
A Fast Pruning Algorithm for Optimal Sequence Alignment

Aaron Davidson
Department of Computing Science

University of Alberta
Edmonton, Alberta, Canada

davidson@cs.ualberta.ca

Abstract

Sequence alignment is an important operation in com-
putational biology. Both dynamic programming and A*
heuristic search algorithms for optimal sequence alignment
are discussed and evaluated. Presented here are two new
algorithms for optimal pairwise sequence alignment which
outperform traditional methods on very large problem in-
stances (hundreds of thousands of characters, for example).
The technique combines the benefits of dynamic program-
ming and A* heuristic search, with a minimal amount of
additional overhead. The dynamic programming matrix is
traversed along antidiagonals, bounding the computation
to exclude portions of the matrix that cannot contain opti-
mal paths. An admissible heuristic assists in pruning away
unnecessary areas of the matrix, while preserving optimal
solutions for any given scoring function. Since memory re-
quirements are a major concern for large sequence align-
ment problems, it is shown how the standard algorithm (re-
quiring quadratic space) can be reformulated as a divide
and conquer algorithm (requiring only linear space, at the
cost of some recomputuation).

1 Introduction

In the sequence alignment problem a set of strings must
be aligned to maximize the number of positions where the
strings have matching characters. Gaps (‘-’) may be in-
serted into the strings in order to shift the remaining char-
acters into better alignments. Alignments are evaluated by
a scoring function that gives points for matching characters
and penalties for any gaps. Our task is to find an optimal
alignment for a set of strings and a given scoring function.

There are many useful applications for sequence align-
ment in computational biology. In biological sequence
alignments for strings representing DNA or proteins, the
scoring function represents the biological plausibility of
various mutations occurring in the strings.

Suppose a gene has been discovered in a model organ-
ism, and the function it plays in cell metabolism is well
known. It is plausible that a similar, mutated gene exists
in humans. The human genome database contains millions
of sequence fragments. By taking the sequence of a gene
whose function is known, we can align it against all of the
sequences in the human genome database [7]. If a sequence
aligns very well with our probe, it is likely to have a similar
function. These matches are called homologies. Once many
homologous genes have been discovered in several different
species, an optimal alignment between all species can help
show the evolutionary history of a gene as the species di-
verged from a common ancestor over time.

Sequence alignment is also used to discover the causes of
genetic disease. A geneticist can align sequences of several
healthy subjects together with several afflicted subjects. If
the afflicted subjects all share a common mutation that none
of the healthy subjects have, it is strong evidence that this
mutation is a cause of the ailment. There are further uses
for biological sequence alignment, but they are beyond the
scope of this discussion.

Section 2 discusses the well known dynamic programming
algorithms for sequence alignment, as well as A* heuristic
search methods. In Section 3 we present an algorithm that
combines the selective computation of a heuristic search
with the efficiency of dynamic programming. This hy-
brid approach bounds the traversal of the dynamic program-
ming matrix so that unneeded portions of the matrix are

AGGTATTA- 2*(6 matches) -2*(3 gaps)
A--TATTAG score = 6

A-GGTATTA- 2*(4 matches) -1*(1 mismatch) -2*(5 gaps)
AT-AT-T-AG score = -3

Figure 1. Two example alignments of ‘AG-
GTATTA’ against ‘ ATATTAG’.

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on November 05,2020 at 08:43:14 UTC from IEEE Xplore. Restrictions apply.

A 136
G -37 136
C -160 -160 136
T -160 -160 -37 136

A G C T

Table 1. A nucleic acid scoring matrix.

not visited. This approach does especially well on large
alignments. For instance on an alignment of two DNA
strings over two hundred-thousand base-pairs in length, this
method was up to twice as fast as previous methods for op-
timal sequence alignment. These results are detailed in Sec-
tion 4. Section 5 gives future work and conclusions.

2 Sequence Alignment

2.1 Scoring Functions

To facilitate simple examples, we will use a very ba-
sic scoring function. Matching characters will be worth 2
points, a mismatch will be worth -1 point, and each gap
will be worth -2 points. For example, the two strings ‘AG-
GTATTA’ and ‘ATATTAG’ could be aligned in many ways.
Two possible alignments are shown in Figure 1.

