
Journal of Discrete Algorithms 9 (2011) 314–325
Contents lists available at ScienceDirect

Journal of Discrete Algorithms

www.elsevier.com/locate/jda

Faster algorithms for computing longest common increasing
subsequences

Martin Kutz a,1, Gerth Stølting Brodal b,∗,2, Kanela Kaligosi a, Irit Katriel c

a Max-Plank-Institut für Informatik, Saarbrücken, Germany
b MADALGO, 3 Aarhus University, Aarhus, Denmark
c Aarhus University, Aarhus, Denmark

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 1 April 2011

Keywords:
Common subsequences
Increasing subsequences
Small alphabets
Van Emde Boas trees

We present algorithms for finding a longest common increasing subsequence of two or
more input sequences. For two sequences of lengths n and m, where m � n, we present an
algorithm with an output-dependent expected running time of O ((m + n�) log logσ + Sort)
and O (m) space, where � is the length of an LCIS, σ is the size of the alphabet, and
Sort is the time to sort each input sequence. For k � 3 length-n sequences we present
an algorithm which improves the previous best bound by more than a factor k for
many inputs. In both cases, our algorithms are conceptually quite simple but rely on
existing sophisticated data structures. Finally, we introduce the problem of longest common
weakly-increasing (or non-decreasing) subsequences (LCWIS), for which we present an
O (min{m + n log n,m log log m})-time algorithm for the 3-letter alphabet case. For the
extensively studied longest common subsequence problem, comparable speedups have not
been achieved for small alphabets.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Algorithms that search for the longest common subsequence (LCS) of two input sequences or the longest increasing
subsequence (LIS) of one input sequence date back several decades.

Formally, given two sequences A = (a1, . . . ,an) and B = (b1, . . . ,bm) with elements from an alphabet Σ and with m � n,
a common subsequence of A and B is a subsequence (a j1 = bκ1 , a j2 = bκ2 , . . . , a j� = bκ�

), where j1 < j2 < · · · < j� and
κ1 < κ2 < · · · < κ� . Given one sequence A = (a1, . . . ,an) where the ai ’s are drawn from a totally ordered set, an increasing
subsequence of A is a subsequence (a j1 ,a j2 , . . . ,a j�) such that j1 < j2 < · · · < j� and a j1 < a j2 < · · · < a j� .

A classic algorithm by Wagner and Fischer [13] solves the LCS problem using dynamic programming in O (mn) time
and space. Hirschberg [7] reduced the space complexity to O (n), using a divide-and-conquer approach. The fastest known
algorithm by Masek and Paterson [9] runs in O (n2/ log n) time. Faster algorithms are known for special cases, such as when
the input consists of permutations or when the output is known to be very long or very short. Hunt and Szymanski [8]
studied the complexity of the LCS problem in terms of matching index pairs, i.e., they defined r to be the number of index-
pairs (i, j) with ai = b j (such a pair is called a match) and designed an algorithm that finds the LCS of two sequences in
O (r logn) time. For a survey on the LCS problem see [2].

* Corresponding author.
E-mail addresses: gerth@cs.au.dk (G.S. Brodal), kaligosi@mpi-inf.mpg.de (K. Kaligosi), irit@cs.au.dk (I. Katriel).

1 Our friend and colleague Martin Kutz died in tragic circumstances while this manuscript was under review.
2 Supported by the Danish Natural Science Research Council (grant #21-04-0389).
3 Center for Massive Data Algorithmics – a Center of the Danish National Research Foundation.
1570-8667/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.jda.2011.03.013

http://dx.doi.org/10.1016/j.jda.2011.03.013
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jda
mailto:gerth@cs.au.dk
mailto:kaligosi@mpi-inf.mpg.de
mailto:irit@cs.au.dk
http://dx.doi.org/10.1016/j.jda.2011.03.013

M. Kutz et al. / Journal of Discrete Algorithms 9 (2011) 314–325 315
Table 1
Parameters of the LCIS/LCWIS problems.

Symbol Meaning

n, m Lengths of input sequences (we assume m � n).
� Length of the LCIS/LCWIS.
k Number of input sequences.
σ Size of the alphabet (number of different symbols).
r Number of matches in the input sequences.

Table 2
Previous and new results. The new upper bounds apply to both LCIS and LCWIS.

Previous results (LCIS) New (LCIS and LCWIS)

k = 2 O (mn) [15] O ((m + n�) log logσ + SortΣ(m))

O (min{r logσ ,mσ + r} log logm + SortΣ(m)) [4] O (m) when σ = 2
O (min{m + n logn,m log log m}) when σ = 3

k � 3 O (min{kr2,kr logσ logk−1 r} + kSortΣ(n)) [4] O (min{kr2, r logk−1 r log log r} + kSortΣ(n))

Fredman [5] showed how to compute an LIS of a length-n sequence in optimal O (n log n) time. When the input sequence
is a permutation of {1, . . . ,n}, Hunt and Szymanski [8] designed an O (n log log n)-time solution, which was later simplified
by Bespamyatnikh and Segal [3]. The expected length of a longest increasing subsequence of a random permutation has
been shown (after successive improvements) to be 2

√
n − o(

√
n); for a survey see [1].

Note that after sorting both input sequences we can in linear time remove symbols that do not appear in both sequences
and rename the remaining symbols of the alphabet to {1,2, . . . , σ }. We can therefore assume that this preprocessing stage
was performed and hence the size of the alphabet, σ , is at most n. In the following we let SortΣ(m) denote the time
required to sort a length-m input sequence drawn from the alphabet Σ .

Recently, Yang et al. [15] combined the two concepts and defined a common increasing subsequence (CIS) of two sequences
A and B , i.e., an increasing sequence that is a subsequence of both A and B . They designed a dynamic programming
algorithm that finds a longest CIS (an LCIS, for short) of A and B using Θ(mn) time and space. Sakai [11] showed that
Hirschberg’s technique for LCS [7] can be adapted to reduce the space complexity to O (m).

Subsequently, Chan et al. [4] obtained an upper bound of O (min{r logσ ,mσ + r} log log m + SortΣ(m)). The number of
matches r is in the worst case Ω(mn), but in some important cases it is much smaller. For instance, when A and B are
permutations of {1, . . . ,n} then r = O (n). They then proceeded to generalize their algorithm to find an LCIS of k � 3 length-n
sequences. They show that this can be done in O (min{kr2,kr logσ logk−1 r} + kSortΣ(n)) time, where r is again the number
of matches, i.e., k-coordinate vectors that contain an index from each input sequence, all with the same symbol.

