theorem 14. Given the implicit representation of an extended highest-score matrix A, there exists a data structure which

• has size O (m + n);
• allows to query an individual element of A in time O (

log(m+n)
log log(m+n)

).

Proof. As above, but the range tree is replaced by the asymptotically more efficient data structure of [11]. �
While the data structure used in Theorem 14 provides better asymptotics, the range tree used in Theorem 13 is simpler,

requires a less powerful computation model, and is more likely to be practical.
We conclude this section by formulating yet another previously unexploited symmetry of the all semi-local LCS problem,

which will also become a key ingredient of our all semi-local LCS algorithm. This time, we consider both the horizontal
highest-score matrix A as in (3), and the vertical highest-score matrix A∗ as in (4). We show a simple one-to-one corre-
spondence between the implicit representations of A and A∗ , allowing us to switch easily between these representations.

Theorem 15. Point (i, j) is A-critical, iff point (−i,m + n − j) is A∗-critical.

Proof. Straightforward case analysis based on Definition 6. �
5. Fast highest-score matrix multiplication

Our solution of the all semi-local LCS problem and related problems follows a divide-and-conquer approach, which
refines the framework for the string–substring LCS problem developed in [2,20]. In this section, we describe the key sub-
routine, that will constitute the “conquer” step of our algorithms.

Following the divide-and-conquer approach, the alignment dag is partitioned recursively into alignment subdags. Without
loss of generality, consider a partitioning of an (M + m) × n alignment dag G into an M × n alignment dag G1 and an m × n
alignment dag G2, where M � m. The dags G1, G2 share a horizontal row of n nodes, which is simultaneously the bottom
row of G1 and the top row of G2; the dags also share the corresponding n − 1 horizontal edges. We will say that dag G is
the concatenation of dags G1 and G2. Let A, B , C denote the extended highest-score matrices defined respectively by dags
G1, G2, G . In every recursive call our goal is, given matrices A, B , to compute matrix C efficiently. We call this procedure
highest-score matrix multiplication.

Highest-score matrix multiplication can be performed naively in time O ((M + n)3) by standard matrix multiplication
over the (max,+)-semiring. By exploiting the Monge property of the matrices, the time complexity of highest-score matrix
multiplication can be reduced to O ((M + n)2), which is optimal if the matrices are represented explicitly. We show that
a further reduction in the time complexity of highest-score matrix multiplication is possible, by using the implicit matrix
representation and algorithmic ideas introduced in Section 4.

The implicit representation of matrices A, B , C consists of respectively M + n, m + n, M + m + n non-trivial nonzeros.
Alves et al. [2] use a similar representation; however, for their algorithm, n nonzeros per matrix are sufficient. They describe
a procedure equivalent to highest-score matrix multiplication for the special case m = 1. By iterating this procedure, they
obtain a string–substring LCS algorithm running in time O (mn). The algorithm produces a data structure of size O (n), which
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can be easily converted into the implicit representation of the output matrix. By adding a post-processing phase based on
Theorems 13, 14, this algorithm can be adapted to produce a query-efficient output data structure.

In generalised form, the main technique of [2] can be stated as follows.

Lemma 16. (Generalised from [2].) Consider the concatenation of alignment dags as described above, with extended highest-score
matrices A, B, C . Given the implicit representations of A, B, the implicit representation of C can be computed in time O (M + mn) and
memory O (M + n).

Our new algorithm is based on a novel highest-score matrix multiplication procedure, which improves on Lemma 16,
as long as n = o(m2). The main subroutine of our algorithm can be regarded as a variant of standard (min,+) matrix
multiplication.

Definition 17. Let n ∈ N. Let A, B , C be arbitrary numerical matrices with indices ranging over [0 : n]. The (min,+)-product
A 	 B = C is defined by

C(i,k) = min
j

(
A(i, j) + B( j,k)

)
, i, j,k ∈ [0 : n].

It is straightforward to check that (min,+)-multiplication is associative. Moreover, if each of matrices A, B is a
permutation–distribution matrix with indices ranging over [0 : n], then their (min,+)-product is a permutation–distribution
matrix with the same index range. In other words, the set of permutation–distribution matrices forms a submonoid in the
multiplicative monoid of the (min,+)-semiring of integer matrices over a given index range.

We now describe an efficient (min,+)-multiplication algorithm for permutation–distribution matrices, which is the key
lemma of this paper.