In real biological applications the scoring function is far
more complicated. There can be many different values for
each type of match and mismatch. Typically a scoring ma-
trix such as shown in Table 1 is used. Furthermore, the cost
of each gap inserted depends on the context as well. For
instance, starting and trailing gaps have no penalty, and the
cost of opening a gap is much higher than extending an ex-
isting gap. These are calledaffine gap penalties. The scores
for gaps, matches and mismatches are chosen to correspond
to the likelihood of the mutations occurring in nature. A
few long gaps are much more common in real biological
sequences than are many small gaps, so the affine gap cost
favors alignments that have the former characteristic. The
scoring function used can drastically affect the performance
of certain alignment algorithms. Scoring functions are dis-
cussed more thoroughly in [3] and [7].

2.2 Sequence Alignment As Path Finding

Sequence alignment can be formalized as a shortest-path
problem through ad-dimensional lattice [2], whered is the
number of sequences being aligned. The alignment state-
space consists of nodes where either the next character from
a sequence is accepted or a gap is entered. We start from an
empty state and move towards the goal state by accepting
characters and inserting gaps. A goal state is reached when
all characters have been aligned.

The distinction between this type of problem and tradi-
tional path finding problems is that in sequence alignment

Matrix computeMatrix(Sequence A, Sequence B) {
int x,y,max;
Matrix m = newMatrix(length(A), length(B));
for (x=0; x < length(B); x++)

m[x][0] = x * GAP_PENALTY;
for (y=0; y < length(B); y++) {

m[0][y] = y * GAP_PENALTY;
for (x=1; x < length(B); x++) {

v1 = m[x-1][y-1] + SCORE(A[x], B[y]);
v2 = m[x-1][y] + GAP_PENALTY;
v3 = m[x][y-1] + GAP_PENALTY;
m[x][y] = max(v1, v2, v3);

}
}
return m;

}

Figure 2. Sample C-like code for computing
the matrix.

Figure 3. A sample matrix generated for a
small problem. The right shows an optimal
path traced through the matrix.

there is a large branching factor (2d� 1), and a large num-
ber of alternate paths between nodes in the graph. This gives
the domain a unique, regular structure that still challenges
traditional search algorithms such as A* and IDA* [9].

2.3 Dynamic Programming

Needleman and Wunsch developed a dynamic program-
ming method that places each sequence along the edge of a
matrix [11]. We will refer to this method as thefull-matrix
algorithm. In two dimensions, the algorithm starts in the
top left corner, and computes the cells left to right, and top
to bottom. An alignment of two sequences corresponds to
a path through the matrix (from the top-left corner, to the
bottom-right).

Moving horizontally or vertically through the matrix rep-
resents inserting a gap in the opposing sequence. Moving
diagonally represents aligning the two values for that cell.
The value of each cell is computed by taking the move that
is best from the three neighbor cells to its top, left, and top-
left.

When the matrix is complete, the value in the bottom-
right corner is the optimal score. To reconstruct the paths

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on November 05,2020 at 08:43:14 UTC from IEEE Xplore. Restrictions apply.

Figure 4. Hirschberg’s Divide and Conquer
Method.

through the matrix that yield the optimal score, we simply
need to follow the matrix from the bottom-right cell, all the
way back to the start, by moving back into cells that are on
the optimal pathway. Figure 2 gives some simple pseudo-
code for matrix computation (with a linear gap penalty).
Figure 3 shows an example of a small matrix after being
computed, and a traced optimal path.

Obviously this method isO(n2) in both time and space.
The computations needed at each cell are extremely light,
so even with large sequences, the computation time is
tractable. However, the size of the sequences do not have
to be very large before the matrix is too large to be stored in
main memory.

If we generalize this algorithm to multiple sequence
alignment, we add a new dimension to the matrix for each
sequence. The time and space complexity becomesO(nd),
wheren is the sequence length, andd is the number of se-
quences. With even a few sequences of moderate length,
the memory of current computers is quickly exhausted with
this approach.