1.1. Our results

In this paper we present three new upper bounds for the LCIS problem. The first is an output-dependent algorithm
which runs in O ((m +n�) log logσ + SortΣ(m)) expected time and O (m) worst-case space, where � is the length of an LCIS.
Whenever n = Ω(log logσ + SortΣ(m)/m) and either m = Ω(n log logσ) or � = o(n/ log log n), it is faster than Yang et al.’s
Θ(mn)-time algorithm.

For a strictly-increasing subsequence we have � � σ . However, in the weakly-increasing (i.e. non-decreasing) variant, the
length of the output can be arbitrarily larger than the size of the alphabet. We show that a longest common weakly-increasing
subsequence (LCWIS) can be found in linear time for an alphabet of size two and in O (min{m +n logn,m log log m}) time for
an alphabet of size three. These results are interesting because they pinpoint what seems to be a fundamental difference
between the LCS and LWCIS problems. The approaches we use to get the two bounds for 3-letter alphabets cannot be
applied to LCS, and to date, comparable speedups have not been achieved for LCS with small alphabets.

Finally, we consider the case of k � 3 length-n sequences. The upper bound of Chan et al. is achieved by two algorithms;
the first is a simple O (kr2 + kSortΣ(n)) time algorithm and the second is a more complex implementation of the same
approach, which runs in O (kr logσ logk−1 r + kSortΣ(n)) time. We describe an algorithm which is significantly simpler than
the latter and obtain a running time of O (min{kr2, r logk−1 r log log r} + kSortΣ(n)).

Table 1 provides a list of the symbols used in the paper and Table 2 summarizes the previous and new results.
The rest of the paper is organized as follows. In Section 2 we describe a dynamic programming algorithm that uses a

data structure based on van Emde Boas trees and runs in expected O ((m + n�) log logσ + SortΣ(m)) time and O (m) space.
(In principle, the algorithm is deterministic, with the above running time. Randomization is only needed in order to obtain
the linear space bound.)

In Section 3 we present our results on LCWIS with small alphabets, which use different techniques. Finally, in Section 4
we describe how to use a data structure by Gabow et al. [6] to obtain an algorithm for finding an LCIS or LCWIS of k � 3
sequences, which is simpler and faster than Chan et al.’s algorithm.

316 M. Kutz et al. / Journal of Discrete Algorithms 9 (2011) 314–325
key s 1 2 3 4 5 6 7 8 9 10
priority 7 10 6 8 5 3 2 4 1 9
BM(s) ∞ 7 7 6 6 5 3 2 2 1

Fig. 1. Example of BM values.

2. An output-dependent upper bound

2.1. Bounded heaps

In our output-dependent algorithm we need to access items that carry two integer parameters: priorities and keys. The
basic query will be for the highest-priority element amongst all those whose keys are below a given threshold. We use a
data structure, subsequently called a bounded heap (BH), that supports the following operations:

– Insert(H, s, p,d): Insert into the BH H the key s with priority p and associated data d.
– DecreasePriority(H, s, p,d): If the BH H does not already contain the key s, perform Insert(H, s, p,d). Otherwise, set

this key’s priority to min{p, p′}, where p′ is its previous priority.
– BoundedMin(H, s): Return the item that has minimum priority among all items in H with key smaller than s. If H does

not contain any items with key smaller than s, return “invalid”.

The priority search tree (PST) of McCreight [10] supports each of these operations in O (log n) time. However, the PST
also allows deletions, which the BH is not required to support. Using van Emde Boas trees, we obtain a faster BH for integer
keys:

Lemma 1. There exists an implementation of bounded heaps that requires O (n) space and supports each of the above operations in
O (log logn) amortized time, where keys are drawn from the set {1, . . . ,n}.

Proof. The data structure applies standard techniques, such as those described in Section 3 of [6]. We rely on the fact that
a snapshot of the heap, at any point in time, can be represented as a decreasing step function. More precisely, let BM(s) be
the value that would be returned by a BoundedMin(H, s) query. Then BM(s) � BM(s′) whenever s > s′ , i.e., the function BM
is non-increasing in s (see Fig. 1).

Assume that the keys are s1, s2, . . . with si � si+1 for all i. To answer BoundedMin queries, it suffices to maintain a search
structure that contains the BM(si) value for every si at which the function BM changes, i.e., BM(si) < BM(si−1). Then, we
answer a BoundedMin(H, s) by searching the data structure for the largest key which is at most s and returning its BM
value. With a van Emde Boas tree [12] as search structure, this takes O (log log n) time.

It remains to show how to support Insert and DecreasePriority operations in O (log log n) amortized time. When the
priority of a key si decreases to a new value of p, the following occurs:

1. si + 1 is inserted into the tree if p < BM(si−), where si− is the largest key in the tree which is smaller than si .
2. s j is removed from the tree if j > i and BM(s j) > p.

With van Emde Boas trees, the two steps are handled, respectively, as follows.

1. Searching for si− , checking whether si should be inserted and inserting it if so, takes O (log logn) time.
2. Beginning at si , we repeatedly find the next item s j in the tree (i.e., the smallest key larger than the current one)

and remove it from the tree if BM(s j) > p. The total time is O (d log log n), where d is the number of items that were
removed. Since the total number of items deleted by DecreasePriority operations is upper bounded by the total number
of Insert operations, we can charge the cost of each deletion to the insertion of the same item, and obtain that the
amortized cost of each operation is O (log log n). �

2.2. An O ((m + n�) log logσ + SortΣ(m)) time algorithm

Our output-dependent algorithm for the LCIS problem begins with a preprocessing step, where it removes from each
sequence all elements that do not appear in the other sequence; this is easy after the sequences are sorted. For every
remaining element s, it generates a sorted list Occs that contains ∞ and the indices of all occurrences of s in B .

Then, in n iterations the algorithm identifies common increasing subsequences (CISs) of increasing lengths: In iteration
i it identifies length-i CISs (using the results of iteration i − 1). More precisely, for every element a j in A, it identifies the
minimum index κ in B such that there is a length-i CIS which ends at a j in A and at bκ in B . The index κ is stored in
Li[j].

To compute the array L1[1 . . .n], the algorithm traverses A and for each a j , sets L1[j] to be the minimum index in the
list Occa j , i.e., the earliest occurrence of a j in B . Note that due to the preprocessing, there exists such an index in B .