Lemma 18. Let D A , D B , DC be permutation matrices with indices ranging over 〈0 : n〉, and let dA , dB , dC be their respective distribution
matrices. Let dA 	 dB = dC . Given the set of nonzero elements’ index pairs in each of D A , D B , the set of nonzero elements’ index pairs
in DC can be computed in time O (n1.5) and memory O (n).

Proof. For a function f and a predicate P defined on a variable i, notation “anyi:P (i) f (i)” will denote the value f (i), where
index i is chosen arbitrarily from the set {i : P (i)}. This is analogous to the use of “mini:P (i) f (i)” to denote the minimum of
a function on a given index set.7

By Definition 17, we have

dC (i,k) = min
j

(
dA(i, j) + dB( j,k)

)
, i, j,k ∈ [0 : n]. (9)

We proceed by partitioning the square index pair range 〈0 : n〉2 recursively into regular half-sized square blocks. For
each block, we establish the number of nonzero elements of DC contained in that block, and perform further recursive
partitioning as long as this number is greater than 0.

Consider an h × h block

〈i0 − h : i0〉 × 〈k0 : k0 + h〉.
The nonzero of DC in this block will be determined by the nonzeros of D A in 〈i0 − h : i0〉 × 〈0 : n〉, and the nonzeros of D B

in 〈0 : n〉 × 〈k0 : k0 + h〉. We call such nonzeros of D A and D B relevant. For the current block, there are exactly h relevant
nonzeros in each of D A , D B .

For any j ∈ [0 : n], let δA( j) (respectively, δB( j)) denote the number of relevant nonzeros of D A in 〈i0 − h : i0〉 × 〈0 : j〉
(respectively, of D B in 〈 j : n〉 × 〈k0 : k0 + h〉):

δA( j) = dA(i0 − h, j) − dA(i0, j), δB( j) = dB( j,k0 + h) − dB( j,k0).

Sequence δA is non-strictly monotonically increasing from δA(0) = 0 to δA(n) = h. Sequence δB is non-strictly monotonically
decreasing from δB(0) = h to δB(n) = 0.

As the block size h gets smaller, sequences δA , δB contain fewer and fewer distinct values. We represent these sequences
compactly by storing, for every d ∈ [−h : h], the values

�A(d) = any δA( j), �B(d) = any δB( j),

M(d) = min
(
dA(i0, j) + dB( j,k0)

)
,

7 In fact, “min” (or “max”) can always be used instead of “any” on a finite index set; however, such usage could be misleading when “any” happens to
be sufficient.
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where “any” and “min” are taken across all j : δA( j) − δB( j) = d. When the set of such j is empty, the corresponding values
�A(d), �B(d), M(d) are undefined and omitted from further computations. Sequence �A is non-strictly monotonically
increasing from �A(−h) = 0 to �A(h) = h (ignoring the undefined values). Sequence �B is non-strictly monotonically
decreasing from �B(−h) = h to �B(h) = 0 (again ignoring the undefined values). Sequences �A , �B can be computed in
time O (h) by a single scan of the relevant nonzero sets of D A and D B .

The computation is organised so that when a recursive call is made on the current block, sequence M is already com-
puted at a higher level of recursion. At the top level, this sequence is computed in time O (n) by a scan of the complete
nonzero sets of D A and D B (all of which are relevant at the top recursion level). At lower levels of recursion, sequence M
is recomputed in time O (h) by a procedure that will be described below. From sequences �A , �B , M , the following values
can be found in time O (h):

dC (i0,k0) = min M(d),

dC (i0 − h,k0) = min
(
�A(d) + M(d)

)
,

dC (i0,k0 + h) = min
(
M(d) + �B(d)

)
,

dC (i0 − h,k0 + h) = min
(
�A(d) + M(d) + �B(d)

)
,

where “min” is taken across all d ∈ [−h : h] for which �A(d), �B(d), M(d) are defined. The number of nonzeros of DC in
the current block can then be determined as

dC (i0 − h,k0 + h) − dC (i0 − h,k0) − dC (i0,k0 + h) + dC (i0,k0).