2.4 Reducing the Memory Requirements

Hirschberg developed a similar algorithm that changes
the space requirements to a more respectableO(n) in two
dimensions (O(nd�1) in general), at the expense of requir-
ing extra recomputation of lost matrix values [6].

For the two dimensional case, the algorithm stores only
two rows of the matrix. It starts at the top and computes the
matrix one row at a time, overwriting the values in the array
as it works. When it reaches the middle row of the matrix
it stops and uses another array to compute from the bottom,
up to just below the other saved row in the middle.

Using these two rows from the middle, we can find the
maximum sum of the transitions between the two rows.
This will give us the optimal score, and the point along
the diagonal where the optimal path crosses. The algorithm
then recursively solves the two sub problems from the top-
left to the crossing point, and from the crossing point to the
bottom-right (Figure 4). At some point, the problems can

become small enough that a full matrix can be used to solve
it. This algorithm typically does more than2n2 cell compu-
tations.

The FastLSA algorithm [4] generalizes Hirschberg’s al-
gorithm by adding extra rows and columns, allowing the use
of more memory to reduce the number of recomputations.
Both rows and columns are stored, and the number of extra
rows and columns is a scalable parameter for the trade-off
between extra memory and fewer recomputations.

The surprising fact about these two linear-space algo-
rithms is that for many problems they require less time to
execute than the full-matrix versions. In fact, the predic-
tions made by classic time-complexity analysis do not re-
flect what is observed empirically. This is due to the effects
of cache-memory. Once the full matrix can no longer fit in
cache, the cost of constantly going to main-memory is ex-
tremely high (typically almost a factor of ten times slower).
This cost is far higher than the cost of the extra calculations.

2.5 A* Heuristic Search Methods

A* (read ‘A-star’) is a classic best-first search algorithm,
well known in the artificial intelligence community, and is
applicable to a wide variety of domains [5]. When com-
bined with a good heuristic evaluation function, it is often
the most efficient method known for finding optimal solu-
tions.

Since the state-space representation defines sequence
alignment as a path finding problem, A* would appear to be
a natural candidate. Unfortunately, the memory constraints
of the basic A* algorithm allow it to work only for relatively
small problems.

The basic strategy of A* is to search forward from a start
state, always expanding the most promising node first. All
nodes on the frontier of the search are stored in anopen list
(usually a priority queue), and all the children of a node are
added to the frontier when it is expanded.

To begin, the start node is placed into the open list. The
cost to reach a node is calledg, while the heuristic estimate
of the cost from the node to the goal node is calledh, and
the sum of these two values isf .

A* is guaranteed to return an optimal path if the heuristic
evaluation function isadmissible. A heuristic is admissible
if it never overestimates the cost of the optimal path from
any node to the goal node.1

Nodes are sorted in the open list by theirf values. The
search itself is a simple loop. While there remain nodes in
the open list, pop the highest ranked noden from the list. If

1The A* literature usually considers admissible heuristics which are
lower bounds on the cost of an optimal path. Since sequence alignment
works with a score function instead of a cost function, we want to maxi-
mize the score rather than minimize the cost. As a result, our discussion
in the next section reverses the meaning of upper and lower bounds with
respect to traditional A* literature.

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on November 05,2020 at 08:43:14 UTC from IEEE Xplore. Restrictions apply.

n has been visited before (we also maintain a closed list of
nodes visited in the past), by some other path, we compare
the score of the current path to the previous path, and only
expand the node if it is better. If this node is a goal node, we
remember it if it has a lower cost than any previously found
path to a goal.

To expand a node, we place the children ofn into the
open list. If any children have anf value higher than the
lowest cost found so far, they can be pruned by not placing
them into the open list. Finally, noden is placed onto the
closed list. When there are no longer nodes left on the open
list, the best path found to the goal will be the optimal path.

2.5.1 IDA*

A major problem with A* is that it may require a large
amount of memory in order to store all of the nodes in the
open and closed lists. IDA* (Iterative Deepening A*) [8],
removes the memory constraint, but fails at sequence align-
ment problems due to the combinatorially explosive num-
ber of equivalent paths through the grid. Since IDA* has no
memory of past search, it explores all paths to each node.
Korf reported that in his experiments, IDA* was unable to
solve sequence alignment problems larger than 10x10 [9].