M. Kutz et al. / Journal of Discrete Algorithms 9 (2011) 314–325 317
Function LCIS(A = (a1, . . . ,an), B = (b1, . . . ,bm))

Preprocess (* Clean A and B and build Occs for every s *)
i ← 1

(* Compute L1[1 . . .n] *)
for j = 1 to n do L1[j] ← MinimumKey(Occa j)

(* Main loop *)
do

H ← [] (* Empty Bounded Heap *)
i ← i + 1
for j = 1 to n do

Li [j] ← ∞
(j′, κ ′) ← BoundedMin(H,a j)

if (j′, κ ′) �= “invalid” then

Li [j] ← min{κ : κ ∈ Occa j ∧ κ > κ ′}
Linki [j] = j′

endif
if Li−1[j] �= ∞ then

(* Recall that DecreasePriority inserts a j if it is not already there *)
DecreasePriority(H,a j , Li−1[j], (j, Li−1[j]))

endif

endfor

while i < n and Li [j] �= ∞ for some j

(* Generate an LCIS in reverse order *)
if Li [j] = ∞ for all j then i ← i − 1
j ← an index such that Li [j] �= ∞
while i > 0 do

output a j

j ← Linki [j]
i ← i − 1

end while

end

Fig. 2. An O ((m + n�) log logσ + SortΣ(m)) time LCIS algorithm for k = 2 sequences.

For i > 1, the ith iteration proceeds as follows. The algorithm traverses A again, and for every a j , it checks whether
a j (together with some bκ) can extend a length-(i − 1) CIS to a length-i CIS, and if so, identifies the minimum such κ .
For this purpose, the algorithm maintains a bounded heap H. When it begins processing a j , H contains all elements
at ∈ {a1, . . . ,a j−1} for which Li−1[t] �= ∞. The key of at in H is at itself and its priority is Li−1[t], i.e., the minimum index of
the endpoint in B of a length-(i − 1) CIS which ends, in A, at index t . The algorithm performs the query BoundedMin(H,a j)

to find the leftmost endpoint (in B) of a length-(i − 1) CIS, which contains only elements smaller than a j . Let κ ′ be this
endpoint. Then, Li[j] is set to the first occurrence of a j in B which lies behind κ ′; we prove that this is the leftmost
endpoint in B of a length-i CIS which ends, in A, at a j . A formal description of the algorithm is given in Fig. 2.

We emphasize that H is built anew for every single pass. The only information saved between different scans of A and
B is maintained in the arrays Li .

The arrays Link1, Link2, . . . are used to save the information we need in order to construct the LCIS: Whenever we detect
that the index pair (j, κ) can extend a length-(i − 1) CIS which ends at the index pair (j′, κ ′), we set Linki[j] = j′ . Finally,
if there is a length-(i − 1) CIS which ends at a j , then a j is inserted into H with priority Li−1[a j]; it may later be extended
into a length-i CIS by some a j′ with j′ > j.

Correctness. The correctness of the algorithm relies on the following lemma, which states that if there is a solution then
the algorithm finds it. It is straightforward to show that the algorithm will not produce an invalid sequence.

Lemma 2. Let A and B be two sequences that have a length-� CIS which ends in A at index j and in B at index κ . Then at the end of
the iteration in which i = �, L�[j] � κ .

Proof. By induction on �. For � = 1, the claim is obvious. Assume that it holds for any length-(� − 1) CIS and that we are
given A and B which have a length-� CIS c1, . . . , c� that is located in A as a j1 , . . . ,a j� and in B as bκ1 , . . . ,bκ�

.
By the induction hypothesis, at the end of the � − 1 iteration, L�−1 contains entries that are not equal to ∞. Hence, the

algorithm will proceed to perform iteration �. Again by the induction hypothesis, L�−1[j�−1] � κ�−1.
Since a j�−1 < a j� , it is guaranteed that when j = j� , H contains an item with key a j�−1 , priority κ ′ � κ�−1, and d =

(j�−1, κ
′). So the BoundedMin operation will return a valid value. If the value returned is (j�−1, κ�−1), then the smallest

occurrence of a� in B after κ�−1 is not beyond κ� . So the algorithm will set L�[j�] � κ� . On the other hand, if the value
returned is not (j�−1, κ�−1), then it is (j�−1, κ

′) for some κ ′ � κ�−1. Since a j′ < a� , again we get that the smallest occurrence
of a� in B after κ�−1 is not beyond κ� . So the algorithm will set L�[j�] � κ� . �

318 M. Kutz et al. / Journal of Discrete Algorithms 9 (2011) 314–325
Time complexity. The preprocessing phase takes O (SortΣ(m)) time, to sort each of the sequences A and B . The construction
of the Occs ’s takes O (m) time. The array A is traversed O (�) times. During each traversal, O (n) operations are performed
on the bounded heap, each of which takes O (log logσ) amortized time, and the Occs lists are queried at most n times.

A naive implementation of the Occs lists would require Θ(σm) time and space. We now sketch a possible randomized
implementation that reduces this complexity to O (m) time, and space.

Partition the range {1, . . . ,m} into m/σ blocks of σ consecutive locations and for every 1 � i � m/σ we denote by bi
the block containing locations (i − 1)σ + 1, . . . , iσ . For each i and each s ∈ Σ we create a data structure that represents
occurrences of s in the block bi and is based on Willard’s y-fast tries [14], which use randomization. In addition, for each
block we store the first occurrence of s succeeding the block. To answer a query for κ ′ in Occs , we first identify the
block b
κ ′/σ � containing the query point κ ′ in constant time. We then search for the smallest index larger than the query
point κ ′ in the y-fast trie for this block in time O (log logσ). If we found one, we are done. Otherwise, we return the
first s succeeding the block, using the stored information. Initializing the m y-fast tries with a total of m elements takes
O (m log logσ) expected time. Note that this initialization step needs to be carried out only once.

In total, the main loop takes O (m + n� log logσ) time. Finally, constructing the LCIS takes O (�) time. We get that the
total expected running time of the algorithm is O ((m + n�) log logσ + SortΣ(m)).

Space complexity. As for space complexity, note that in the main loop we only use Li−1 and Li . Therefore, we do not need
to save the previous L’s. In order to construct the LCIS, the algorithm as described requires O (n�) space for the Link arrays.