If the above value is nonzero, the recursion proceeds by partitioning the current block of size h into four subblocks of
size h/2. The relevant nonzero sets of D A and D B are split accordingly, each into two subsets of size h/2. Let i′0 ∈ {i0, i0 − h

2 },

k′
0 ∈ {k0,k0 + h

2 }, and consider each of the four half-sized subblocks 〈i′0 − h
2 : i′0〉 × 〈k′

0,k′
0 + h

2 〉. Let δ′
A , δ′

B , M ′ denote the
sequences defined for the current subblock analogously to sequences δA , δB , M for the parent block. For every d ∈ [−h : h],
let

�∗
A(d) = any δ′

A( j), �∗
B(d) = any δ′

B( j),

where “any” is taken across all j : δA( j) − δB( j) = d. When the set of such j is empty, �∗
A(d), �∗

B(d) are left undefined.
Sequence �∗

A is non-strictly monotonically increasing from �∗
A(−h) = 0 to �∗

A(h) = h/2 (ignoring the undefined values).
Sequence �∗

B is non-strictly monotonically decreasing from �∗
B(−h) = h/2 to �∗

B(h) = 0 (again ignoring the undefined
values). Similarly to �A , �B , sequences �∗

A , �∗
B can be computed in time O (h) by a single scan of the relevant nonzero

sets of D A and D B . In each of the four subblocks, values M ′(d′) for all d′ ∈ [− h
2 : h

2 ] can now be obtained from sequence M
by

M ′(d′) = min M(d), for i′0 = i0, k′
0 = k0,

M ′(d′) = min
(
�∗

A(d) + M(d)
)
, for i′0 = i0 − h

2 , k′
0 = k0,

M ′(d′) = min
(
M(d) + �∗

B(d)
)
, for i′0 = i0, k′

0 = k0 + h
2 ,

M ′(d′) = min
(
�∗

A(d) + M(d) + �∗
B(d)

)
, for i′0 = i0 − h

2 , k′
0 = k0 + h

2 ,

where “min” is taken across all d : �∗
A(d) − �∗

B(d) = d′ for which �∗
A(d), �∗

B(d), M(d) are defined. Note that sequence M ′ is
obtained purely from the sequences δ′

A , δ′
B and M; in particular, the scan of matrices dA , dB is not required. For each of the

four subblocks, every value M(d) contributes to exactly one value M ′(d′), therefore the above computation can be done in
time O (h).

The base of the recursion is h = 1. At this point, we establish all 1 × 1 blocks of DC containing a nonzero, which is
equivalent to establishing the nonzeros of DC themselves. The computation is completed.

The recursion tree has maximum degree 4, height logn, and n leaves corresponding to the nonzeros of DC .
Consider the top-to-middle levels of the recursion tree. In each level from the top down to the middle level, the maxi-

mum number of nodes increases by a factor of 4, and the maximum amount of computation work per node decreases by
a factor of 2. Hence, the maximum amount of work per level increases in geometric progression, and is dominated by the
middle level logn

2 .
Consider the middle-to-bottom levels of the recursion tree. Since the tree has n leaves, each level contains at most n

nodes. In each level from the middle down to the bottom level, the maximum amount of computation work per node still
decreases by a factor of 2. Hence, the maximum amount of work per level decreases in geometric progression, and is again
dominated by the middle level logn

2 .
Thus, the computation work in the whole recursion tree is dominated by the maximum amount of work in the mid-

dle level logn
2 . This level has at most n nodes, each requiring at most O (n)/2

log n
2 = O (n1/2) work. Therefore, the overall

computation cost of the recursion is at most n · O (n1/2) = O (n1.5).
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The main recursion tree can be evaluated depth-first, so that the overall memory cost is dominated by the top level of
the main recursion, running in memory O (n). �

The next step is extending the algorithm of Lemma 18 to multiplying infinite permutation–distribution matrices. We
consider the special case where both multiplicands have semi-infinite core.

Lemma 19. Let D A , D B , DC be permutation matrices with indices ranging over 〈−∞ : +∞〉, such that

D A(i, j) = I(i, j), for i, j ∈ 〈−∞ : 0〉,
D B( j,k) = I( j,k), for j,k ∈ 〈n : +∞〉.

Let dA , dB , dC be their respective distribution matrices. Let dA 	 dB = dC . We have

D A(i, j) = DC (i, j), for i ∈ 〈−∞ : +∞〉, j ∈ 〈n : +∞〉, (10)

D B( j,k) = DC ( j,k), for j ∈ 〈−∞ : 0〉, k ∈ 〈−∞ : +∞〉. (11)

Given the set of all n remaining nonzero elements’ index pairs in each of D A , D B , i.e. the set of all nonzero elements’ index pairs (i, j)
in D A and ( j,k) in D B with i ∈ 〈0 : +∞〉, j ∈ 〈0 : n〉, k ∈ 〈−∞ : 0〉, the set of all n remaining nonzero elements’ index pairs in DC can
be computed in time O (n1.5) and memory O (n).