2.5.2 Divide and Conquer Frontier Search

Korf introduced a search algorithm for sequence alignment
called divide-and-conquer frontier A* (DCFA*) [10]. This
algorithm behaves like A*, but stores only the open list.
Since the closed list is not stored, the path cannot be recon-
structed once a goal node is found, as it cannot retrace its
steps. Instead, it uses a divide and conquer method. When
the search crosses a designated boundary at the center of the
search-space, each node afterward remembers, via propaga-
tion, which node from its path went through the boundary.
When the goal node is reached we can simply check which
boundary node was on its path (an optimal one) and use
that as the fulcrum of the divide-and-conquer step. By not
storing the closed list, the memory requirements of A* are
avoided. This is quite similar in behavior to Hirschberg’s
dynamic programming algorithm, and is presented as a gen-
eralization of it.

2.5.3 Partial Expansion A*

Ishida et al, have worked on a variation of A* using partial
node expansion [13]. Instead of inserting all child nodes
into the open list (an expensive operation), this algorithm
only generates the most promising nodes. If a node has un-
promising children, it is reinserted back into the open list
with the value of the best unpromising child node. Since
nothing is lost (the node can always be re-expanded again
later), correctness is maintained. Unpromising nodes are

never generated, so the memory they would otherwise re-
quire is saved (as well as the time spent adding them to the
open list). This method is currently one of the most suc-
cessful for aligning several sequences together at once.

3 Bounded Dynamic Programming to Ap-
proximate A*

One of the largest problems with the A* and its variants,
is that even without the closed list these algorithms are still
memory hungry. Furthermore, there is a high cost in manag-
ing the open list, and in estimating upper and lower bounds
for pruning and ordering.

One of the nice features of the sequence alignment prob-
lem is that the search space is well structured and regular.
We know the neighbors of any node, and all paths are mono-
tonically increasing towards the goal node (not in cost, but
in the number of nodes remaining to reach the goal node).

Presented here is an algorithm for exploiting the best
traits of both Korf’s DCFA* and the dynamic programming
methods. It attempts to use the low overhead of dynamic
programming coupled with the pruning abilities of A* to do
less overall work than other algorithms. The algorithm is
calledLinear Bounded Diagonal Alignment or LBD-Align,
for reasons that will be discussed below.

The major modification to the dynamic programming al-
gorithm is to progress along the antidiagonals (diagonals
running from upper-right to lower-left) of the matrix, rather
than row by row. This may seem strange but, as we will see
shortly, it allows for an efficient method for pruning away
useless portions of the matrix.

The algorithm works as shown in the left of Figure 5.
The dynamic programming matrix is computed one diag-
onal at a time, starting in the top-left corner, and working
down towards the bottom-right. Changing to a diagonal
traversal does not compromise the correctness, since it pre-
serves the proper ordering. For each cell, the values of the
three parents that a cell requires (to the top, left, and top-

Figure 5. A small LBD-Align matrix (left), and
a sample 5000x5000 matrix showing the com-
puted region (right).

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on November 05,2020 at 08:43:14 UTC from IEEE Xplore. Restrictions apply.

left) will already have been computed by the two previous
diagonals.

All that has been done so far is to change the order in
which cells are computed in the matrix. This change allows
us to prune unnecessary regions of the matrix at a very low
cost. A pruning test, comparing upper and lower bound es-
timates, is done to determine if a portion of the search space
can be logically eliminated from consideration (this is dis-
cussed in more detail in Section 3.1). A* would perform
this test every time a node is expanded, resulting in a higher
overhead cost. LBD-Align only does two pruning tests per
diagonal – a linear amount in the size of the problem.