However, we can reduce the space complexity to O (m) with the technique developed by Hirschberg [7] for LCS. First,
we run the algorithm once to compute � (without constructing the Link arrays). Then we run a recursive version of the
algorithm that construct the LCIS. The top recursive level invokes the usual algorithm, except that this time we remember
only some of the Link information: Each match in the second half of a CIS knows the location in A and B of the ��/2th
match of the CIS that it was appended to. This information is found in the ��/2th iteration of the main loop and propagated
by the later iterations while the L arrays are constructed. Then, we know for every LCIS the location (i, j) in A and B of the
middle match. We select one LCIS and recursively run the same algorithm to find the length-��/2− 1 LCIS of (a1, . . . ,ai−1)

(b1, . . . ,b j−1) and the length-
�/2� LCIS of (ai+1, . . . ,an) and (b j+1, . . . ,bm). The base case is when we look for a constant-
size LCIS. Then we run the original algorithm in linear space. To achieve that the time complexity remains unchanged
we need to limit the work done processing B during the recursion. For the preprocessing for the outermost recursion
we need time SortΣ(m). For the remaining recursive calls we do not need to sort the arrays again and the preprocessing
time is O (m). The computation of a middle match considers at most matches involving n� entries from B . These entries
in B can be marked during the computation of the middle match, and only this subsequence of B is provided to the
recursive calls. The thinning of B is done before each recursive call. Let T (m,n, �) be the running time of the recursion
on two sequences of lengths n and m with a length-� LCIS and m � n�. Assume that the middle match is (n1,m1). Then
T (m,n, �) � n� log logσ + n� + T (m1,n1, �/2) + T (m2,n2, �/2), where n1 + n2 + 1 = n and m1 + m2 + 1 � m. This recurrence
solves to O (n� log logσ). The total running time becomes O ((m +n�) log logσ + SortΣ(m)). It is easy to see that the amount
of space we need is O (m).

In conclusion, we have shown:

Theorem 1. An LCIS of two sequences of lengths m and n with m � n can be found in O ((m +n�) log logσ + SortΣ(m)) expected time
and O (m) worst-case space where � is the length of the output and SortΣ(m) is the time required to sort a length-m input sequence.

3. Weakly-increasing subsequences

We now turn to longest common non-decreasing or weakly-increasing subsequences (LCWIS) for small alphabets. By
simply replacing < by � in the BoundedMin operation in our algorithm for the LCIS problem, it is straightforward to verify
that the algorithm solves the LCWIS problem in O ((m + n�) log logσ + Sort(m)) expected time. But while the LCIS problem
can be solved in linear time for alphabets of bounded size σ , simply because the length of the solution is then also bounded
by σ , it is not clear how this fact should carry over to LCWIS, where the output size need not relate to σ at all.

We show how to solve LCWIS for the 2-letter alphabet in linear time and for the 3-letter alphabet in O (min{m +
n log n,m log log m}) time; the latter complexity is achieved by two algorithms, each of which runs in time bounded by one
of the terms inside the min. Since the complexities of the two algorithms are incomparable, the bounds they imply are both
interesting. However, our main motivation for including both of them is that they use very different techniques, and it is
not clear which of the approaches, if any, can be generalized to solve the problem over larger alphabets.

The results of this section come in contrast to the classic LCS problem, where already the 2-letter case seems to be
essentially as hard as the general problem. In fact, it seems that LCWIS behaves very different from both LCIS and LCS.

3.1. Preprocessing

Let us use as our alphabet the Greek letters Σ = {α,β,γ } in their standard order: α < β < γ . For both tasks, the
2-letter and 3-letter cases, we prepare arrays NumA,α,NumB,α,NumA,β , . . . ,NumB,γ that count the number of αs, βs and γ s,

M. Kutz et al. / Journal of Discrete Algorithms 9 (2011) 314–325 319
Fig. 3. Splitting a pair of sequences.

Fig. 4. Split diagrams.

respectively, in prefixes of A and B . For example, the number of γ s in A up to position 9 (inclusively) is stored in NumA,γ [9].
We also create arrays PosA,α through PosB,γ , which provide us with the position of the ith occurrence of α,β , or γ in A
or B . These arrays can clearly be prepared in O (m) time.

3.2. The 2-letter case is simple

After the preprocessing, the 2-letter case becomes trivial. For each i, where 0 � i � min{NumA,α[n], NumB,α[m]}, we
determine the position of the ith α in A and B and then the number of βs that come after those positions in the two
sequences. This gives us, for every i, the length of an LCWIS of type αiβ∗ . The longest of them over all i are the LCWISs of
the two sequences. The total time is O (m).

3.3. The 3-letter case in O (m + n log n) time

The naïve extension of the above approach to three letters would have to deal with a quadratic number of tentative
exponent pairs (i, j) for subsequences of type αiβ jγ ∗ . We somehow need to avoid the testing of all such pairs. The basis of
our near-linear-time algorithm for a 3-letter alphabet are what we like to call “split-diagrams,” a data structure that stores
information about parts of the given sequences in a compact way.

Assume we were only interested in subsequences of A that have all their αs up to some fixed position s and all their γ s
strictly after s. Likewise, we only consider subsequences in B with all αs up to some position t and all γ s strictly after that.
We shall see that under these conditions, with a fixed split between αs and γ s, it is possible to find an LCWIS in linear
time.

Say, we try and see how long a sequence we can build if we started with exactly i many αs. We determine the ith
pair of αs from the left and then count the number of βs in A and B up to the split (s, t). There are p = NumA,β [s] −
NumA,β [PosA,α[i]] such βs in A and q = NumB,β [t] − NumB,β [PosB,α[i]] in B . See Fig. 3.

Assume p � q for the moment. For the three values i, p,q, we define a piecewise-linear function f s,t
i consisting of a

slope-1 segment from (0, i + p) to (q − p, i + q) and a horizontal extension from that point to infinity as shown in the left
diagram of Fig. 4.

What is the purpose of this function? Assume we tried to find a long common subsequence by matching exactly j many
γ s in the two sequences. We would align these j pairs as far to the right as possible in order to gain as many βs as
possible. So count the number of βs between position s and the leftmost matched γ in A and likewise in B . Say, there
are x such βs in A and y in the respective part of B . (See Fig. 3 again.) We can now use our function f s,t

i to obtain the
length of an LCWIS of type αiβ∗γ j : Compute the surplus z = x − y of unmatchable βs in A on the right (assuming x � y

320 M. Kutz et al. / Journal of Discrete Algorithms 9 (2011) 314–325
for the moment) and read off the function value of f s,t
i for that argument. The value f s,t

i (z) tells us exactly how long a
subsequence we can build to the left of the split if we throw in a surplus of z βs into A.