Proof. It is straightforward to check equalities (10)–(11) by (1) and Definition 17. Informally, each nonzero of DC appearing
in (10)–(11) is obtained as a direct combination of a nonzero of D A and a nonzero of D B , exactly one of which is trivial. All
remaining nonzeros of D A and D B are non-trivial, and determine collectively the remaining nonzeros of DC . However, this
time the direct one-to-one relationship between nonzeros of DC and pairs of nonzeros of D A and D B need not hold.

Observe that none of the nonzeros of D A and D B appearing in (10)–(11) can be dominated by any of the remaining
nonzeros of D A and D B . Hence, the nonzeros appearing in (10)–(11) cannot affect the computation of the remaining nonze-
ros of DC . We can therefore simplify the problem by eliminating all half-integer indices i, j, k that correspond to nonzero
index pairs (i, j) and ( j,k) appearing in (10)–(11), and then renumbering the remaining indices i, k, so that their new range
becomes 〈0 : n〉 (which is already the range of j after the elimination). More precisely, we define permutation matrices D ′

A ,
D ′

B , D ′
C , with indices ranging over 〈0 : n〉, as follows. Matrix D ′

A is obtained from D A by selecting all rows i with a nonzero
D A(i, j), j ∈ 〈0 : n〉, and then selecting all columns that contain a nonzero in at least one (in fact, exactly one) of the selected
rows. Matrix D ′

B is obtained from D B by selecting all columns k with a nonzero D B( j,k), j ∈ 〈0 : n〉, and then selecting all
rows that contain a nonzero in at least one (in fact, exactly one) of the selected columns. Matrix D ′

C is obtained from DC
by selecting all rows and columns with a nonzero DC (i,k), i ∈ 〈0 : +∞〉, k ∈ 〈−∞,n〉. We define d′

A , d′
B , d′

C accordingly. The
index order is preserved by the above matrix transformation, so the dominance relation is not affected. Both the matrix
transformation and its inverse can be done in time and memory O (n).

It is easy to check that d′
A 	d′

B = d′
C , iff dA 	dB = dC . Matrices D ′

A , D ′
B , D ′

C satisfy the conditions of Lemma 18. Therefore,
given the set of nonzero index pairs of D ′

A , D ′
B , the set of nonzero index pairs of D ′

C can be computed in time O (n1.5) and
memory O (n). �

The above lemma is illustrated by Fig. 3. Three horizontal lines represent respectively the index ranges of i, j, k. The
nonzeros in D A (respectively, D B ) are shown by top-to-middle (respectively, middle-to-bottom) curves. Thick top-to-bottom
curves correspond immediately to a subset of nonzeros in DC . Thin top-to-bottom curves can be used to determine the
remaining nonzeros in DC by application of Lemma 18.

We are now able to formulate our alternative to Lemma 16.

Lemma 20. Consider the concatenation of alignment dags as described above, with extended highest-score matrices A, B, C . Given the
implicit representations of A, B, the implicit representation of C can be computed in time O (M + n1.5) and memory O (M + n).

Fig. 3. An illustration of Lemma 19.
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Proof. Let D ′
A(i, j) = D A(i − M, j), D ′

B( j,k) = D B( j,k + m), D ′
C (i,k) = DC (i − M,k + m) for all i, j,k, and define d′

A , d′
B , d′

C
accordingly. It is easy to check that d′

A 	d′
B = d′

C , iff dA 	dB = dC . Matrices D ′
A , D ′

B , D ′
C satisfy the conditions of Lemma 19,

therefore M + m of the non-trivial C-critical points can be obtained by (10)–(11) in time and memory O (M + m) = O (M),
and the remaining n non-trivial C-critical points in time O (n1.5) and memory O (n). �

Lemma 20 is formulated for arbitrary values of M , m (as long as M � m). However, it only improves on Lemma 16 in
the case n = o(m2), which is sufficient to obtain the claimed results. A generalisation of Lemma 20 giving an unconditional
improvement on Lemma 16 will be considered elsewhere.

6. All semi-local LCS computation

We now describe our all semi-local LCS algorithm. From now on, we assume without loss of generality that n � m. We
will also assume that m and n are reasonably close, so that (log m)c � n for some constant c, to be specified separately. First,
we give a simple algorithm, based on the fast highest-score matrix multiplication procedure of Lemma 20, and running in
overall time O (mn). We then modify the algorithm to achieve running time o(mn).