Only the first and last cells on each diagonal (we will call
this the pruning frontier) are tested for pruneability. For in-
stance, if the top cell on a diagonal can be pruned, then all
remaining cells to the right of that cell can also be pruned
since any path through them must come through that pruned
cell. Since the top cell on the next diagonal is to the right
of the pruned cell, we can move our pruning frontier down
one row and the size of the next diagonal will shrink. Simi-
larly, the remainder of columns can be pruned from the bot-
tom frontier. We continue shifting the frontier with each
successful pruning, effectively shrinking the size of the ma-
trix. The image on the right of Figure 5 is generated from
a 5000x5000 matrix. The black area shows the computed
region and the white space shows the pruned, uncomputed
region of the matrix.

We can keep track of what has been pruned with a list
of numbers for the extent of each row and column. PR is
the pruned-row list. In Figure 5, since row zero has been
pruned after the cell at the third position, we store a three
at PR[0]. Likewise for PC, the pruned-column list. For
rows and columns that have not been pruned yet, the value
of their length is stored instead, indicating that all cells are
still valid. 2

Since this algorithm only does a linear number of bounds
checks within anO(n2) algorithm, the overhead of this ex-
tra work stays at a minimum (in fact, it is nearly free). Since
the checks are always on the frontier, it focuses the extra
work of pruning on the areas that are most likely to benefit.
Trying to prune cells near the optimal path will usually be
futile. A* will often manage to prune more of the search
space than LBD-Align, but at a higher cost per node.

If the initial lower bound estimation of the optimal score
is poor, the pruning will not be as dramatic as it could be.
One technique to improve the pruning is to occasionally
re-estimate the lower-bound. If the algorithm detects that
the score has improved locally at a cell, it can choose (at
most once per diagonal) to re-estimate the lower bound at
the promising cell. Re-estimation should not be done too

2The PR and PC arrays are not actually required to implement this al-
gorithm, but are included to simplify the discussion. Instead, a single value
for each dimension can store the previous row or column’s cut-off.

often, otherwise the extra overhead may not be worthwhile.
Cache usage is an important consideration for the actual

performance of this algorithm on modern computers. When
a memory location is accessed the cache line is filled with a
sequential chunk of memory near the accessed location. A
traditional raster scan of a matrix thus uses the cache effec-
tively. Traversing along a matrix diagonally has poor local-
ity of reference, and cache reuse will be extremely low as a
result. To battle this problem, we store the matrix at a forty-
five degree angle, so that each antidiagonal is sequentially
located in memory.

3.1 Heuristics for Upper and Lower Bounds

To prove that a cell is not a part of any optimal path we
need to have good estimations of the optimal score. The
lower bound is a score less than or equal to the optimal
score. Likewise, the upper bound is always greater than
or equal to the optimal score. If a cell does not lie within
this window, we can safely prune it. The closer our high
and low estimations are to the optimal score, the more cells
will fall outside of the window. Getting accurate bounds is
crucial to successful pruning.

3.1.1 Lower Bounds

One quick and easy way to estimate a fairly inaccurate, but
admissible lower bound on the optimal score, is to take the
score of an arbitrary path through the matrix. For example,
we can take the score of aligning the strings directly without
inserting any gaps. This is equivalent to taking the path
through the main diagonal of the matrix (we will refer to
it as thediagonal heuristic). Not surprisingly, this gives a
weak bound with little heuristic power.

A greedy, local alignment technique can also generate a
more reasonable estimate. This greedy method chains the
results of several small dynamic programming matrices to
compute a reasonable path (Figure 6). Instead of comput-
ing the full rectangle, only the upper-triangular half is com-
puted, one antidiagonal at a time. Since we do not need to
reconstruct the path in this case (we are only interested in
the score), only the last two diagonals are needed in memory
to compute the values. Once the upper-triangular matrix is
computed, the maximum score on the frontier is found and
that point is used as the starting point for another small local
search. This process continues until the bottom-right corner
is reached, where the final score is then returned.

This greedy algorithm is far more accurate than the di-
agonal heuristic. However, it is only useful for the initial
lower bound guess because it is far more expensive to com-
pute than the diagonal heuristic. For re-estimations within
the search, the diagonal heuristic is still used.

Much better lower bounds can be quickly computed from
linear time algorithms like BLAST [1] or FASTA [12].

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on November 05,2020 at 08:43:14 UTC from IEEE Xplore. Restrictions apply.

Figure 6. A greedy ‘headlight’ search of the
matrix for lower bounds.