For example, with no extra βs from the right, we only get min(p,q) = p many pairs of βs, which together with the i
αs yield a sequence of length f s,t

i (0) = i + p. If we have q − p free βs on the right, we could get a sequence of length
f (q − p) = i + q. More βs would not bring an advantage, which is expressed in the stagnation of the function f beyond
q − p. The case p > q, which we had originally excluded for cleaner presentation, is simply covered by an analogous function
f̄ s,t

i , defined in the obvious way to handle free βs on the right of the split in sequence B .

Of course, we have not gained anything yet from the function f s,t
i . The trick is now to draw the functions f s,t

i for all
values of i into one diagram. Their pointwise maximum f s,t , the upper envelope of their plots, indicated in the right of Fig. 4,
gives us the best possible length to the left of the split for any surplus of βs from the right.

Lemma 3. Amongst all subsequences that have all their αs to the left and all γ s to the right of a fixed split (s, t), we can find an LCWIS
in linear time.

Proof. For 0 � i � min(NumA,α[s],NumB,α[t]), “draw” all functions f s,t
i into one split diagram. One can build an array of

function values of the upper envelope left-to-right in O (n) time as follows: Sort all triples (i, p,q) corresponding to the f s,t
i

functions with respect to decreasing i + p value; draw the slope-1 segment of the first f s,t
i function; repeatedly advance

to the next function with a piece of its slope-1 segment on the upper envelope (functions completely below the previous
function on the upper envelope are skipped). See Fig. 4.

After that, test for each right-aligned match of γ s, how many βs match to the right of the split (s, t) and evaluate the
envelope function for the respective surplus of βs. Actually constructing an LCWIS once its length is known is an easy
task. �

In order to turn the split technique into a fast algorithm for the general case, where we do not have any pre-knowledge
about good splits, we will have to refine it a little further. If we know that there is an LCWIS with many βs, we can apply
Lemma 3 immediately.

Theorem 2. For two length-n sequences over three letters α < β < γ , we can find an LCWIS that contains at least rn many βs
(r ∈ (0,1)) in O (n/r2) time.

Proof. Put a marker every rn positions in A and also in B . Test all
1/r�2 candidate splits at marker pairs. Any α∗β
rn�β∗γ ∗
subsequence must cover at least one of those pairs with its β-section. Hence we will find it. �
A hierarchy of splits. In the general case, when we need to make sure that we identify subsequences with only a few βs,
we need a few tricks to further reduce the number of splits. To this end, recall that we may always restrict attention to
left-aligned common subsequences. In particular, any such subsequence with exactly i many αs has all its αs to the left of
the cut (PosA,α[i],PosB,α[i]) and all its γ s to the right of that cut. Hence, we may restrict attention to the collection S of
all cuts of this type.

Note that S comes with a natural linear order since no two of its splits cross and hence, |S| = O (n). We could now,
naively, draw all α-prefix information from the left into each cut of S simultaneously, and afterwards check each γ -postfix
against each cut. That would cost quadratic time and space.

The key observation behind our O (n log n)-time algorithm is that the naive approach stores multiple copies of the same
information in different split diagrams. For instance, all diagrams will store information and will be queried regarding the
possibility of a β ’s-only LCWIS. We can reduce the amount of work by drawing only a partial diagram at each split, while
spreading all necessary information among the different diagrams. We assign levels to the splits in S : let the level of the
ith split (counting from left) be the index of the least significant bit equal to one in the binary representation of i. This
scheme has the nice property that between any two splits on the same level there lies another split on a higher level. Our
algorithm will use this property to ensure that for any LCWIS L, there exists at least one split diagram into which we insert
the α information of L and from which we read off the γ part of L.

Our algorithm proceeds in two sweeps over the sequences. In the first sweep it constructs a split diagram for each of the
splits in S . Then, some left-side configurations are entered into some diagrams. For each integer i, match the first i αs from
A and B and enter the corresponding functions into the split diagram of the closest split (s, t) to the right on each level.
This means that the effect of starting with exactly i αs is entered into O (log |S|) = O (log n) diagrams. After all diagrams
are prepared, the algorithm makes a second sweep of the sequences forming all right-aligned matches of γ s. For each such
partial subsequence we then query the split diagrams for the closest split to the left on each level to obtain the maximum
length of an LCWIS with these many γ s. A formal description of the algorithm is given in Fig. 5.

Lemma 4. Let L be an LCWIS for (A, B) with exactly i many αs and j many γ s. Then the algorithm above maintains a split diagram
that receives i left-aligned αs and which is afterwards queried with j right-aligned γ s.

M. Kutz et al. / Journal of Discrete Algorithms 9 (2011) 314–325 321
Function LCWIS3 (A = (a1, . . . ,an), B = (b1, . . . ,bm))

Preprocess (* create arrays Num.,.[] and Pos.,.[] *)
t ← min(NumA,α [n],NumB,α [m] (* the size of S *)
h := �log2 t (* the highest level *)
for i = 1 to t do create empty split diagrams Di and D̄i

for position (μi , νi) ← (PosA,α [i],PosB,α [i]) with level max{r : 2r |i}
(* First sweep: filling the diagrams *)
for i = 1 to t do

for r = 0 to h do

d ← index of closest level-r diagram to the right (�)

of (PosA,α [i],PosB,α [i])
p ← NumA,β [μd] − NumA,β [PosA,α [i]]
q ← NumB,β [νd] − NumB,β [PosB,α [i]]
enter triple (i, p,q) into Dd and triple (i,q, p) into D̄d

od

od
Preprocess all Di and D̄i for quick look-up
(* Second sweep: reading the diagrams *)
best ← 0
for i = 0 to min(NumA,γ [n],NumB,γ [m]) − 1 do

for r = 0 to h do

d ← index of closest level-r diagram to the left (<)

of (PosA,γ [n − i],PosB,γ [m − i])
x ← NumA,β [PosA,γ [n − i]] − NumA,β [μd]
y ← NumB,β [PosB,γ [m − i]] − NumB,β [νd]
length ← i + min(x, y) + max(Dd(x, y), D̄d(y, x))
if length > best then best ← length

od

od
return best

Fig. 5. The O (m + n log n)-time 3-letter LCWIS algorithm.

Proof. Consider the set S ′ of all split diagrams between the first i many αs and the last j many γ s. By the hierarchical
structure of S , there is a unique diagram on the highest level of S ′ . This diagram obviously has the desired property. �

This lemma tells us that any LCWIS will be found by the algorithm because some split diagram receives its left-aligned
α-part and is queried by its right-aligned γ -part.