Algorithm 1 (All semi-local LCS, basic version).

Input: strings a, b of length m, n, respectively; we assume log m � n � m.
Output: implicit extended highest-score matrix on strings a, b.
Description. The computation proceeds recursively, partitioning the longer of the two current strings into a concatenation of

two strings of equal length (within ±1 if string length is odd). Given a current partitioning, the corresponding implicit
highest-score matrices are multiplied by Lemma 20. Note that we now have two nested recursions: the main recursion
of the algorithm, and the inner recursion of Lemma 20.
In the process of main recursion, the algorithm may (and typically will, as long as the current values of m and n are
sufficiently close) alternate between partitioning string a and string b. Therefore, we will need to convert the implicit
representation of a horizontal highest-score matrix into a vertical one, and vice versa. This can be easily achieved by
Theorem 15.
The base of the main recursion is m = n = 1.

Cost analysis. Consider the main recursion tree. The computation work in the top log(m/n) levels of the tree is at most
log(m/n) · O (m)+(m/n) · O (n1.5) = O (mn). The computation work in the remaining 2 log n levels of the tree is dominated
by the bottom level, which consists of O (mn) instances of implicit highest-score matrix multiplication of size O (1).
Therefore, the total computation work is O (mn).
The main recursion tree can be evaluated depth-first, so that the overall memory cost is dominated by the top level of
the main recursion, running in memory O (n).

The above algorithm can now be easily modified to achieve the claimed subquadratic running time, using an idea origi-
nating in [4] and subsequently applied to string comparison by [17].

Algorithm 2 (All semi-local LCS, full version).

Input, output: as in Algorithm 1; we assume (log m)5/2 � n � m.
Description. Consider an all semi-local LCS problem on strings of size t = 1

2 · logσ m, where σ is the size of the alphabet.
All possible instances of this problem are precomputed by Algorithm 1 (or by the algorithm of [2]). After that, the
computation proceeds as in Algorithm 1. However, the main recursion is cut off at the level where block size reaches t ,
and the precomputed values are used as the recursion base.

Cost analysis. In the precomputation stage, there are σ 2t problem instances, each of which costs O (t2). Therefore, the total
cost of the precomputation is σ 2t · O (t2) = 1

4 · m(logσ m)2 = O ( mn
log1/2(m+n)

).

Consider the main recursion tree. The computation work in the top log(m/n) levels of the tree is at most log(m/n) ·
O (m) + (m/n) · O (n1.5) = O ( mn

log1.5 m
) + O ( mn

log5/4 m
) = o( mn

log1/2(m+n)
). The computational work in the remaining 2 log(n/t)

levels of the tree is dominated by the cut-off level, which consists of O (mn/t2) instances of implicit highest-score matrix
multiplication of size O (t). Therefore, the total computation work is mn/t2 · O (t1.5) = O (mn/t1/2) = O ( mn

log1/2(m+n)
).

7. Conclusions

We have presented a new approach to the all semi-local LCS problem. Our approach results in a significantly improved
output representation, and yields the first subquadratic algorithm for the problem, with running time O ( mn

log1/2(m+n)
) when

m and n are reasonably close.
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An immediate open question is whether the time efficiency of our algorithm can be improved even further, e.g., to
match the (global) LCS algorithms of [8,17] with running time O ( mn

log(m+n)
). Our algorithm, as well as the algorithms of

[8,17], assume constant alphabet size. For this class of algorithms, it is possible to remove this restriction at the price of an
extra O ((log log n)2) factor in the running time (see e.g. [1,3]).

Another interesting question is whether our algorithm can be adapted to more general string comparison. The edit
distance problem concerns a minimum-cost transformation between two strings, with given costs for character insertion,
deletion and substitution. The LCS problem is equivalent to the edit distance problem with insertion/deletion cost 1 and
substitution cost 2 or greater. By a constant-factor blow-up of the alignment dag, our algorithm can solve the all semi-local
edit distances problem, where the insertion, deletion and substitution edit costs are any constant rationals. It remains an
open question whether this can be extended to arbitrary real costs, or to sequence alignment with non-linear gap penalties.

Finally, our technique appears general enough to be able to find applications beyond semi-local comparison. In particular,
could it be applied in some form to the biologically important case of fully local (i.e. every substring against every substring)
comparison?
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