While the scores generated from an algorithm like BLAST
are not comparable to our scoring method, the alignment
produced can then be scored using our own scoring func-
tion.

3.1.2 Upper Bounds

For a an upper bound heuristic, we can use a technique sim-
ilar to Manhattan distance [8]. The estimate of cost is calcu-
lated by assuming we match the remaining characters per-
fectly and then take any gap penalties (which are of zero
cost in a real biological scoring function) if the remaining
strings are not of equal length. This is an admissible heuris-
tic since it is overly-optimistic, always overestimating the
optimal score.

Using these lower and upper bounds, when we reach a
cell whose score plus the heuristic estimate of the remaining
score, is worse than the lower bound, then the optimal path
cannot go through the cell in question. We may prune that
cell, and cells that can only be reached by a path through it.

3.2 Linear-Space LBD-Align

The bounded dynamic programming algorithm given
above can reduce the number of computations substantially,
especially when good bounds are given. It pays a very low
overhead for doing so, but since a full matrix is used it is
still constrained by memory.

Fortunately we can take the the ideas from Hirschberg’s
algorithm and Korf’s DCFA*, and apply it to this method as
well. Instead of storing the entire matrix, we can just store
a few diagonals from the matrix. In fact, we can compute
the entire matrix using just two diagonals, overwriting one
of them as it sweeps across the matrix. Figure 7 shows a
diagram of the diagonal matrix computation using just two
diagonals (left). On the right, the matrix has been com-
puted and a pivot on the optimal path has been determined.
The shaded areas represent the two new sub problems. Just
as Korf’s DCFA* stores the point at which a node’s path
crosses the middle of the matrix, we can also store this in-

Figure 7. Divide and Conquer Linear Bounded
Diagonal Alignment.

formation using two more lists, and propagate the values to
the goal. When the bottom-right cell is finally computed,
we can look up which cell its path crossed the middle diag-
onals at, and use that point to break the problem into two
smaller problems.

As an added bonus during the recomputation stage, if we
save the middle diagonals we now have the optimal scores
for the two sub problems. When we solve the sub problems
with the optimal score given as the lower bound, we get the
best possible pruning during the recomputations.

In total, this method needs only about6n integers for its
memory storage requirements: two diagonals for comput-
ing the matrix, two saved middle diagonals, and two more
to store the propagated crossing points.

This linear memory version of LBD-Align will be re-
ferred to as DCLBD-Align, forDivide and Conquer LBD-
Align.

4 Experiments

Several different sequence alignment programs were im-
plemented (in C) for comparison to one another. For a basic
reference, the Needleman-Wunsch dynamic programming,
or ‘full-matrix’ algorithm was implemented. A linear-space
program using Hirschberg’s method was also written. Fi-
nally, an implementation of an A* program for sequence
alignment was also built.3

For all the programs, a real scoring matrix was used (the
scoring matrix shown in Table 1, with a linear gap penalty
of -150). Experiments with affine gaps will be detailed later.
Benchmarks were taken on a 933 mHz P-III Linux PC with
512 Mb of RAM, and a 256k cache. A wide range of real
DNA sequences were used. Some sequences were highly
similar to each other, while others were extremely dissimi-
lar.

For small alignment problems there is little advantage
in using LBD-Align. Any gains in pruning cells from an

3The A* implementation could likely be improved, but not significantly
– many optimizations beyond the basic A* algorithm were implemented to
improve the search performance.

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on November 05,2020 at 08:43:14 UTC from IEEE Xplore. Restrictions apply.

n Full Matrix LBDA DCLBDA Hirschberg A*

3000 0.46 0.33 0.37 0.60 6.04
5000 1.27 0.90 1.03 1.70 20.60
8000 3.16 1.70 2.18 4.08 178.26
10000 5.64 3.03 3.97 7.26 -
15000 71.19 52.50 11.81 13.32 -
40000 - - 48.73 114.24 -
100000 - - 384.84 921.96 -
230000 - - 2454.64 5565.12 -

Table 2. Best times (in Seconds) for each
method on DNA alignment problems of vary-
ing sizes.

already small matrix, are generally not worth the overhead.
A simple full-matrix algorithm will usually execute fastest
when aligning small sequences.