The two sweeps can be implemented to run in O (m + n log n) time as follows. During the first sweep we simply create
a list of O (n log n) quadruples (i, p,q, s) that represent the contents of the O (n) splitters: s is the identity of a splitter and
(i, p,q) are the parameters that define one of the functions illustrated in the left of Fig. 4. Similarly, during the second
sweep we construct a list of O (n log n) quadruples (i, p,q, s) where (i, p,q) is a query and s is the splitter on which it is to
be performed. After bucket-sorting each list, all queries can be answered by a simultaneous linear scan of the lists.

Theorem 3. We can find an LCWIS of two 3-letter sequences of lengths m and n, with m � n, in O (m + n log n) time.

3.4. The 3-letter case in O (m log log m) time

We consider again the 3-letter case and show an algorithm that solves the problem in time O (m log log m). This algorithm
is based on a new approach to the 2-letter case. In particular, we show how to solve the 2-letter case in an online manner,
where one symbol of a sequence is revealed at a time. We denote as (A[1 . . .a], B[1 . . .b]) a subproblem where the first a
symbols of A and the first b symbols of B have been revealed. Given the solution to such a subproblem we show how to
solve the subproblem (A[1 . . .a + 1], B[1 . . .b]) or (A[1 . . .a], B[1 . . .b + 1]).

Assuming that such a procedure for the 2-letter case exists, then the 3-letter case is simple: For each k, where k takes
values from min{NumA,γ [n],NumB,γ [m]} down to 0, we determine the positions ak and bk of the kth γ in A and B respec-
tively, counting from the end. Namely, ak = PosA,γ [NumA,γ [n] − NumA,γ [k] + 1] and similarly bk = PosB,γ [NumB,γ [m] −
NumB,γ [k] + 1]. We solve the 2-letter subproblem (A[1 . . .ak], B[1 . . .bk]) by using the 2-letter online procedure. Given
the solution to the 2-letter subproblem (A[1 . . .ak+1], B[1 . . .bk+1]) that we solved in the previous iteration, we reveal
to the procedure the symbols B[bk+1 + 1], . . . , B[bk] and A[ak+1 + 1], . . . , A[ak] one after the other obtaining each time
the solution to the new subproblem and finally obtain the solution to the subproblem (A[1 . . .ak], B[1 . . .bk]). Where for
k = min{NumA,γ [n],NumB,γ [m]} we have initialized bk+1 and ak+1 to zero. In this way we obtain for every k the length of
a CWIS of type α∗β∗γ k . The longest of them over all k are the LCWISs of the two sequences. If each call to the 2-letter
procedure takes time O (log log m), the algorithm has running time O ((m + n) log log m) = O (m log log m).

322 M. Kutz et al. / Journal of Discrete Algorithms 9 (2011) 314–325
Fig. 6. Example of the revealed prefixes of A and B and their CWIS 〈4〉.

Solving the 2-letter case. We now describe how to solve the 2-letter problem in an online fashion. Recall the simple algo-
rithm described in Section 3.2. The correctness of this algorithm is based on the fact that it considers all possible CWISs
that can potentially be extended to an LCWIS. Namely, for each 0 � i � min{NumA,α[n],NumB,α[m]} it considers a CWIS
containing i αs and as many βs as possible.

The new approach maintains this property too. Namely, for the current subproblem it maintains all currently possible
CWISs and the longest one is the solution to the subproblem. So, if (A[1 . . .a], B[1 . . .b]) is the current subproblem, then
for all 0 � i � min{NumA,α[a],NumB,α[b]} we maintain a CWIS containing i αs; the i leftmost pairs of αs and as many βs
as possible. We denote such a CWIS by 〈i〉.

The general idea is as follows. The algorithm maintains a set P of at most n partial solutions, each of which is a CWIS
that contains a different number of αs. Assume that we have a solution to the current subproblem and a new symbol of
one of the sequences is revealed. It is either an α or a β . If it is an α, assume that it is the ith α in its sequence. The
algorithm checks whether there are i αs in the prefix of the other sequence that has been revealed, and if so it inserts the
sequence αi into P , as the sequence 〈i〉. If the new letter is a β , the algorithm updates those CWISs that can be extended
with one more pair of βs. Namely, those CWISs which have at least one free β in the other sequence. The solution to the
new subproblem is the currently longest CWIS. If we implement the above algorithm naively then each time we consider a
β we may spend Θ(n) time, since there can be up to n CWISs in P .

A speedup via priority queues. Our aim is to handle every new symbol in O (log log m) time. In order to do so we need the
following simple observations. Assume we have maintained all currently possible CWISs. Among those consider the CWISs
which have a non-negative number of free βs in A. Namely, the set of CWISs with

(
NumA,β [a] − NumA,β

[
PosA,α[i]]) − (

NumB,β [b] − NumB,β

[
PosB,α[i]]) > 0,

i.e., those for which the number of βs in A, after the ith α in A is at least the number of βs in B , after the ith α in B . We
call this number the excess of 〈i〉 in A and denote it by exA(i) (see Fig. 6). Observe that the length of such a CWIS 〈i〉, call
it �(i), can be expressed, at any point, as i plus the number of βs in B , after the position of the ith α in B , i.e.,

�(i) = i + NumB,β [b] − NumB,β

[
PosB,α[i]].

The term NumB,β [b] does not depend on i and it is common to all these CWISs. Therefore, if we need to keep some ordering
on their length it is sufficient to do so by using the term i −NumB,β [PosB,α[i]]. The advantage is that the value of this term
does not change as new symbols of the sequences are revealed, as is the case for the term NumB,β [b].

So, consider those CWISs with exA(i) > 0 in non-decreasing order of their current length. When a new β appears in B
the length of all these CWISs increases by one since they have at least one free β in A to match this new β . Therefore,
their relative order does not change. On the other hand, when a new β appears in A the length of none of these CWISs
changes since they have no free βs in B and therefore again their relative order does not change. So, if we maintain them
in a maximum priority queue with priority their length, the structure of the priority queue will not change when a new β

is revealed.

The priority queues L A and L B ordered by length. Given the above observations, the algorithm maintains a maximum
priority queue L A keeping CWISs with exA(i) > 0 as follows. The elements of the priority queue are (key, data) pairs, where
the key is a number that corresponds to the length of one or more CWISs and the data is a doubly linked list containing
the CWISs of that same length. For a given CWIS the key is: k(i) = i − NumB,β [PosB,α[i]] + m. (We added m in order to
avoid negative priorities.) So, whenever we need the length of a CWIS contained in this priority queue we compute it by
�(i) = k(i) + NumB,β [b] − m.