For all large alignments, the LBD-Align methods were
substantially faster than the others. With extremely large
problems, the DCLBD-Align version pulls far ahead of
Hirschberg’s algorithm, since the benefits of pruning be-
come much greater. Results are given in Table 2. The
greedy headlight search described earlier was used to ob-
tain lower bound estimates. Italicized values represent the
point at which the algorithm ran out of main memory and
was required to swap to disk.

4.1 Pruning

Profiling of the programs revealed that in the LBD-Align
programs, bounds checking accounted for less than two per-
cent of the total execution time, most of which is incurred
during the initial lower bound calculation.

The scoring function has a huge effect on pruning. For
instance, if gaps are penalized strictly, more pruning is done
than would be with a less expensive gap cost – the horizon-
tal and vertical moves that occur on the pruning frontier will
drop faster and as a result be pruned sooner. For instance,
reducing the gap penalty from -150 to -100 in the test cases
above causes the pruned amounts to drop by about 15%.

The effect of having a good lower bound is shown in
Table 3 on an example 10000x10000 alignment. The first
column shows the initial lower bound estimate for the align-
ment. The second column gives the percentage of the ma-
trix that was computed, and the third column gives the total
execution time on our test machine. The diagonal heuristic
for this example estimates the score to be -642420, while
a greedy search estimates it at 80349. The actual optimal
score is 139536. The amount of the matrix that must be
computed depends heavily on the quality of the estimate.
With the worst lower bound, 51.35% of the matrix was com-
puted. When the optimal score was used as a bound, only

Lower Bound Computed Time (sec.)

-642420 51.35% 5.22
0 42.51% 4.40

80349 38.52% 3.97
139536 35.54% 3.62

Table 3. Effect of lower bounds on pruning.

Figure 8. A 10000x10000 alignment matrix
showing regions computed using different
lower bounds.

35% of the matrix was calculated. Figure 8 shows a graph-
ical representation of the difference between the diagonal
heuristic and the greedy search. The black region is the
portion of the matrix that was computed when the greedy
heuristic was used and the white regions are portions that
were pruned, and thus never visited. The grey shows the
amount computed when the diagonal heuristic was used.

4.2 Leading, Trailing, and Affine Gap Penalties

To handle affine gaps, the implementation details be-
come more complicated. Extra state information is needed
at each cell, to keep track of whether the gaps are being
opened or extended. Since leading and trailing gaps are
also free, aligning two sequences of significantly different
lengths hinders pruning – the smaller sequence can slide all
the way towards the far end of the longer sequence at zero
cost, potentially aligning with a high score in that region.
Pruning is deferred until that region is reached. Figure 9
demonstrates this problem clearly. The 650x650 alignment
matrix shown on the left was computed with a linear gap
cost, while the matrix shown on the right was calculated
with an affine gap cost (including free leading and trailing
gaps). The affine cost greatly reduces the pruning. How-
ever, when affine gaps are implemented, more computation
and more memory is required for each cell in the matrix.
Thus the benefits of pruning are larger. Results are pending.

5 Conclusions and Future Work

There are two important directions to take this bounded
dynamic programming method further. In a full-scale sys-

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on November 05,2020 at 08:43:14 UTC from IEEE Xplore. Restrictions apply.

Figure 9. The area of a 650x650 alignment ma-
trix computed with a linear gap cost (left), and
an affine gap cost (right).

tem the initial lower bound estimate should be much bet-
ter, coming from a quick local alignment method such as
BLAST or FASTA.

Secondly, LBD-Align can be extended for multiple se-
quence alignment. Implementing the algorithm for an arbi-
trary dimensional matrix will be much more difficult than
the two-dimensional case. However, this method uses less
memory than Korf’s DCFA*, has far less computational
overhead, but can still prune away large portions of the
search-space.

These results also need to be compared to FastLSA, one
of the best sequence alignment algorithms. Some of the
ideas from FastLSA could potentially be used in this ap-
proach as well. For instance, several sets of diagonals could
be stored, in both directions, helping to further reduce re-
computation.

The LBD-Align algorithm has very clear strengths and
weaknesses. Several factors affect its ability to prune away
portions of the matrix. If the sequences being aligned are
extremely dissimilar, or of very different lengths, substan-
tial pruning will be almost impossible. Similarly, if the ini-
tial lower bound estimate is far lower than the optimal score,
the pruned region will be small.

LBD-Align would not perform well as a first-order se-
quence database search tool, since the majority of se-
quences would be very dissimilar to the probe sequence.
However, it would work extremely well in conjunction with
a faster, non-optimal alignment algorithm such as gapped
BLAST. A BLAST search would filter out extremely dis-
similar sequences, and could then pass promising sequences
to LBD-Align for optimal alignments. The alignments from
the BLAST searches could be used as an extremely good
lower bound estimate for LBD-Align, ensuring excellent
cut-offs.

A* can prune more effectively, but its high overhead
makes it too slow for aligning only two sequences. LBD-
Align can be considered a ‘cheap A*’ for sequence align-
ment. In nearly any situation where two sequences are
known to be similar prior to alignment, LBD-Align should

significantly beat any other well-known algorithm for opti-
mal sequence alignment.

5.1 Acknowledgements

This research was funded by iCORE. I’d like to thank
Jonathan Schaeffer, Darse Billings, Duane Szafron, Deepak
Kamnasaran, and Martin M¨uller for extensive discussions
and proofreading.

References

[1] S. Altschul, W. Gish, W. Miller, W. Myers, and D. Lipman.
Basic local alignment search tool.Journal of Molecular Bi-
ology, 215:403–410, 1990.

[2] H. Carrillo and D. Lipman. The multiple sequence align-
ment problem in biology.SIAM Journal of Applied Mathe-
matics, 48(5):1073–1082, 1988.

[3] K. Charter, A. Driga, P. Lu, J. Schaeffer, D. Szafron, and
I. Parsons. Fastlsa – a fast linear-space algorithm for se-
quence alignment.To be published, 2001.

[4] K. Charter, J. Schaeffer, and D. Szafron. Sequence align-
ment using fastlsa. InProceedings of The 2000 International
Conference on Mathematics and Engineering Techniques in
Medicine and Biological Sciences (METMBS’2000), pages
239–245, 2000.

[5] P. Hart, N. Nilsson, and B. Raphael. A formal basis for the
heuristic determination of minimum cost paths.IEEE Trans.
Syst. Sci. Cybernet., 4(2):100–107, 1968.

[6] D. S. Hirschberg. A linear-space algorithm for computing
maximal common subsequences.Communications of the
ACM, 18:341–343, 1975.

[7] H. N. Jr, D. D. II, and A. Ropelewski. Strategies for search-
ing sequence databases.Biotechniques, 28(6), 2000.

[8] R. Korf. Depth-first iterative-deepening: An optimal admis-
sible tree search.Artificial Intelligence, 27(1):97–109, 1985.

[9] R. Korf. Divide-and-conquer bidirectional search: First re-
sults. InProceedings of the 16th International Joint Confer-
ence on Artificial Intelligence (IJCAI-99), pages 1184–1189,
1999.

[10] R. Korf and W. Zhang. Divide-and-conquer frontier search
applied to optimal sequence alignment. InProceedings of
the National Conference on Artificial Intelligence (AAAI-
2000), pages 910–916, 2000.

[11] S. Needleman and C. Wunsch. A general method applicable
to the search for similarities in the amino acid sequences of
two proteins. Journal of Molecular Biology, 48:443–453,
1970.

[12] W. Pearson. Rapid and sensitive sequence comparison with
fastp and fasta.Methods in Enzymology, 183:63–98, 1990.

[13] T. Yoshizumi, T. Miura, and T. Ishida. A* with partial ex-
pansion for large branching factor problems. InProceedings
of the National Conference on Artificial Intelligence (AAAI-
2000), pages 923–929, 2000.

Authorized licensed use limited to: National Sun Yat Sen Univ.. Downloaded on November 05,2020 at 08:43:14 UTC from IEEE Xplore. Restrictions apply.