Moreover, in order to be able to find and delete elements of the doubly linked lists fast, we keep an array
P [0 . . . min{NumA,α[n],NumB,α[m]}], where P [i] corresponds to CWIS 〈i〉 and contains a pointer to the element of the doubly
linked list corresponding to CWIS 〈i〉.

Insertion of a CWIS 〈i〉 in L A works as follows: Given i, compute k(i) with the above formula. If k(i) is not already in L A

then add the pair (k(i), new doubly linked list). Create a list element with value i and insert it at end of the list. Set P [i] to
point at the newly inserted element of the list.

M. Kutz et al. / Journal of Discrete Algorithms 9 (2011) 314–325 323
Deletion of a CWIS from L A works as follows: Given i, delete from the list the element that P [i] points to. If the list
becomes empty, then compute k(i) and delete it from L A .

Since the keys we insert this way are integers in the range {1, . . . ,m + n}, we can use as a priority queue a van Emde
Boas tree [12] which supports each operation in O (log logm) time.

The complete algorithm uses three additional priority queues, all of which hold keys which are positive integers of value
at most m +n, and therefore we can use van Emde Boas trees for all queues. Moreover, in all of them we also add a suitable
term in O (m + n), simply to avoid negative priorities, and we will always have to subtract this term when computing a
particular priority. Finally, in all of them we omit an additive term which although changes as a and b increase, at any
particular point it is the same for all elements in the priority queue and has to be added whenever a particular priority is
computed.

Similar properties to the above hold for the set of CWISs that have a non-negative number of free βs in B . Their relative
order does not change when a new β is revealed in A or B . So, we keep them in a priority queue LB . The length of such a
CWIS 〈i〉 can be expressed as

�(i) = i + NumA,β [a] − NumA,β

[
PosA,α[i]].

Therefore, similarly to above, it is sufficient to keep them in LB with priority i − NumA,β [PosA,α[i]] + n, where n is added
in order to avoid negative priorities. The priorities we insert in this way are integers in the range {1, . . . ,2n}.

Interaction between the queues. Any CWIS 〈i〉 has either free βs in A, in which case it belongs in L A or free βs in B , in
which case it belongs in LB or it has no free βs. With some care we are going to be able to put a CWIS of the latter case
in either L A or LB . Since all possible CWISs are included in L A and LB the maximum between the maximum in L A and the
maximum in LB is the current solution. Note that as symbols are revealed, the status of a CWIS can change from having a
positive number of free βs in A, to not having any free βs in A to having a positive number of free βs in B , and vice versa.
This means that there are cases in which we need to move CWISs between L A and LB .

The priority queues E X A and E X B ordered by excess. Next, we show how to handle the above mentioned movements.
If 〈i〉 has free βs in A, recall that we call their number the excess of 〈i〉 in A and denote it by exA(i) = (NumA,β [a] −
NumA,β [PosA,α[i]]) − (NumB,β [b] − NumB,β [PosB,α[i]]). Observe that when a new β is revealed in A, the excess of all
CWISs in L A is increased by one, while, when a new β is revealed in B their excess is decreased by one. Therefore when a
new β is revealed in B we need to check which CWISs got negative excess, i.e., need to be moved to LB . For this purpose
we keep a minimum priority queue E X A where we keep the same CWISs as in L A but with priority their excess. Observe
that it is sufficient to keep them with priority NumB,β [PosB,α[i]] − NumA,β [PosA,α[i]] + m, since the other two terms are
the same for every 〈i〉, where m is added to avoid negative priorities.

Similarly to E X A we keep E XB which is a priority queue, that holds the CWISs of LB sorted by their excess of βs in B .
So, when a new β is revealed in B we need to check whether the minimum in E X A became negative, in which case we

remove it from L A and E X A and insert it into LB and E XB .
Symmetrically, when a new β is revealed in A we check whether the minimum excess in E XB became negative, in which

case we remove the corresponding CWIS from LB and E XB and insert it into L A and E X A .

Eliminating duplicates. In order to have that each new revealed symbol causes only a constant number of priority queue
operations, we must ensure that in each of the queues E X A and E XB , each key appears at most once. In this way when a
new β is revealed in A or B at most one element in E X A and at most one element in E XB gets negative excess and has to
be moved.

We describe how this can be achieved when we wish to insert a CWIS 〈i〉 into L A and E X A . The strategy is similar when
inserting a CWIS into LB and E XB . We first check whether there is a CWIS of the same excess in E X A . If not, we insert 〈i〉
into L A and E X A as described before. Otherwise, there is a CWIS 〈k′〉 in E X A with exA(k′) = exA(i). We decide according
to the following rule. If �(i) > �(k′), delete 〈k′〉 from L A and E X A and insert 〈i〉. Otherwise, discard 〈i〉. We can do this
because both CWISs have the same excess, so they will always have the same growth and therefore, the larger of the two
will always remain the larger.

The complete 2-letter algorithm. Putting everything together, we have the following algorithm. Keep four priority queues
L A , E X A , LB , E XB as described and a variable that holds the current solution, i.e., the currently best CWIS. Create a CWIS
with zero αs, i.e., the 〈0〉 CWIS. Insert 〈0〉 in L A and E X A and set it to be the current solution. When a new α is revealed
in A or B and it is the ith one in its sequence, check whether there are i αs in the other sequence and if so, create a
new CWIS 〈i〉 = αi . Compute its excess in A and if it is non-negative insert 〈i〉 into L A and E X A . If the excess in A is
negative, then the excess in B is positive, so, insert 〈i〉 into LB and E XB . Moreover, check whether it has length greater than
the current solution, in which case set it to be the current solution. When a new β is revealed in A, check whether the
minimum of E X A now has negative excess and if so, delete it from L A and E X A and insert it into LB and E XB . Next, check
whether the maximum between the maximum in L A and the maximum in LB has length greater than the current solution
and if so, set it to be the current solution. When a new β is revealed in B , check whether the minimum excess in E XB

324 M. Kutz et al. / Journal of Discrete Algorithms 9 (2011) 314–325
became negative and if so, delete it from LB and E XB and insert it into L A and E X A . Also, check whether the maximum
between the maximum in L A and the maximum in LB is longer than the current solution in which case we set it to be the
current solution.

The time we spent in the above algorithm each time we encounter a new symbol is O (log log m), so we have

Theorem 4. We can find an LCWIS of two 3-letter sequences of lengths m and n, with m � n, in O (m log log m) time.

4. Multiple sequences

In this section we consider the problem of finding an LCIS of k length-n sequences, for k � 3. We will denote the
sequences by A1 = (a1

1, . . . ,a1
n), A2 = (a2

1, . . . ,a2
n), . . . , Ak = (ak

1, . . . ,ak
n). A match is a vector (i1, i2, . . . , ik) of indices

such that a1
i1

= a2
i2

= · · · = ak
ik

. Let r be the number of matches. Chan et al. [4] showed that an LCIS can be found in

O (min(kr2,kr logσ logk−1 r) + kSortΣ(n)) time (they present two algorithms, each corresponding to one of the terms in the
min). We present a simpler solution which replaces the second term by O (r logk−1 r log log r).

We denote the ith coordinate of a vector v by v[i], and the alphabet symbol corresponding to the match described by a
vector v will be denoted s(v). A vector v dominates a vector v ′ if v[i] > v ′[i] for all 1 � i � k, and we write v ′ < v . Clearly,
an LCIS corresponds to a sequence v1, . . . , v� of matches such that v1 < v2 < · · · < v� and s(v1) < s(v2) < · · · < s(v�).

To find an LCIS, we use a data structure by Gabow et al. [6, Theorem 3.3], which stores a fixed set of n vectors from
{1, . . . ,n}k . Initially all vectors are inactive. The data structure supports the following two operations:

1. Activate a vector with an associated priority.
2. A query of the form “what is the maximum priority of an active vector that is dominated by a vector p?”

A query takes O (logk−1 n log log n) time and the total time for at most n activations is O (n logk−1 n log log n). The data
structure requires O (n logk−1 n) preprocessing time and space.

Each of the r matches v = (v1, . . . , vk) corresponds to a vector. The priority of v will be the length of the longest LCIS
that ends at the match v . We will consider the matches by non-decreasing order of their symbols. For each symbol s of the
alphabet, we first compute the priority of every match v with s(v) = s. This is equal to 1 plus the maximum priority of a
vector dominated by v . Then, we activate these vectors in the data structure with the priorities we have computed; they
should be there when we compute the priorities for matches v with s(v) > s.

The algorithm applies to the case of a common weakly-increasing subsequence by the following modification: The
matches will be considered by non-decreasing order of s(v) as before, but within each symbol also in non-decreasing
lexicographic order of v . For each match, we compute its priority and immediately activate it in the data structure (so that
it is active when considering other matches with the same symbol). The lexicographic order ensures that if v > v ′ then v ′
is in the data structure when v is considered.

Theorem 5. An LCIS or LCWIS of k length-n sequences can be computed in O (r logk−1 r log log r) time, where r counts the number of
match vectors.

5. Outlook

The central question about the LCS problems is, whether it can be solved in O (n2−ε) time in general. It seems that
with LCIS we face the same frontier. Our new algorithms are fast in many situations, but in general, we do not obtain
subquadratic running-time, either.

On the other hand, LCWIS seems to behave very different from the other two problems. Our result shows that it behaves
somewhat like a mixture of LCS and LCIS. While already the 2-letter problem is unsolved for LCS, finite alphabets are
trivial for LCIS. With LCWIS, we present near-linear-time solutions for alphabets with up to three letters, while it is unclear
whether similar results can be obtained for all finite alphabets.

References

[1] D. Aldous, P. Diaconis, Longest increasing subsequences: From patience sorting to the Baik–Deift–Johansson theorem, Bulletin of the AMS 36 (4) (1999)
413–432.

[2] L. Bergroth, H. Hakonen, T. Raita, A survey of longest common subsequence algorithms, in: Proceedings of the Seventh International Symposium on
String Processing Information Retrieval (SPIRE ’00), IEEE Computer Society, 2000, pp. 39–48.

[3] S. Bespamyatnikh, M. Segal, Enumerating longest increasing subsequences and patience sorting, Information Processing Letters 76 (1–2) (2000) 7–11.
[4] W.-T. Chan, Y. Zhang, S.P.Y. Fung, D. Ye, H. Zhu, Efficient algorithms for finding a longest common increasing subsequence, Journal of Combinatorial

Optimization 13 (3) (2007) 277–288.
[5] M.L. Fredman, On computing the length of longest increasing subsequences, Discrete Mathematics 11 (1) (1975) 29–35.
[6] H.N. Gabow, J.L. Bentley, R.E. Tarjan, Scaling and related techniques for geometry problems, in: Proceedings of the Sixteenth Annual ACM Symposium

on Theory of Computing (STOC ’84), ACM Press, 1984, pp. 135–143.

M. Kutz et al. / Journal of Discrete Algorithms 9 (2011) 314–325 325
[7] D.S. Hirschberg, A linear space algorithm for computing maximal common subsequences, Communications of the ACM 18 (6) (1975) 341–343.
[8] J.W. Hunt, T.G. Szymanski, A fast algorithm for computing longest common subsequences, Communications of the ACM 20 (5) (1977) 350–353.
[9] W.J. Masek, M.S. Paterson, A faster algorithm computing string edit distances, Journal of Computer and System Sciences 20 (1980) 18–31.

[10] E.M. McCreight, Priority search trees, SIAM Journal on Computing 14 (2) (1985) 257–276.
[11] Y. Sakai, A linear space algorithm for computing a longest common increasing subsequence, Information Processing Letters 99 (5) (2006) 203–207.
[12] P. van Emde Boas, R. Kaas, E. Zijlstra, Design and implementation of an efficient priority queue, Mathematical Systems Theory 10 (1977) 99–127.
[13] R.A. Wagner, M.J. Fischer, The string-to-string correction problem, Journal of the ACM 21 (1) (1974) 168–173.
[14] D.E. Willard, Log-logarithmic worst-case range queries are possible in space Θ(N), Information Processing Letters 17 (2) (1983) 81–84.
[15] I.-H. Yang, C.-P. Huang, K.-M. Chao, A fast algorithm for computing a longest common increasing subsequence, Information Processing Letters 93 (5)

(2005) 249–253.

	Faster algorithms for computing longest common increasing subsequences
	Introduction
	Our results

	An output-dependent upper bound
	Bounded heaps
	An O((m+nl)loglogσ+SortΣ(m)) time algorithm

	Weakly-increasing subsequences
	Preprocessing
	The 2-letter case is simple
	The 3-letter case in O(m+nlogn) time
	The 3-letter case in O(mloglogm) time

	Multiple sequences
	Outlook
	References

